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The non-linear discrete-time Hawkes process

Lorick Huang∗ Mahmoud Khabou†

June 2022

Abstract

The non-linear Hawkes process is a point process for which the occurrence of future events depends
on the history, either by excitation or inhibition. This property made it popular in many fields, such as
neuro-sciences and social-dynamics. In this paper we propose a tractable hidden Markov chain time series as
a discrete-time Hawkes process. Our model allows for cross-excitation and inhibition between components,
as well as for exogenous random noise on the intensity. We then prove a convergence theorem when the
time scale goes to zero. Finally, we suggest a parametric calibration method for the continuous-time Hawkes
process based on the regression on the discrete-time approximation.

1 Introduction

In this paper we introduce a multi-variate time series (P n)n∈N in Nd that represents the bin-count sequence of
some events on regular time intervals of size h > 0. Examples of integer valued time series have been studied in
the past, such as the g−functions for {0, 1} valued sequences by Berbee [5] and the integer valued auto-regressive
of order p (INAR(p)) process by Alzaid and Al-Osh[1].

The specificity of our time series resides in its hidden Markov chain structure, in which the intensity depends
on the history of the process. In fact, for any n ∈ N and any i = 1, · · · , d, the bin-count variable P i

n is assumed
to be the realisation of a Poisson distribution of parameter hψi(Un), where (Un)n∈N is a predictable tensor
Markov chain, i.e. Un ∈ σ(P 0, · · · ,P n−1,W 0, · · · ,W n−1), where (W n)n∈N are some exogenous random per-
turbations and (ψi)i=1,··· ,d are non-negative functions. The choice of the Poisson distribution for the integer
valued random variable is natural: we assume that the time bins are reasonably small, so that one would observe
at most one event most of the time, while still allowing for the rare occurrence of two or more events. This,
for instance, is not possible with the simpler choice of a Bernoulli distribution (as in [29]), even though that for
very small bin size, the two choices are virtually the same. The aforementioned model, called the non-linear
discrete-time Hawkes process (by an analogy with the continuous-time Hawkes process made in section 4) allows
for self and cross excitation as well as inhibition, which makes it a good candidate for modelling systems in
which the occurrence of an event triggers (excitation) or discourages (inhibition) other events.

The main result of this paper is proving that the continuous-time process
(
U ⌊t/h⌋,

∑⌊t/h⌋
n=0 P n

)
t∈R+

converges

in distribution to a standard continuous-time non-linear Hawkes process, as the time step h goes to zero.
The linear uni-variate Hawkes process was introduced in [18] as an example of a self-exciting point process. It
was then extended to the more general non-linear multivariate process in [8]. Initially used in the context of
seismic activity in [25], Hawkes process found applications in many fields such as genome analysis [28], portfolio
credit risk [14], micro-structure noise [3] and social networks [4].
Due to its clear branching structure [19] and the possibility of obtaining closed formulae for its asymptotic
moments, the linear Hawkes process has been studied extensively in the literature. Linear Hawkes processes with
exponentially decaying intensities have been particularly dealt with in many articles. In fact, the memorylessness
of the exponential kernel ensures that the intensity is a Markov process that solves a stochastic differential
equation (SDE ). For instance, Giesecke and Kim [17] devised a self-exiting point process with CIR intensity
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(Nt)t∈R+ whose intensity (λt)t∈R+ solves the SDE

dλt = β(µ− λt)dt+ σ
√
λtdWt + αdNt,

where (Wt)t∈R+ is a Brownian motion that can be seen as a persistent market noise. Dassios and Zhao [10]
suggested an efficient simulation procedure for this process, based on the fact that its evolution follows the
well-studied CIR dynamics between jumps.
Despite the explicit formulae obtained thanks to its Markov properties, the simple exponential kernel is a lim-
iting choice. In fact, it does not account for longer memories nor for delays in the excitation.
Similarly, the linearity’s tractability comes at an expense: unlike the non-linear Hawkes process, the linear pro-
cess does not allow for inhibition, nor for bounded excitation. Moreover, the linear process cannot be perturbed
by a simple Gaussian diffusion as it can drive the intensity below zero.

The link between time series and linear Hawkes processes have been studied in the seminal works of Kirchner
[21], where the linear Hawkes process was proven to be a continuous version of the INAR(∞) time series and
vice-versa. The proof of convergence relies on the tightness of the sequence in the space of point processes then
showing that all the sub-sequential weak limits follow the same Hawkes dynamics.
To the best of our knowledge, the non-linear Hawkes process has no intuitive discrete-time equivalent in the
literature. The time series introduced in our paper is a recursively constructed approximation for the Hawkes
processes with Erlang kernels (i.e. the product of a polynomial and an exponential) that have a Markov struc-
ture. We also allow for the presence of an exogenous Gaussian perturbation that happens continuously in time.
We then use specific Markov process techniques to show the weak convergence in the space of càdlàg functions.

The goal of this discrete-time approximation is twofold; on one hand, most data are recorded on regular time
intervals (e.g. high-frequency financial data) which makes a discrete-time process more realistic, on the other
hand its simulation is more intuitive and tractable than the classic Ogata’s thinning algorithm ([24]) albeit at
the expense of introducing discretisation bias. Moreover, from a practical point of view, the convergence theo-
rem suggests that the parametric calibration of the time-series yields a good estimation of the Hawkes process’
parameters, which is verified numerically.

The paper is structured as follows: Section 2 gives the recursive construction of the discrete-time model
and explores its Markov structure. In section 3 we give the definition of the non-linear Hawkes process, to
which we add a Gaussian perturbation and then we show that it is a Markov process if the kernels are Erlang
functions. Section 4 establishes the link between the discrete-time model and the continuous-time process via
the convergence of the infinitesimal generators. Finally, in section 5 we run a parametric calibration of the
Hawkes process based on a regression on its discrete-time approximation. The experimental results are given
with no theoretical guarantees.

2 The discrete-time model

2.1 Preliminaries

Throughout this paper, d ∈ N denotes the number of components and h > 0 denotes the width of a time bin.
Let ϕ1, · · · , ϕd be a family of non-negative functions, called the jump-rate functions. We set the following
assumption

Assumption 2.1. The functions ϕ1, · · · , ϕd are bounded, i.e.

∥ϕ∥∞ = max
i=1,··· ,d

sup
s∈R

ϕi(s) <∞.

For any vector u = (u1, · · · , ud) of non-negative real numbers, we say that the vector ξ follows the multi-
variate Poisson distribution of parameter u if the variables ξ1, · · · , ξd are independent and

ξi ∼ Pois(ui), ∀i = 1, · · · , d.

for a more concise notation, we simply write
ξ ∼ Pois(u).

We denote by Nq an independent realization of the multivariate standard normal distribution of dimension q.
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2.2 Construction

For the sake of better understanding, we start this section by building our discrete-time model in the uni-variate
setting, with a memory parameter p equal to zero. Knowing the history of the process until n−1, the bin-count
sequence Pn is supposed to be drawn from a Poisson distribution of parameter hϕ(an), where (an)n∈N is a the
predictable Markov chain that is defined recursively:

an = µ(1− e−βh) + e−βhan−1 + αPn−1 + σ
√
hN (0, 1),

where α ∈ R, σ ≥ 0, β > 0 and ϕ is a positive function, for some fixed intial state. The hidden Markov chain
a can be seen as a pre-intensity that takes into account the recent past of the process as well as the exogenous
noise (the Gaussian variable), which is turned into the intensity by the action of ϕ.
We simulate the uni-variate bin count sequence P , its cumulative sum H as well as the intensity ϕ((an))n∈N
(scaled by h) and the pre-intensity (an)n∈N for the jump-rate ϕ(x) = ln(1 + ex) ∧ 40, a decay parameter β = 5,
a diffusion parameter σ = 2 and a baseline pre-intensity µ = 2.
Figure 1 gives an illustration in the self-exciting case of α = 2 whereas the self-inhibiting case α = −2 is
illustrated on figure 2.
We now generalize this process to the multivariate setting for a general memory parameter p. This construction
can be seen as an Euler scheme of the continuous-time Hawkes process’ intensity, which will be defined in Section
3.

Definition 2.2. For an integer p ∈ N, let α = (αij
q )i,j=1,··· ,d

q=0,··· ,p
∈ R(p+1)×d×d. Let β = (βij)i,j=1,··· ,d ∈ Md(R∗

+),

ω ∈ (R∗
+)

d, σ ∈ Rd
+ and µ ∈ Rd.

The discrete time Hawkes process H = (H1
n, · · · , Hd

n)n∈N is defined by

Hn =

n∑
k=1

P k,

where P k ∼ Pois(hϕ(ak)),∀k ≥ 1 and the ”pre-intensities” (ak)k∈N are defined as

aik+1 = µi +

d∑
j=1

p∑
q=0

αij
q u

ij,q
k+1 + σiy

i
k+1,

where (uij,q)i,j=1,··· ,d
q=0,··· ,p

and (yi)i=1,··· ,d are respectively the discrete cascade of memory terms and the discrete

cascade of perturbation terms, defined recursively by:

yik+1 = e−ωihyik+1 +
√
hN (0, 1)

uij,pk+1 = e−βijh(uij,pk + huij,p−1
k ),

...

uij,qk+1 = e−βijh(uij,qk + huij,q−1
k ), ∀i, j = 1, · · · , d,

...

uij,0k+1 = e−βijhuij,0k + P j
k .

(1)

With the given initial states uij,q0 = yi0 = 0, for every i, j = 1, · · · , d and q = 0, · · · , p− 1 and P 0 = 0d.

Remark 2.3. For each i = 1, · · · , d the sequence (P n) can be seen as the number of events of a continuous-time
counting process (N t)t≥0 observed in a time bin of size h, i.e.

P n = Nnh −N (n−1)h.

That is why a bin-size parameter h appears in the definition.

The system 1 in Definition 2.2 can be put under the matrix form.
Let

U ij
k =

u
ij,p
k
...

uij,0k

 ∈ Rp+1, Y k =

y
1
k
...
ydk

 ∈ Rd. (2)
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The memory and perturbation cascades are perfectly described by the family
(
(U ij)i,j=1,··· ,d,Y

)
.

Let αij = (αij
p , · · · , α

ij
0 ) and K =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

. . .
...

0 0 . . . 0 1
0 0 . . . 0 0

 ∈ Mp+1(R), with 1 on the super-diagonal and 0

elsewhere.

From the definition of K we set Mh
ij = e−βijh(I + hK), where I is the identity matrix.

ep+1 designates the vector of Rp+1 with 0 everywhere and 1 in the last component and Ωh = diag(e−ω1h, · · · , e−ωdh).

Proposition 2.4. The cascade (Un,Y n)n∈N where Un = (U ij
n )i,j=1,··· ,d is a Markov chain that follows the

matrix dynamics {
U ij

n+1 =Mh
ijU

ij
n + P j

nep+1

Y n+1 = ΩhY n +
√
hNd

Its one step generator T h evaluated at (u,y) ∈
(
(Rp+1)d×d × Rd

)
for a function f :

(
(Rp+1)d×d × Rd

)
→ R has

the expression

T hf (u,y) =E [f(Un+1,Y n+1)| (Un,Y n) = (u,y)] ,

=e−h
∑d

i=1 ϕi(ãi(u,y))EN
[
f
((
Mh

iju
ij
)
i,j=1,··· ,d ,Ω

hy +
√
hNd

)]
+ e−h

∑d
i=1 ϕi(ãi(u,y))

d∑
m=1

EN
[
f
((
Mh

iju
ij + 1m=jep+1

)
i,j=1,··· ,d ,Ω

hy +
√
hNd

)]
hϕm(ãm(u,y))

+R2(u,y).

Where the remainder R2 is

R2(u,y) = EN

 ∑
i1+···+id≥2

f
((
Mh

iju
ij + imep+1

)
i,j=1,··· ,d ,Ω

hy +
√
hNd

) d∏
m=1

(hϕm(ãm(u,y)))
im

im!
e−hϕm(ãm(u,y))


and for every i = 1, · · · , d

ãi(u,y) = µi + σig
i +

d∑
j=1

⟨αij ,uij⟩.

EN stands for the integration with respect to the standard normal distribution in d−dimensions.

Proof. The matrix equation is simply a compact formulation of the recursive definition of (gi, bij,q)i,j=1,··· ,d
q=1,··· ,p

.

For the one-step generator that knowing the state Un = u and Y n = y, P 1
n , · · · , P d

n are independent Poisson
variables where

P i
n ∼ P

hϕi
µi + σig

i
n +

d∑
j=1

p∑
q=0

αij
q b

ij,q
n

 ,

∼ P

hϕi
µi + σig

i +

d∑
j=1

⟨αij ,uij⟩

 ,

∼ P
(
hϕi

(
ãi(u,y)

))
.

The expectation operator E stands for the integration with respect to both the Poisson variable and the Gaussian
variable. We denote by EP the sum against the Poisson distributions and EN the expectation with respect to
the multivariate standard normal distribution. Since the Poisson variables and the Gaussian variables are built
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in two separate spaces we have that:

Thf(u,y) =E [f(Un+1,Y n+1)| (Un,Y n) = (u,y)] ,

=EN
[
EP
[
f
(
(Mh

ijU
ij
n + P j

nep+1)i,j=1,··· ,d,Ω
hY n +

√
hNd

)
|(Un,Y n) = (u,y)

]]
,

=EN

 +∞∑
i1,··· ,id=0

f
(
(Mh

iju
ij + ijep+1)i,j=1,··· ,d,Ω

hy +
√
hNd

)
P
[
P 1
n = i1, · · · , P d

n = id|(Un,Y n) = (u,y)
] .

Keeping in mind that P i
n ∼ P

(
hϕi

(
ãi(u,y)

))
are independent we have that

Thf(u,y) =
+∞∑

i1,··· ,id=0

EN

f ((Mh
iju

ij + ijep+1)i,j=1,··· ,d,Ω
hy +

√
hNd

) d∏
j=1

(
hϕj

(
ãj(u,y)

))ij
ij !

e−hϕj(ãj(u,y))

 ,
=e−h

∑d
i=1 ϕi(ãi(u,y))EN

[
f
((
Mh

iju
ij
)
i,j=1,··· ,d ,Ω

hy +
√
hNd

)]
+ e−h

∑d
i=1 ϕi(ãi(u,y))

d∑
m=1

EN
[
f
((
Mh

iju
ij + 1m=jep+1

)
i,j=1,··· ,d ,Ω

hy +
√
hNd

)]
hϕm(ãm(u,y))

+R2(u,y).

the last equality is obtained by separating according to the three scenarii

• Exactly zero jumps.

• One jump at exactly one component j ∈ J1, dK.

• Two or more jumps.

In order to illustrate the discrete time Hawkes process we simulate it for h = 0.2, d = 2 and p = 1. The
jump-rate functions are chosen to be ϕ1(x) = max(x, 0) ∧ 40 and ϕ2(x) = log(1 + ex) ∧ 40. The decay rates are
chosen to be β11 = β12 = 5, β21 = β22 = 6 and the baseline parameters are (µ1, µ2) = (2, 3). The results are
shown on figures 3 and 4 in the appendix 7.

Notice how H1 (or H2) has jumps whose sizes are larger than one. This is possible because the jumps are
chosen to be Poisson variables (along the lines of [20]), unlike the alternative choice of a Bernoulli variable (cf.
[29]). Even though the two choices are equivalent when h → 0, the Poisson approach allows multiple jumps
within a single time bin and allows the possibility hϕi(a

i
k) > 1.

Remark 2.5. Even though in Proposition 2.4 the cascade (Un,Y n)n∈N were proven to be a Markov chain, it
is straightforward to show that (Un,Y n,Hn)n∈N is also a Markov chain. From now on, we mainly focus on
the pre-intensity, because it already contains the jumps of H.

2.3 Stability

We show that if the jump rates are bounded, the pre-intensities

((
U ij

k

)
i,j=1,··· ,d

)
k∈N

have bounded averages

and are thus almost surely finite.

Proposition 2.6. Let (Un,Y n)n∈N be the Markov chain defined in 2 following the recursive formula of Propo-
sition 2.4 and assume assumption 2.1 is in force. Then there is a positive constant C independent of n such
that

E

 d∑
i,j=1

p∑
q=0

uij,qn + |yin|

 ≤ C

for any n ∈ N.
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Proof. We start with Y n, using the triangular inequality and the mean of the folded normal distribution

E[|yik+1|] ≤ e−ωihE[|yik|] +
√

2h

π
,

hence, using the discrete version of Gronwall’s lemma:

E[|yin+1|] ≤
√

2h

π

1

1− e−ωih
.

For Un, we set the decreasing positive sequence (πij
0 , · · · , πij

q ) and we define Dij
k+1 =

∑p
q=0 E[u

ij,q
k+1]π

ij
q β

q+1
ij . The

dynamics of U ij
k+1 yield

Dij
k+1 = e−βijh

(
p∑

q=0

E
[
uij,qk

]
πij
q β

q+1
ij + h

p∑
q=1

E
[
uij,q−1
k

]
πij
q β

q+1
ij

)
+ E

[
P j
k

]
πij
0 βij ,

= e−βijh

(
E
[
uij,pk

]
πij
p β

p+1
ij +

p−1∑
q=0

E
[
uij,qk

] (
πij
q + hβijπ

ij
q+1

)
βq+1
ij

)
+ E

[
P j
k

]
πij
0 βij ,

≤ e−βijh

(
E
[
uij,pk

]
πij
p β

p+1
ij +

p−1∑
q=0

E
[
uij,qk

] (
πij
q + hβijπ

ij
q+1

)
βq+1
ij

)
+ h∥ϕ∥∞πij

0 βij .

Using the fact that 1 + x ≤ ex we get

e−βijh
(
πij
q + hβijπ

ij
q+1

)
= πij

q e
−βijh

(
1 + hβij

πij
q+1

πij
q

)
,

≤ πij
q exp

(
hβij

(
πij
q+1

πij
q

− 1

))
,

where
πij
q+1

πij
q

− 1 < 0. Finally, we obtain that

Dij
k+1 ≤ κijD

ij
k + h∥ϕ∥∞πij

0 βij

with

κij = max
q=0,··· ,p−1

{
exp

(
hβij

(
πij
q+1

πij
q

− 1

))
, e−βijh

}
< 1,

hence the result.

The result above does not prove stability in variation (cf. [8]), but it ensures that the self-excitation (in case
α is positive) is not explosive. In fact, the result of Proposition 2.6 entails that (using Markov’s inequality)

P
[
uij,qn ≥M

]
≤ C

M
, ∀n ∈ N.

The result also ensures that the sequence (Un,Y n)n∈N is tight, thus having weakly convergent sub-sequence,
which in turn can be used to prove the convergence towards a stationary distribution. We chose not to prove
it in this paper, as the long-time behaviour has already been studied in [11] for the continuous-time Hawkes
process, using classical Markov process techniques.

3 The continuous-time Hawkes process

3.1 Preliminaries

Let Ωd be the space of configurations, where

6



Ω :=

{
ω =

n∑
i=1

δ(ti,θi), 0 = t0 < t1 < · · · < tn, θi ∈ R+, n ∈ N ∪ {+∞}

}
.

Let F be the σ-field associated to the vague topology on Ωd, and PΓ the Poisson measure under which the
family

Γ =
(
Γj
)
j=1,··· ,d

where
Γj ([0, t]× [0, b]) (ωj) := ωj ([0, t]× [0, b]) , (t, b) ∈ R2

+, j = 1, · · · , d

is a family of independent homogeneous Poisson processes with intensity measures dt⊗dθ. We set FΓ =
(
FΓ

t

)
t≥0

to be the natural filtration of
(
Γj
)
j=1,··· ,d. The expected value with respect to the Poisson measure is denoted

by EΓ.
On a separate space Ω′, we construct a standard d−variate Brownian motion W = (W 1, · · · ,W d) and we de-
note its filtration by FW =

(
FW

t

)
t≥0

, and by PW the associated probability. The expected value with respect

to the Brownian measure is denoted by EW .
We define P = PΓ ⊗ PW and F = FΓ ∨ FW . The expected value with respect to P is denoted by E.

3.2 Definition and construction

We start by defining the non-linear multivariate Hawkes process in the general framework.
For i = 1, · · · , d, consider the events times τ i1, τ

i
2, · · · associated with the i−th component and define the counting

process

N i
t =

∑
i≥1

1τ i
i≤t.

To N = (N i)i=1,··· ,d we associate a predictable intensity vector λ = (λi)i=1,··· ,d such that

P
[
N i

t+dt −N i
t = 1|Ft−

]
= λjtdt

which measures how likely it is for N j to jump between t and t+ dt, right before t.
Let (δij)i,j=1,··· ,d be a set of real integrable (not necessarily non-negative) functions on R+ and ϕ as defined in
subsection 2.
The process N is called a non-linear Hawkes process of memory kernel δ and jump rate ϕ if its intensity follows
the dynamics

λit = ϕi

µi +

∫
[0,t)

 d∑
j=1

δij(t− s)dN j
s

+ σie
−ωi(t−s)dW i

s

 ,

= ϕi

µi +

d∑
j=1

∑
τj
n<t

δij(t− τ jn) +

∫
[0,t)

σie
−ωi(t−s)dW i

s

 ,

for some ωi > 0, for every i = 1, · · · , d. [8] constructed the non-linear Hawkes process as the result of the
embedding from a Poisson measure. We give the result in the following theorem.

Theorem 3.1. Let Γ a d−dimension Poisson measure on R2
+ and W a standard d−variate Brownian motion.

Let ϕ and δ be functions as defined in the beginning of this subsection. Let µ ∈ Rd, ω ∈ (R∗
+)

d and σ ∈ Rd
+.

The following SDE has a unique solution (N ,λ) with N F−measurable and λ F−predictable
N i

t =

∫
(0,t]×R+

1{θ≤λi
s}Γ

i(ds,dθ), t ≥ 0, i = 1, · · · , d,

λit = ϕi

(
µi +

∫
[0,t)

(∑d
j=1 δij(t− s)dN j

s

)
+ σie

−ωi(t−s)dW i
s

)
t ≥ 0 i = 1, · · · , d.

(3)
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Remark 3.2. In [8], the assumption that the functions ϕ1, · · · , ϕd are bounded is relaxed and replaced by the
condition that ϕi is li−Lipschitz and that the matrix(

li

∫ +∞

0

|δij(s)|ds
)

i,j=1,··· ,d

has a spectral radius strictly less than one. This guarantees that N exists on R+ and has a stationary distribu-
tion.

In our definition a Gaussian perturbation was added to the original definition of the intensity. This can be
seen as the effect of exogenous factors on each component of the system, that do not occur on the jump times
of a point process, but continuously in time. On the other hand, the unperturbed Hawkes intensity follows a
piece-wise deterministic dynamics.
In the following section, we choose the memory kernels from a specific family of functions and we show how this
choice guarantees that the Hawkes process is Markov, without being too restrictive.

3.3 Markov properties of the Hawkes process with memory kernels given by an
Erlang function

From now on, we restrict the choice for the memory kernels to be in the Erlang functions family

δij(s) =

(
p∑

q=0

αij
q

sq

q!

)
e−βijs,

for all s ≥ 0 and ∀i, j = 1, · · · , d. Thus, the intensity takes the form

λit = ϕi

µi +

d∑
j=1

∫
[0,t)

(
e−βij(t−s)

p∑
q=0

αij
q

(t− s)q

q!
dN j

s

)
+ σi

∫
[0,t)

e−ωi(t−s)dW i
s

 .

When the memory kernels are Erlang functions, the stability condition in remark 3.2 becomes

Assumption 3.3. The functions ϕi are li−Lipschitz for i = 1, · · · , d and the matrix(
li

p∑
q=0

|αij
0 |

βq+1
ij

)
i,j=1,··· ,d

has a spectral radius strictly less than one.

Remark 3.4. This is a special class of Erlang memory kernels. The more general approach would be to make
the (βi)i=1,··· ,d dependent on q, along the lines of [11]. This choice would allow to approximate every L1(R+,R)
kernel, hence approximating any Hawkes process with an integrable kernel. In fact, it has been proven in [27]
that for any T there is a constant CT such that for two Hawkes processes N and Ñ of memory kernels δ and
δ̃ respectively, we have that

d∑
i=1

E
[
∥N i − Ñ i∥TV

]
≤ CT

d∑
i,j=1

∫ T

0

|δij(s)− δ̃ij(s)|ds,

where ∥ · ∥TV is the total variation distance on [0, T ].
The results in this paper are entirely adaptable to those kernels, we chose however to write them down solely for
β independent from q because the computations are less tedious.

We now show that, the vector formed by the continuous-time memory and perturbation cascades

vij,qt :=

∫
[0,t)

(t− s)q

q!
e−βij(t−s)dN j

s , (4)

and

zit :=

∫
[0,t)

e−ωi(t−s)dW i
s , (5)

is a (p+ 1)d2 + d−variate Markov process that solves a certain SDE.
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Theorem 3.5. Let N be a d−variate Hawkes process with Erlang memory kernels. For every i = 1, · · · , d, set
αij = (αij

p , · · · , α
ij
0 ) ∈ Rp+1.

Let V ij
t = (vij,pt , · · · , vij,0t ) ∈ Rp+1 and Zt = (z1t , · · · , zdt ) ∈ Rd, such that

λit = ϕi

µi + σiz
i
t +

d∑
j=1

⟨αij ,V ij
t ⟩

 ,

= ϕi
(
ãi(V t,Zt)

)
.

Then, (V ,Z) =
(
(V ij)i,j=1,··· ,d, (z

i)i=1,··· ,d
)
is a Markov process that follows the SDE:{

dV ij
t = (K − βijI)V

ij
t dt+ dN j

t ep+1,

dZt = −diag(ωi, · · · , ωd)Ztdt+ dW t

where ep+1 = (0, · · · , 0, 1) and W = (W 1, · · · ,W d).

Proof. For the auxiliary processes vij,k for fixed i, j ∈ J1, · · · , dK and q ∈ J1, · · · , pK we have

vij,qt eβijt =
1

q!

∫ t

0

(t− s)qeβijsdN j
s ,

=
1

q!

q∑
l=0

Cl
qt

l

∫ t

0

(−s)q−leβijsdN j
s ,

which yields after differentiation(
dvij,qt + βijv

ij,q
t dt

)
eβijt =

1

q!

(
dt

q∑
l=0

Cl
qlt

l−1

∫ t

0

(−s)q−leβijsdN j
s +

������������q∑
l=0

Cl
qt

lt(−t)q−leβijtdN j
t

)
,

and since

Cl
ql =

q!

(q − l)!(l − 1)!
= q

(q − 1)!

(q − 1− (l − 1))!(l − 1)!
= qCl−1

q−1,

we have (
dvij,qt + βijv

ij,q
t dt

)
eβijt =

1

q!
dt

q∑
l=1

qCl−1
q−1t

l−1

∫ t

0

(−s)q−leβijsdN j
s ,

=
1

(q − 1)!
dt

q−1∑
l=0

Cl
q−1t

l

∫ t

0

(−s)q−1−leβijsdN j
s ,

=
1

(q − 1)!
dt

∫ t

0

(t− s)q−1eβijsdN j
s ,

and after re-arranging the terms

dvij,qt =

(
−βijvij,qt +

∫ t

0

(t− s)q−1e−βij(t−s)dN j
s

)
dt,

=
(
−βijvij,qt + vij,q−1

t

)
dt.

For the last term

vij,0t =

∫ t

0

e−βij(t−s)dN j
t ,

a straightforward differentiation yields

dvij,0t = −βijvij,0t dt+ dN j
t .

The SDE for Di is obtained identically, in fact, it is a multi-variate Ornstein-Uhlenbeck process.
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Remark 3.6. Note that the vector process formed by the memory and perturbation cascades as well as the
point process (V ,Z,N) is also a Markov process. But since it makes the notations and the computations more
tedious, we simply consider (V ,Z) that already contains all the jump information.
In fact, the jumps of N i are exactly the points of the underlying Poisson measure under the curve ϕi

(
ãi(V t,Zt)

)
:

dN i
t =

∫
R+

1{θ≤ϕi(ãi(V t,Zt))}Γ
i(dt, dθ).

This remark is the continuous-time analogue of Remark 2.5.

In the next proposition we give the infinitesimal generator for the process (V ,Z) defined in the last theorem.

Proposition 3.7. We recall that ep+1 is the vector that has 1 at the p+ 1−th entry and 0 elsewhere. Let

f : (Rp+1)d×d × Rd → R
(v, z) 7→ f(v, z).

be a C1 function in the first variable and C2 in the second variable. Then the infinitesimal generator A of the
process (V ,Z) at f is

Af(v, z) =
d∑

i=1

∂2f

∂z2i
(v, z) +

d∑
i,j=1

〈
(K − βijI)vij ,∇vij

f(v, z)
〉
− ⟨diag(ω1, · · · , ωd)z,∇zf(v, z)⟩

+

d∑
m=1

ϕm (ãm(v, z)) (f ((vij + 1j=mep+1)i,j=1,··· ,d, z)− f (v, z)) ,

where v = (vij)i,j=1,··· ,d, z = (z1, · · · , zd) and ãm(v, z) = µm + σmzm +
∑d

j=1⟨αmj ,vmj⟩.

Proof. For the unperturbed uni-variate case, the expression of the generator can be found in [11]. The second
derivatives are a result of the Gaussian perturbation. This is more precisely the generator of a multi-variate
Ornstein Uhlenbeck process.

For the linear Hawkes process, (ϕi(x) = x, ∀i = 1, · · · , d and δij ≥ 0,∀i, j = 1, · · · , d) the Gaussian per-
turbation with constant volatilities poses a problem, since the intensity is no longer guaranteed to remain
non-negative. That is why the volatility must be a variable function in the intensity. For instance, the intensity
of an uni-variate linear Hawkes process with an exponential kernel δ(t) = αe−βt is assumed to solve the SDE

dλt = β(µ− λt)dt+ αdNt + σ
√
λtdWt

to ensure that he intensity remains positive (cf. [17] and [10]), with the upper bound σ2 ≤ 2µβ. The existence
of these ”jump-diffusion” processes as well as other results on the affine point processes can be found in [12].

4 Convergence of the discrete-time Hawkes process to the continuous-
time Hawkes process

4.1 Preliminaries

Let D(R+, E) be the space of right continuous processes with left limits (càdlàg) on a metric space E. We
denote by ” ⇒ ” the weak convergence of processes in the Skorokhod topology (cf. [6] for example).
Throughout this paper, Ĉ(E) denotes the set of continuous functions from E to R that vanish at infinity and the
functional convergence is in the uniform norm denoted by ∥ ·∥. In the Markov framework, the weak convergence
of a family of processes in the Skorokhod topology can be deduced directly from the behavior of its transition
operators. This is formulated in the following theorem in [15]:

Theorem 4.1. Let E be locally compact and separable. For h > 0, let νh(x, ·) be a transition function on
E × B(E) such that the operator Th defined by

Thf(x) =
∫
E

f(y)νh(x,dy)

10



satisfies Th : Ĉ(E) → Ĉ(E). Suppose that T (t) is a Feller semi-group on Ĉ(E).
Assume that h ↓ 0 and suppose that for every f ∈ Ĉ(E),

lim
h↓0

T ⌊t/h⌋
h f = T (t)f, t ≥ 0.

for each h > 0, let
(
Y h
k

)
k∈N be a Markov chain on E with a transition function νh, and suppose that (Y h

0 )h>0

has a limiting distribution when h ↓ 0. Define

Xh
t = Y h

⌊t/h⌋.

Then there is a Markov process X corresponding to T (t) with sample paths in D(R+, E) and

Xh ⇒ X.

The the convergence for the semi-groups is usually proved by proving the convergence of the infinitesimal
generators on a subset of functions called ”the core” of the limiting generator. For a generator A of a contraction
semi-group T (t) defined on a Banach functional space L, we suppose that there are two dense subsets D and
D0 such that D0 ⊂ D ⊂ L. We say that D is a core for A if for any t ≥ 0, T (t) : D0 → D.

Proposition 4.2. Let L be a functional Banach space. For h > 0, let Th be a linear contraction on L and put

Ah =
Th − I

h
,

where I stands for the identity operator. Let T (t) be a strongly continuous contraction semi-group on L with
generator A. Let D be a core of A, then the following are equivalent

1. For each f ∈ L, limh↓0 T ⌊t/h⌋
h f = T (t)f, ∀t ≥ 0.

2. For each f ∈ D, there exists a sequence fh ∈ L such that limh↓0 fh = f and limh↓0 Ahfh = Af .

Proof. This is a modification of theorem 6.5 in [15] page 31.

Remark 4.3. Even though the auxiliary processes defined in 4 are predictable (hence left continuous with right
limits or càglàd), the theorems used in this section prove the convergence in D(R+, E). That is why we replace
our processes with their càdlàg version that has the exact same jumps and dynamics.

4.2 Main result

In this section we prove that the discrete time Hawkes process defined in section 2.2 is an approximation of
the continuous-time multivariate non-linear Hawkes process. To do so we provide a convergence theorem for
the auxiliary processes that contain the jumps and the dynamics. Note that it is possible to prove the results
for the augmented process (V ,Z,N), but this is not necessary as (V ,Z) is sufficient to reconstruct N (cf.
Remark 3.6).
For the initial state, there is nothing to prove since we take it always to be equal to zero. To prove the
convergence of the process on D(R+, E) we state the following result

Proposition 4.4. Let Th be the discrete cascade’s transition operator defined in 2.4 and let A be the generator
for the auxiliary processes of a Hawkes process defined in 3.7. Set

Ah =
Th − I

h
.

Then, for any f ∈ S(E) (the Schwartz space of functions) one has

lim
h↓0

Ahf = Af.

Proof. Let f ∈ S(E) and h > 0. Using Lemma 7.2 we have that

Th(u,y) =e−h
∑d

i=1 ϕi(ãi(u,y))EN
[
f
((
Mh

iju
ij
)
i,j=1,··· ,d ,Ω

hy +
√
hNd

)]
+ e−h

∑d
i=1 ϕi(ãi(u,y))

d∑
m=1

EN
[
f
((
Mh

iju
ij + 1m=jep+1

)
i,j=1,··· ,d ,Ω

hy +
√
hNd

)]
hϕm(ãm(u,y))

+O(h2).
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Note that the subscript i, j = 1, · · · , d has been omitted to make the notations less tedious.
For a d−variate Gaussian variable Nd, we write a Taylor expansion in the second component

f
((
Mh

iju
ij
)
,Ωhy +

√
hNd

)
=f
((
Mh

iju
ij
)
,Ωhy

)
+

√
h
〈
Nd, (∇yf)

((
Mh

iju
ij
)
,Ωhy

)〉
+
h

2

〈
Nd, (Hessy f)

((
Mh

iju
ij
)
,Ωhy

)
Nd

〉
+ h3/2

∑
|r|=3

Rr

((
Mh

iju
ij
)
,Ωhy

)
(Nd)

r,

where the remainder Rr satisfies

|Rr

((
Mh

iju
ij
)
,Ωhy

)
| ≤ max

|s|=3
sup
z∈Rd

|Dsf(z)|,

≤ C,

since f is in the Schwartz space. Hence by taking the expected value with respect to the centered d−variate
Gaussian we have that

EN
[
f
((
Mh

iju
ij
)
,Ωhy +

√
hNd

)]
= f

((
Mh

iju
ij
)
,Ωhy

)
+
h

2

d∑
i=1

∂2f

∂y2i

((
Mh

iju
ij
)
,Ωhy

)
+O(h3/2).

Now, a second order Taylor expansion with a Lagrange remainder in the first component yields

f
((
Mh

ijuij

)
,Ωhy

)
=f
(
uij ,Ω

hy
)
+

d∑
i,j=1

〈
(Mh

ij − I)uij ,∇uij
f(uij ,Ω

hy)
〉

+

d∑
i,j=1

∑
|s|=2

1

s!
Dsf

(
((1− c)I + cMh

ij)uij ,Ω
hy
) (

(Mh
ij − I)uij

)s
for some c ∈ (0, 1). Since for any i, j = 1, · · · , d Mh

ij − I = h(K − βijI) +O(h2),

f
((
Mh

ijuij

)
,Ωhy

)
=f
(
uij ,Ω

hy
)
+ h

d∑
i,j=1

〈
(K − βijI)uij ,∇uij

f(uij ,Ω
hy)
〉

+

d∑
i,j=1

〈
O(h2)uij ,∇uijf(uij ,Ω

hy)
〉

+ h2
d∑

i,j=1

∑
|s|=2

1

s!
Dsf

(
((1− c)I + cMh

ij)uij ,Ω
hy
)
((K − βijI +O(h))uij)

s
.

Since f is taken to be in the Schwartz space, it follows that its derivatives multiplied by any polynomial are
uniformly bounded, hence

f
((
Mh

ijuij

)
,Ωhy

)
= f

(
uij ,Ω

hy
)
+ h

d∑
i,j=1

〈
(K − βijI)uij ,∇uijf((uij),Ω

hy)
〉
+O(h2)

A similar argument for the second component of the function and its gradient gives us that

f
((
Mh

ijuij

)
,Ωhy

)
=f((uij),y) + h

d∑
i,j=1

〈
(K − βijI)uij ,∇uijf((uij),y)

〉
− h ⟨diag(ω1, · · · , ωd)y,∇yf((uij),y)⟩+O(h2).

Applying the same arguments to the second derivative yields

EN
[
f
((
Mh

iju
ij
)
,Ωhy +

√
hNd

)]
=f((uij),y) + h

d∑
i,j=1

〈
(K − βijI)uij ,∇uij

f((uij),y)
〉

− h ⟨diag(ω1, · · · , ωd)y,∇yf((uij),y)⟩+
d∑

i=1

∂2f

∂y2i

((
uij
)
,y
)
+O(h3/2).
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Finally, using the fact that the jump rates ϕ1, · · · , ϕd are bounded and the Taylor expansion of the exponential

e−h
∑d

i=1 ϕi(ãi(u,y)) = 1− h

d∑
i=1

ϕi
(
ãi(u,y)

)
+O(h2)

we conclude that
Th(t)f((uij),y) = f((uij),y) + hAf((uij),y) +O(h3/2),

which yields the result.

We now state the main result, establishing the convergence of the discrete-time Hawkes process to the
continuous-time Hawkes process.

Theorem 4.5. Let (Un,Y n,Hn)n∈N be the Markov chain defined in 2.4.

For a bin size h > 0, set (Ṽ
h

t , Z̃
h

t , Ñ
h

t )t∈R+
the càdlàg process that coincides with (Un,Y n,Hn) on the n−th

time bin, i.e.

(Ṽ
h

t , Z̃
h

t , Ñ
h

t ) = (U ⌊t/h⌋,Y ⌊t/h⌋,H⌊t/h⌋),

(cf. Figure 5 for an illustration).
Then

(Ṽ
h

t , Z̃
h

t , Ñ
h

t )t∈R+
=⇒ (V t,Zt,N t)t∈R+

,

in distribution as the bin size h goes to zero.

Proof. It is sufficient to prove the convergence of (Ṽ
h

t , Z̃
h

t )t∈R+ to (V t,Zt)t∈R+ as h −→ 0 (cf. Remark 2.5 and
3.6). Since the Schwartz space S(E) is a core for the infinitesimal generator A (cf. Lemma 7.5), Proposition
4.2 ensures that

lim
h↓0

T ⌊t/h⌋
h f = T (t)f,

for each f in the Banach space (cf. Lemma 7.1) Ĉ(E).
Theorem 4.1 yields that the process

(Ṽ
h

t , Z̃
h

t ) = (U ⌊t/h⌋,Y ⌊t/h⌋),

converges to the auxiliary process (V ,Z) of the non linear multivariate Hawkes process, weakly in the Skorokhod
metric.

To illustrate the convergence, we simulate ãm(Ṽ
h

t , Z̃
h

t ) in the bi-variate case for t ∈ [0, 15] for two different

bin sizes. We recall that ãm(v, z) = µm + σmzm +
∑d

j=1⟨αmj ,vmj⟩. The jump rates are

ϕ1(x) = (x)+ ∧ 40, ϕ2(x) = log(1 + ex) ∧ 40

and the memory kernels are (
δ11(s) δ12(s)
δ21(s) δ22(s)

)
=

(
5(s− 1)e−5s s( s2 − 6)e−6s

0 s( 3s2 + 4)e−4s

)
.

The convergence is illustrated in the transition from figure 5 (h = 0.125) to figure 6 (h = 5.10−3).

5 Parameters calibration using regression

The estimation of linear Hawkes processes have been thoroughly studied in the linear case, both in a parametric
and a non-parametric way.
For the exponential kernels, [26] proved that the computation likelihood function is linear in the number of
events, numerical results are given in the 1−d case as well. [9] derived an estimation of the parameters using
the stationary moments that can be explicitly derived for the linear Hawkes process with exponential kernels.
This method is not applicable in the non-linear framework since the expressions of the first moments are not
known explicitly.
Since the kernel’s shape is usually not known in advance and since the exponential family is not rich enough
(e.g. power laws, non monotonous functions), methods for non-parametric estimation have been derived for
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the linear Hawkes process. The first of which is based on the numerical resolution of a system of Wiener-Hopf
equations, introduced by [2]. The second is introduced by [20] and by [13] based on time series. These methods
are close to the ones we present in this paper. The reader can refer to [30] for a comparison between the time
series method and an E-M method.

The non-linear framework has also been studied, though to a lesser extent. For the parametric estimation,
[23] derived an algorithm for the log-likelihood maximisation for kernels composed by an exponential mixture
and a ReLU jumps rate. For a more general choice of the jump rate functions as well as kernels, [31] obtained
concentration rates of the posterior distribution on the parameters.
When it comes to the non parametric approach, Reynaud-Bouret et al. devised a method for the non-parametric
estimation for multivariate Hawkes processes with ReLU jump-rates.

In this section, we assume that both assumptions 2.1 (boundedness of the jump-rate) and 3.3 (jump-rate

functions are li−Lipschitz and the matrix

(
li
∑p

q=0
|αij

0 |
βq+1
ij

)
i,j=1,··· ,d

has a spectral radius less than one) are in

force. In fact, if assumption 3.3 is not respected, the pre-intensity ãi can grow to infinity, before being capped
by the upper bound ∥ϕi∥∞, transforming the Hawkes process into a Poisson process of intensity ∥ϕi∥∞ from
which no other parameters can be recovered. This is the problem of identifiability which is discussed in more
details in [31].
We then implement a conditional least-squares (CLS) regression on the observed discrete time version (P k)k=1,··· ,M =
(Hk − Hk−1)k=1,··· ,M of an underlying Hawkes process (N t)t∈[0,T ], with time bins h = T/M . Let Fk =
σ (P 1, · · · ,P k) be the filtration that contains the information up to k. We seek to find

min
(α,β,µ)∈(R(p+1)×d×d)×Md(R+)×Rd

+

M∑
k=1

∥P k − E [P k|Fk−1]∥2 .

For the sake of brevity, we set

QM =

M∑
k=1

∥P k − E [P k|Fk−1]∥2 ,

=

M∑
k=1

d∑
i=1

(
P i
k − E

[
P i
k|Fk−1

])2
.

The underlying process is supposed to follow multivariate Hawkes dynamics

λit = ϕi

µi +

d∑
j=1

∫
[0,t)

δij(t− s)dN j
s + σi

∫
[0,t)

e−ωi(t−s)dW i
s

 ,

with known jump-rates ϕ, unknown baseline intensities µ and unknown kernels δij(s) = e−βij
∑p

q=0 α
ij
q

sq

q! ,
where p is unknown. We do not estimate the Gaussian perturbation’s parameters.
Since we have proved that the discrete time Hawkes process converges to the continuous-time Hawkes process,
we set

P i
k = N i

hk −N i
h(k−1)

for a fixed h > 0.
General results about CLS estimators for time-series, including asymptotic bias and normality can be found in
the seminal work of [22].
Using the definition of the discrete time Hawkes process, QM can be computed linearly in the number of points
as

QM+1 = QM +

d∑
i=1

(
P i
M+1 − E

[
P i
M+1|FM

])2
,

= QM +

d∑
i=1

P i
M+1 − hϕi

µi +

d∑
j=1

⟨αij ,U ij
M+1⟩

2

,
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where the U ij are also computed recursively

U ij
M+1 =M ijU ij

M + P j
Mep+1.

If the jump-rates are assumed to be differentiable almost everywhere, the same holds for the gradients which
are computed recursively

∂µi
QM+1 = ∂µi

QM − 2h(ϕi)
′

µi +

d∑
j=1

⟨αij ,U ij
M+1⟩

P i
M+1 − hϕi

µi +

d∑
j=1

⟨αij ,U ij
M+1⟩

 ,

∇αijQM+1 = ∇αijQM − 2hU ij
M (ϕi)

′

µi +

d∑
j=1

⟨αij ,U ij
M+1⟩

P i
M+1 − hϕi

µi +

d∑
j=1

⟨αij ,U ij
M+1⟩

 ,

∂βij
QM+1 = ∂βij

QM − 2h
〈
αij , ∂βij

U ij
M+1

〉
(ϕi)

′

µi +

d∑
j=1

⟨αij ,U ij
M+1⟩

P i
M+1 − hϕi

µi +

d∑
j=1

⟨αij ,U ij
M+1⟩

 ,

∂βij
U ij

M+1 =M ij
(
∂βij

U ij
M − hU ij

M

)
.

Note that unlike the linear Hawkes process with Erlang kernels, this cannot be simplified to a computation in
the number of events.
As a first trial we simulate an unperturbed 3−dimensional DTHP with h = 0.1 for M = 5000. The kernels are

δ(s) =

 (1 + 0.2s)e−3s (0.2 + 3s)e−4s 3se−3s

0 (−0.1− 2s)e−2s (1− 5s)e−1.5s

(−0.5− 2s)e−3s 0 (0.7 + 6.2s)e−3.5s

 ,

with jump-rates
ϕ(x) =

(
(x)+ ∧ 40 ln(1 + ex) ∧ 40 4

1+e−(x−3)

)
,

and baseline intensities
µ =

(
0.4 1 2

)
.

The minimization of QM is done using the SLSQP method of the function scipy.optimize.minimize with
assumption 3.3 as a constraint.

The initial guesses are α̂ij
q ∼ U([0, 1]), β̂ij = 1 and µ̂i =

(
ϕi
)−1

(∑M
k=1 P i

k

T

)
.

The minimization results are then averaged (for five calibrations) and are given in figure 7.

5.1 Calibration experiment for the perturbed Hawkes process

The underlying dynamics are assumed to follow a continuous-time 3−variate Hawkes process with a Gaussian
perturbation of parameters

ω =
(
3 4 5

)
and

σ =
(
1 2 2

)
.

We simulate 35 Monte Carlo samples for t ∈ [0, 100], which we regroup in 35 DTHP arrays with a time step
h = 0.25. The discretisation introduces bias, by discarding the possibility that a given event in a given bin be
the origin of a later event in the same bin.
The result of the CLS minimisation is given in figures 8, 9 and 10.

5.2 Calibration with a lower degree

We now simulate 15 continuous-time Hawkes processes with kernels

δ(s) =

(0.7− 2s+ 1.5s2)e−1.5s (0.5 + 4s− 10s2)e−3s 2s2e−2s

0 (5s+ 6s2)e−3s (1− 10s2)e−2.5s

−5s2e−2s 0 (0.8 + 7s+ 8s2)e−5s

 ,
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with jump-rates
ϕ(x) =

(
(x)+ ∧ 40 ln(1 + ex) ∧ 40 4

1+e−(x−3)

)
,

and baseline intensities
µ =

(
0.4 1 2

)
.

The Gaussian perturbation’s parameters are

ω =
(
3 4 5

)
and

σ =
(
1 2 2

)
.

The processes are then discretized on a grid with a time-step h = 0.25. We minimise the conditional least
squares QM with assumed kernels of the form

δij(s) = αij
0 e

−βijs.

The exponential kernels composed with the average parameters are illustrated in figure 11. When it comes to
the baseline intensities refer to figure 12

6 Conclusion

In this paper, we introduced a tractable and intuitive Markov Chain approximation of the multivariate non-
linear Hawkes process with a Gaussian perturbation, and we proved that this approximation converges when
the time-bin size goes to zero. This result can be extended to a wide array of similar processes with Markov
dynamics, for instance for a perturbation parameter σ that depends on the system’s state, a baseline intensity
formed by a mixture of Erlang and trigonometric functions to account for seasonality or for jumps with random
sizes.
A parametric calibration method has been studied numerically but without theoretical guarantees on the con-
vergence of the estimated parameters to the ground truth parameters. The experiments show that the calibrated
parameters are close to the actual kernels despite the Gaussian perturbations and the bias introduced by the
discretization. This method can be enhanced for instance by adding a penalisation or by decreasing the variance.

7 Lemmata

Lemma 7.1. Set E = (Rp+1)d×d × Rd. Then the space Ĉ(E) of continuous functions that vanish at infinity
equipped with the uniform norm is a Banach space.
Moreover, the space of C∞ functions of compact support C∞

c (E) is dense in Ĉ(E).

Proof. Let (fn)n∈N be a Cauchy sequence in Ĉ(E). For every x ∈ E, the sequence (fn(x))n∈N satisfies

|fn(x)− fm(x)| ≤ ∥fn − fm∥, ∀n,m ∈ N,

and thus, is a Cauchy sequence in E. Since E is complete, the sequence converges to the point-wise limit f(x).
Let p ∈ N and x ∈ E

|fp(x)− f(x)| = |fp(x)− lim
n→+∞

fn(x)|,

= lim
n→+∞

|fp(x)− fn(x)|,

≤ lim
n→+∞

∥fp − fn∥.

Let ϵ > 0 and M such that for m,n ≥M , ∥fm − fn∥ ≤ ϵ. If p ≥M

|fp(x)− f(x)| ≤ ϵ.

Thus (fp)p∈N converges to f uniformly, hence f is continuous.
For some p such that ∥fp − f∥ ≤ ϵ/2, Let Kp be the compact such that ∀x /∈ Kp:

|fp(x)| ≤ ϵ/2.

16



We have for any x /∈ Kp

|f(x)| ≤ |f(x)− fp(x)|+ |fp(x)|,
≤ ∥f − fp∥+ ϵ/2,

≤ ϵ.

Which proves that Ĉ(E) is a Banach space.
For the density of the C∞

c (E), it is an application of Stone-Weierstrass’ theorem, thanks to the existence of
bump functions.

Lemma 7.2. Assume that assumption 2.1 is in force.
Let R2 be the remainder defined in Proposition 2.4. Then, uniformly in u and y,

R2(u,y) = O(h2).

Proof. We recall that for a function f ∈ D,

R2(u,y) = EN

 ∑
i1+···+id≥2

f
((
Mh

iju
ij + imep+1

)
i,j=1,··· ,d ,Ω

hy +
√
hNd

) d∏
m=1

(hϕm(ãm(u,y)))
im

im!
e−hϕm(ãm(u,y))

 .
Since f is bounded we have that

|R2(u,y)| ≤ EN

 ∑
i1+···+id≥2

∥f∥∞
d∏

m=1

(hϕm(ãm(u,y)))
im

im!
e−hϕm(ãm(u,y))

 ,
= ∥f∥∞

∑
i1+···+id≥2

d∏
m=1

(hϕm(ãm(u,y)))
im

im!
e−hϕm(ãm(u,y)).

Since i1 + · · ·+ im ≤ 2 and h < 1, him ≤ h2 for any m = 1, · · · , d. Hence

|R2(u,y)| ≤ ∥f∥∞h2
∑

i1+···+id≥2

d∏
m=1

ϕm(ãm(u,y))im

im!
e−hϕm(ãm(u,y)),

≤ ∥f∥∞h2
∑

i1+···+id≥2

d∏
m=1

∥ϕm∥im
im!

,

≤ ∥f∥∞h2e
∑d

m=1 ∥ϕm∥.

Lemma 7.3. For i, j = 1, · · · , d, let Mh
ij = e−βijh(I + hK) and Ωh = diag(e−ω1h, · · · , e−ωdh) be the matrices

defined in section 2.2. Then
Mh

ij = I + h(K − βijI) +O(h2),

and
Ωh = I − diag(ω1, · · · , ωd)h+O(h2).

Proof. This is a simple second order Taylor expansion.

Lemma 7.4. Set E = (Rp+1)d×d × Rd.
Let T be the semi-group associated with the Markov process defined by the auxiliary processes 4 and 5, i.e.
defined for every t ≥ 0 and f ∈ Ĉ(E) by

T (t)f(v, z) = E [f(V t,Zt)|(V 0,Z0) = (v, z)] .

Then T is a Feller semi-group.
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Proof. It is trivial to see that for any t ≥ 0, T (t) is a contraction (i.e. ∥T (t)f∥ ≤ ∥f∥ for every f ∈ Ĉ(E) ) and
positive (i.e. for every non-negative function f , T (t)f is a non-negative function).
Now we show that it is strongly continuous. To do so, one must show that it has the Feller property

∀f ∈ Ĉ(E), t ≥ 0, T (t)f ∈ Ĉ(E).

First, by solving the SDE in 3.5 with the initial conditions V ij
0 = vij and Z0 = z we have

V ij
t = e(K−βijI)tvij +

∫
[0,t)

e−(K−βijI)(t−s)ep+1dN
j
s ,

= e(K−βijI)tvij + ξ1,ijt

and

Zt = diag(e−ω1t, · · · , e−ωdt)z +

∫ t

0

diag(e−ω1(t−s), · · · , e−ωd(t−s))dW s,

= diag(e−ω1t, · · · , e−ωdt)z + ξ2,ijt ,

where ξ1,ijt and ξ2,ijt are two finite random variables. Since f is bounded it is possible to exchange limits and
integrals and one has for any fixed t ≥ 0:

lim
(v,z)→∞

T (t)f(v, z) = lim
(v,z)→∞

E
[
f
(
(e(K−βijI)tvij + ξ1,ijt )i,j=1,··· ,d,diag(e

−ω1t, · · · , e−ωdt)z + ξ2,ijt

)]
,

= E
[

lim
(v,z)→∞

f
(
(e(K−βijI)tvij + ξ1,ijt )i,j=1,··· ,d,diag(e

−ω1t, · · · , e−ωdt)z + ξ2,ijt

)]
,

= E [0] ,

= 0.

This, combined with the weak continuity (trivial) yields that T is a Feller semi-group (cf. the first chapter in
[7]).

Lemma 7.5. Let E = (R(p+1)
+ )d×d × Rd.

Let S (E) be the space of Schwartz functions, i.e. the C∞ functions such that

sup
x∈E

|xmDnf(x)| < +∞,

for any multi-indices m and n. Then S (E) is a core for A.

Proof. The density of S (E) in Ĉ(E) is a consequence of the density of C∞
c (E).

Let f ∈ S(E) and t ≥ 0. Then

T (t)f(v, z) = E [f(V t,Zt)|(V 0,Z0) = (v, z)] ,

= E
[
f
(
(e(K−βijI)tvij + ξ1,ijt )i,j=1,··· ,d,diag(e

−ω1t, · · · , e−ωdt)z + ξ2,ijt

)]
,

where ξ1,ijt =
∫
[0,t)

e−(K−βijI)(t−s)ep+1dN
j
s , and ξ2,ijt =

∫ t

0
diag(e−ω1(t−s), · · · , e−ωd(t−s))dW s are two finite

random variables. Since S(E) is stable by composition with an affine transform (cf. [16]) and since the
differentiation and the expected value can be exchanged (f is bounded), then T (t)f ∈ S(E).
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Figure 1: The process is self-exciting for α = 2. This is seen as events tend to be clustered in time. Notice how
one bin contains two events.
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Figure 2: The process is self-inhibiting for α = −2. Events tend to be distanced from one another.
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Figure 3: A plot of a realisation of ak = (ãm(Uk,Y k))m=1,2 (upper plot) as well as ϕ(ak) (lower plot) for
k ≤ 75. The interaction parameters are (α11

1 , α
11
0 ) = (0, 2), (α12

1 , α
12
0 ) = (15,−3), (α21

1 , α
21
0 ) = (−6, 4) and
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1 , α

22
0 ) = (10, 0). The perturbation parameters are (σ1, σ2) = (0.1, 0.2).
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Figure 4: A realisation of Hk for k ≤ 75.
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Figure 5: Simulation for h = 0.125. The baseline intensities are (µ1, µ2) = (5, 3).
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Figure 6: Simulation for h = 5 · 10−3. The Gaussian perturbation parameters are σ1 = 1.5 and σ2 = 0.5. The
graph is drawn in simple continuous lines for visibility.
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Figure 7: The blue curves are the actual kernels and the orange curves are the calibration results. The estimated
baseline intensities are µ̂ = (0.37, 1.3, 1.5).
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Figure 8: Calibrations of the coefficient αij
0 and αij

1 for i, j = 1, · · · , d. The estimation is clearly less precise for
α1 with a larger variance. The red stars are the markers of the ground truth value.
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Figure 9: β21 and β32 are not defined because the kernels are equal to zero.
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Figure 10: The estimator tends to yield larger values for the baseline intensities. This is due to the aforemen-
tioned bias, where some self-excitations are ignored.
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Figure 11: The overall effect (excitation, inhibition, independence) are well captured by the exponential kernels.
For composite kernels (e.g. δ12 and δ22) the exponential kernel captures the more influential behaviour.
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Figure 12: Again, the baseline intensities are over estimated because of the bias.
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