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Abstract

The Hoe↵ding–Sobol and Möbius decompositions are two di↵erent ways of writing a multivariate function as a sum

of components having successively fewer variables. The Hoe↵ding–Sobol decomposition is used extensively in global

sensitivity analysis, while the Möbius decomposition has found applications in the theory of tests of independence.

It is shown here that both of these formulae derive from a result of Kuo, Sloan, Wasilkowski, and Woźniakowski

(Math. Comp., 79 (2010), no. 270, pp. 953–966) concerning the representation of multivariate functions through

projections. The relative merits of the two formulae are also highlighted.
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1. Introduction1

As its title announces, this note aims to elucidate the connection between the Hoe↵ding–Sobol and Möbius

decompositions. Developed in di↵erent contexts, both of these formulae make it possible to express a real-valued

function f of d � 2 variables acting on a domain D ✓ Rd into a sum running over all subsets u of {1, . . . , d}.

Namely

f =
X

u✓{1,...,d}

fu, (1)

where fu is a function of the variables with indices in u alone, with the convention that the map f; is a constant.2

Thus, the terms in the sum (1) become simpler and simpler as the size |u| of the set u decreases from d to zero.3

The Hoe↵ding–Sobol decomposition goes back to the seminal work of Hoe↵ding on the theory of U -statistics [1],4

and by analogy with analysis of variance, Sobol [2] used it to derive sensitivity indices from the elements of the5

decomposition. This decomposition, whose definition will be recalled later in this note, has found many applications6

in statistics, notably in global sensitivity analysis; see, e.g., [3, 4, 5, 6, 7, 8, 9]. In particular, the Hoe↵ding–7

Sobol decomposition has been used extensively to compare the performance of Monte Carlo versus quasi-Monte8

Carlo integration in high-dimensional integration problems, given that the notion of e↵ective dimension reduces the9

dimension of the domain of integration; see, e.g., [10, 11, 12]. More recently, the Hoe↵ding–Sobol decomposition10
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has also been used to define and study the tail dependograph, a graphical tool which captures the structure of11

asymptotic dependence within a multivariate random phenomena; see [13, 14].12

By comparison, the Möbius decomposition is relatively unknown. It was originally suggested by Deheuvels [15]13

as a way to construct rank-based tests of independence among the components of a continuous random vector.14

More specifically, an application of the Möbius combinatorial formula leads to a representation of an empirical15

copula, and hence also of the empirical copula process, into a finite number of components which, under the null16

hypothesis of independence, are asymptotically independent. Cramér–von Mises statistics derived from the sub-17

processes prove to be very powerful, both asymptotically and in finite samples [16, 17, 18]. This approach has since18

been extended to the problem of testing for independence between random vectors [19, 20], and more recently to19

testing for dependence between arbitrary random variables [21].20

Because the Hoe↵ding–Sobol and Möbius formulae were developed in di↵erent contexts, the connection between21

them has never been spelled out. It is shown here that they are linked through a general representation for22

multivariate functions due to [22] which is described in Section 2. The way in which this general expression can be23

used to obtain the two decomposition formulae is then detailed in Section 3. These calculations suggest a slight24

extension of the result by [22] which is stated and proved in Section 4. This is followed in Section 5 by a short25

discussion of the comparative advantages of the Hoe↵ding–Sobol and Möbius decompositions.26

2. A general decomposition formula27

Let F be the linear space of real-valued functions acting on a domain D ✓ Rd and for each i 2 {1, . . . , d}, let28

Pi : F ! F be a projection, i.e., a map whose composition with itself, denoted PiPi, returns Pi. Further assume29

that these projections are commuting, i.e., for any distinct i, j 2 {1, . . . , d}, PiPj = PjPi, and let ID denote the30

identity operator on F .31

Kuo et al. [22] gave conditions on the projections P1, . . . , Pd which ensure both the existence and uniqueness of

the decomposition (1) based on terms defined, for any function f 2 F and arbitrary subset u ✓ {1, . . . , d}, by

fu =

 
Y

i2u

(ID � Pi)
Y

i/2u

Pi

!
(f). (2)

Their result holds provided that each projection eliminates the dependence on a specific input variable to which32

the function is applied. To describe this finding, introduce, for each set u ✓ {1, . . . , d}, the class Fu of functions33

f 2 F such that f(x1, . . . , xd) = f(y1, . . . , yd) when xj = yj for all j 2 u. Elements of Fu are then maps f 2 F such34

that f(x) depends only on the coordinates of x whose index is in u, and hence F; is the set of constant functions.35

To simplify notation, write F�i = F{1,...,d}\{i} for all i 2 {1, . . . , d}.36

The key assumption in Theorem 2.1 of [22], formally stated below, means that for any i 2 {1, . . . , d} and f 2 F ,37

the value of Pi(f) at x does not depend on the ith coordinate of x and that if f does not depend at all on this38

coordinate, the projection Pi leaves the function unchanged.39

Assumption 1. For all i 2 {1, . . . , d} and f 2 F ,

Pi(f) 2 F�i, (3)

f 2 F�i ) Pi(f) = f. (4)
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In what follows, for any set u ✓ {1, . . . , d} and vector x 2 D, xu stands for a vector whose length is the40

cardinality |u| of u and whose components are those of x whose indices are in u.41

Proposition 1. Let F be a linear space of real-valued functions acting on a domain D ✓ Rd and let P1, . . . , Pd be42

commuting projections on F that satisfy Assumption 1. Then, any function f 2 F can be expressed in the form (1),43

where the map fu defined in (2) is such that for any vector x 2 D, fu(x) only depends on xu.44

The second part of Theorem 2.1 of [22] is stated separately below for added clarity. Condition (5) therein is45

termed the annihilating property by these authors.46

Proposition 2. Under the same conditions as in Proposition 1, suppose that every f 2 F can be written in the

form (1) and that fu 2 Fu for every set u ✓ {1, . . . , d}. Further assume that, for all i 2 {1, . . . , d},

Pi(fu) =

8
><

>:

0 if i 2 u,

fu if i /2 u.
(5)

Then, the term fu given in (2) satisfies the recursive relation

fu = P{1,...,d}\u(f)�
X

v(u

fv, (6)

where for any set u ✓ {1, . . . , d}, Pu =
Q

i2u Pi. Furthermore, one has

fu =
X

v✓u

(�1)|u\v|P{1,...,d}\v(f). (7)

3. Special cases of Proposition 147

It is shown below that the Hoe↵ding–Sobol and Möbius decompositions are special cases of Proposition 1.48

Considering first the Hoe↵ding–Sobol decomposition, let F = L2(D) be the collection of square integrable

functions on D = [0, 1]d. For each i 2 {1, . . . , d}, let the projection Pi be defined through integration with respect

to the ith variable. That is, for every function f 2 F and vector x = (x1, . . . , xd) 2 [0, 1]d, set

Pi(f)(x) =

Z 1

0
f(x1, . . . , xi�1, z, xi+1, . . . , xd)dz.

Alternatively, the projection Pi could be defined as an expectation with respect to the ith component of a vector

Z = (Z1, . . . , Zd) of mutually independent random variables uniformly distributed on the interval [0, 1]. Indeed, for

every function f 2 F and vector x = (x1, . . . , xd) 2 [0, 1]d,

Pi(f)(x) = E[f(x1, . . . , xi�1, Zi, xi+1, . . . , xd)].

It is clear that the maps P1, . . . , Pd so defined are commuting projections that satisfy (1). The well-known

Hoe↵ding–Sobol decomposition then results upon injecting these projections into formula (2). Indeed, given that

the terms in expression (2) are mutually orthogonal in the L2-sense, it is easily checked that

var (f(Z)) =
X

u✓{1,...,d}

var (fu(Z)) ,
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so that the total variance of f(Z) decomposes as a sum of contributive parts. Moreover, given that these projec-49

tions also satisfy the annihilating property (5), formulae (6) and (7) yield the same decomposition as a result of50

Proposition 2.51

Turning to the Möbius decomposition introduced by Deheuvels [15] for testing mutual independence in a vector52

of continuous random variables, first note that one can limit the discussion to the class F of d-variate copulas,53

i.e., d-variate cumulative distribution functions whose margins are uniform on the interval [0, 1]. This is because if54

X1, . . . , Xd are random variables with continuous cumulative distribution functions F1, . . . , Fd, respectively, mutual55

independence between them occurs if and only if the uniform random variables Z1 = F1(X1), . . . , Zd = Fd(Xd)56

are mutually independent, i.e., their joint distribution, which is a copula, coincides with the independence copula,57

defined for all vectors (z1, . . . , zd) 2 D = [0, 1]d, by ⇧(z1, . . . , zd) = z1 ⇥ · · ·⇥ zd.58

For arbitrary set v ✓ {1, . . . , d} and vector x = (x1, . . . , xd) 2 [0, 1]d, let xv,1 denote the vector (t1, . . . , td) such

that ti = xi if i 2 v and ti = 1 otherwise. The Möbius decomposition of a copula C is then given, for all x 2 [0, 1]d,

by

C(x) = ⇧(x) +
X

u✓{1,...,d},|u|�2

Mu(C)(x)⇥
Y

k/2u

xk, (8)

where

Mu(C)(x) =
X

v✓u

(�1)|u\v|C(xv,1)⇥
Y

k2u\v

xk. (9)

The restriction to a copula is actually unnecessary, as the identity extends to any cumulative distribution function59

whose support is [0, 1]d; see Lemma 6 of [20].60

Note that the definition (9) also makes sense for sets u ✓ {1, . . . , d} of cardinality 0 or 1, which yields Mu(C) = 1

when |u| = 0 and Mu(C) = 0 when |u| = 1. Therefore, formula (8) can be written alternatively, for all x 2 [0, 1]d,

as

C(x) =
X

u✓{1,...,d}

Cu(x)

with

Cu(x) = Mu(C)(x)⇥
Y

k/2u

xk =
X

v✓u

(�1)|u\v|C(xv,1)⇥
Y

k/2v

xk. (10)

To see that this representation can be expressed in the form (1) with components defined through formula (2) in

terms of commuting projections P1, . . . , Pd, it su�ces to define, for all i 2 {1, . . . , d}, C 2 F , and x = (x1, . . . , xd) 2

[0, 1]d,

PiC(x) = xi ⇥ C(x1, . . . , xi�1, 1, xi+1, . . . , xd). (11)

The maps P1, . . . , Pd so defined are clearly commuting projections, and it follows from their definition that for any

set v ✓ {1, . . . , d} with �v = {1, . . . , d} \ v and vector x 2 [0, 1]d,

P�vC(x) = C(xv,1)⇧(x�v).

It then follows from definition (10) that for every set u ✓ {1, . . . , d} and vector x 2 [0, 1]d,

Cu(x) =
X

v✓u

(�1)|u\v|P�vC(x). (12)
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Observe that with projections of the form (11) with i 2 {1, . . . , d}, the first term in the Möbius decomposition

corresponds to the independence copula and that all first-order terms vanish. That is, for all x 2 [0, 1]d, one has

C;(x) = P{1,...,d}C(x) = ⇧(x)

and for all i 2 {1, . . . , d},

C{i}(x) = P{1,...,d}\{i}(C)(x)� P{1,...,d}C(x)

= C(x{i})⇧(x{1,...,d}\{i})�⇧(x) = 0.

As it happens, however, Assumption 3 does not hold for the projections defined in (11). Nevertheless, the61

term (12) in the Möbius decomposition is consistent with representation (7). This suggests that Proposition 2 is62

valid in a slightly more general setting than covered by Theorem 2.1 of [22]. This point is developed next.63

4. A slight extension64

The following result relaxes Assumption 1 in Proposition 1 so that both the Hoe↵ding–Sobol and the Möbius65

decompositions can be derived from a common representation of multivariate functions. This generalization is66

stated below in extenso to facilitate external referencing. For internal consistency, however, the equation numbers67

appearing therein are repeated from their first occurrence above.68

Proposition 3. Let F be a linear space of real-valued functions acting on a domain D of Rd and let P1, . . . , Pd be

projections on F which are commuting. Then, any function f 2 F can be written in the form

f =
X

u✓{1,...,d}

fu, (1)

in which the term fu, defined by

fu =

 
Y

i2u

(ID � Pi)
Y

i/2u

Pi

!
(f), (2)

is such that the annihilating property is satisfied, meaning that, for all i 2 {1, . . . , d},

Pi(fu) =

8
><

>:

0 if i 2 u,

fu if i /2 u.
(5)

Moreover, if any function f 2 F can be expressed as in (1) and the annihilating property (5) holds, then the

term fu is given by formula (2), which is equivalent to

fu = P{1,...,d}\u(f)�
X

v(u

fv, (6)

and to

fu =
X

v✓u

(�1)|u\v|P{1,...,d}\v(f), (7)

where for any u ✓ {1, . . . , d}, Pu =
Q

i2u Pi.69
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Proof. To recover the desired decomposition, first call on the multinomial formula to see that

dY

i=1

ID =
dY

i=1

{(ID � Pi) + Pi} =
X

u✓{1,...,d}

 
Y

i2u

(ID � Pi)

! 
Y

i/2u

Pi

!

with fu defined as in (2). Accordingly, one finds

f =

 
dY

i=1

ID

!
(f) =

X

u✓{1,...,d}

 
Y

i2u

(ID � Pi)

! 
Y

i/2u

Pi

!
(f) =

X

u✓{1,...,d}

fu.

Furthermore, note that whatever u ✓ {1, . . . , d}, the function fu satisfies the annihilating property. Indeed, if k 2 u,

then

Pk(fu) =

0

@
Y

i2u\{k}

(ID � Pi)

1

A
 
Y

i/2u

Pi

!
Pk(ID � Pk)(f) = 0

while if k /2 u, then

(ID � Pk)(fu) =

 
Y

i2u

(ID � Pi)

!0

@
Y

i/2u,i 6=k

Pi

1

APk(ID � Pk)(f) = 0.

This proves the existence of the decomposition. To establish its uniqueness, write

f =
X

v✓{1,...,d}

fv,

and apply the projection P�u. It follows from the annihilating property (5) that

P�u(f) =
X

v✓u

fv = fu +
X

v(u

fv,

which gives the recursive formula. Further note that f; = P{1,...,d}(f) is a constant, as it should. Finally, formula (7)

can be deduced from an expansion of the product formula, viz.

fu =

 
Y

i2u

(ID � Pi)

! 
Y

i/2u

Pi

!
(f)

=
X

v✓u

(�1)|u\v|

0

@
Y

i2u\v

Pi

1

A
 
Y

i/2u

Pi

!
(f) =

X

v✓u

(�1)|u\v|P�v(f),

which concludes the argument.70

In view of Proposition 3, the Möbius decomposition can thus be derived from projections and its terms can be71

computed from (7) or equivalently from (2) or (6). This observation does not appear to have been documented72

previously.73

5. Discussion and perspectives74

In the Hoe↵ding–Sobol decomposition, the projection Pu cancels the influence of variables in the subset u through75

integration. The terms are of increasing complexity in the sense that fu depends on xu, and the length of this76

vector grows with the cardinality of u.77
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For the Möbius decomposition, the projection Pu erases the stochastic dependence between the variables whose78

index is in the set u. More precisely, if a random vector Z has distribution Pu(C), the subvectors Zu and Z�u79

are then independent. While there is no increasing complexity in the terms of the decomposition, given that80

Cu(x) depends on both xu and x�u, only the stochastic dependence embodied within xu is retained. It can be81

said, therefore, that the terms in the Möbius decomposition are also increasing in complexity, but in the sense of82

probabilistic dependence.83

Beyond the relative degree of complexity of their terms, the Hoe↵ding–Sobol and Möbius decompositions each84

have their comparative advantage. One key feature of the Hoe↵ding–Sobol decomposition is that it provides or-85

thogonal terms, so that the structure of the function of interest can be analyzed through variances. In contrast, the86

terms in the Möbius decomposition are not generally orthogonal. However, a strong point of the Möbius decompo-87

sition is the ease with which any term can be of computed as a simple alternate combination of evaluations of the88

function C.89
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