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Convergence of the Discrete-Time Compound Hawkes Process with

Exponential or Erlang Kernel

Lorick Huang ∗ Mahmoud Khabou†

June 24, 2021

Abstract

Due to its clustering and self-exciting properties, the Hawkes process has been used extensively in numerous
fields ranging from sismology to finance. Since data is often aquired on regular time intervals, we propose a
piece-wise constant model based on a Discrete-Time Hawkes Process (DTHP). We prove that this discrete-
time model converges to the usual continuous-time Hawkes process as the time-step tends to zero.

Résumé

Les propriétés d’auto-excitation des processus de Hawkes permettent une alternative de modélisation efficace
au processus de Poisson à intensité déterministe dans plusieurs domaines d’application comme la finance ou
la sismologie. Dans certaines applications, l’accès aux données se fait à des dates déterministes et non de façon
continue dans le temps. Ainsi, seulement une approximation à temps discret du processus de Hawkes sur
une grille déterministe est observable. Dans cet article nous étudions la convergence de cette approximation
à temps discret lorsque le pas de la subdivision tend vers zéro.

Subject Class: 60J05, 60J25, 60G55.
Keywords: Hawkes Process, Discrete-Time, Markov Process.

1 Introduction and Main Result

The linear Hawkes process was first introduced in 1971 by Hawkes [6] as a point process whose intensity exhibits
an interesting self-excitation property. Even though Hawkes process has initially contributed to seismology by
describing the aftershocks in case of an earthquake, its self-exciting and clustering properties made it a popular
model in financial and actuarial applications.

For instance Errais et al. used it to model the cumulative loss due to default in a portfolio of firms [4], while
Bacry et al. used it for measuring the endogeneity of stock markets [1].

In the continuous time setting, the Hawkes process is defined as follows. Consider a probability space
(Ω,F ,P) with a filtration (Ft)t∈[0,+∞) and a sequence of increasing stopping times 0 < θ1 < θ2 < · · · .
A point process is defined as the counting measure

Ht = H([0, t]) :=

+∞∑
i=1

1θi≤t.

We assume that an event at time θn corresponds to a financial loss ζn. The total loss a time t is the compound
process

Lt :=

+∞∑
i=1

ζi1θi≤t =

Ht∑
i=1

ζi,

where ζn are independent identically distributed (i.i.d) non-negative random variables with an integrable dis-
tribution ν and independent from (Ht)t∈[0,+∞).
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Remark 1.1. If ζn are chosen to be deterministic and equal to 1 then Lt = Ht for all t ≥ 0.

The intensity of a point process is a measure of how much it tends to jump at a certain time t and is defined
as

λt = lim
δt→0

E[Ht+δt− −Ht|Ft]
δt

.

In the case of a Hawkes process, the realization of an event causes an increase in the probability of other events.
This translates in the intensity as:

λt = µ(t) +

∫
[0,t)

φ(t− s)dLs,

= µ(t) +
∑
θi<t

φ(t− θi)ζi,

where µ is a deterministic non-negative function playing the role of the baseline intensity and φ is a non-negative
decaying kernel. Indeed, more events (θi) mean more terms in the sum, thus a higher intensity which in return
triggers more events. Larger losses have a bigger impact on the intensity as well.
The condition to avoid instability (i.e. infinite amount of jumps in a finite interval) is ‖φ‖1E[ζ] < 1. Curious
readers can consult [7] for nearly unstable Hawkes processes (the kernel’s norm approaches the limit of insta-
bility).

In this paper we study the case where the intensity kernel φ is either an exponential (φ(u) = αe−βu) or an
Erlang function (φ(u) = αue−βu). The exponential kernel case has been studied extensively in the literature.
This is mainly because in this case, the intensity (λt)t∈[0,+∞) is a Markov process. For example, Errais et al.
[4] derived formulae for the Laplace transform for the Markov Hawkes process. Indeed, if the baseline intensity
is chosen to be µ(t) = λ∞ + (x − λ∞)e−βt, with the initial intensity x ≥ 0 and the parameter λ∞ > 0 , the
intensity takes the form:

λt = λ∞ + (x− λ∞)e−βt +

∫
[0,t)

αe−β(t−s)dLs, (1)

where α and β are two positive real numbers such that β > αE[ζ]. In this case, the intensity satisfies the
following stochastic differential equation (SDE):

(SDEexp)

{
dλt = β(λ∞ − λt)dt+ αdLt,

λ0 = x.

Remark 1.2. In many cases, the initial intensity λ0 is chosen to be equal to the parameter λ∞ which yields a
constant baseline intensity λt = λ∞ +

∫
[0,t)

αe−β(t−s)dLs.

If the kernel is an Erlang function, then the intensity takes the form

λt = λ∞ + (x− λ∞)e−βt +

∫
[0,t)

α(t− s)e−β(t−s)dLs, (2)

It is possible to ”Markovize” the intensity by taking an auxiliary process ξt =
∫
[0,t)

αe−β(t−s)dLs into account.

Thus, in this case as well, the vector (λt, ξt)[0,+∞) follows the dynamics given by the SDE:

(SDEErl)


dλt = β(λ∞ − λt)dt+ ξtdt,

dξt = −βξtdt+ αdLt,

λ0 = x,

ξ0 = 0.

So far the simulation of the Hawkes process has been based on Ogata’s thinning [9], on an immigration
clustering approach like in the work of Møller et al. [8] or in the particular Markov case on the sampling of
jumping times such as the algorithm proposed by Dassios et al. [2].
These approaches simulate exactly the jump times of the process on a time continuum. However, in reality data
is often recorded on discrete time intervals, e.g. every minute, every hour or every day.
This motivates the study of Discrete-Time Hawkes Processes (DTHP) first introduced by Seol [10], where limit
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theorems have been established as time goes to infinity.
In this paper we study the behaviour as the size of the time step goes to zero instead.
The intensity (in the exponential kernel case) or the intensity-auxiliary process vector (in the Erlang kernel
case) of this DTHP is considered as piece-wise constant process constructed from a Markov chain on the time
grid (cf. figure 2).

Remark 1.3. Knowing the intensity is sufficient for the reconstruction of (Lt)t∈[0,+∞). This can be seen on
figure 1 taken from [2]. This is why we focus on the intensity from now on. The loss process (Lt)t∈[0,+∞) is
obtained by adding an independent copy of ζ at every jumping time.

Figure 1: Hawkes process with exponential decaying intensity (Nt, λt).

The main result is to show that the intensity (resp. intensity-auxiliary process vector) converges weakly to
the continuous time Hawkes intensity (resp. to the intensity-auxiliary process vector) in the Skorokhod topology
on [0,+∞) as the grid becomes finer and finer.

Let ζ be a positive random variable with finite expectation and let ν be its distribution. Let α, β, λ∞ ∈ R∗+
such that αE[ζ] < β (exponential kernel) or αE[ζ] < β2 (Erlang kernel) and x > 0.
Let [0, T ], 0 < T < +∞ be a time interval, N ∈ N∗ and (tNi := iT

N )i∈J0···NK be a grid with a step hN = T
N . In

some cases we refer to hN by h to avoid clogging up the notation.

Figure 2: An example of a subdivision with T = 2 and N = 10

Definition 1.4. Let (Ω,F ,P) be a probability space. Let N ∈ N∗ , T > 0 and a sequence of independent [0, 1]
uniform random variables (UNk )k∈N as well as a sequence (ξNk )k∈N of iid positive random variables with finite
expectation defined on (Ω,F ,P).

1. If φ is an exponential kernel: The Hawkes Markov Chain (lN ) is a Markov chain defined according to the
induction rule:

(lN )

{
lNk+1 = λ∞(1− e−βh) + (lNk + αζNk+11UNk+1<l

N
k ·h

)e−βh,

lN0 = x.

3



2. If φ is an Erlang kernel: The Hawkes Markov Chain (lN , aN ) is a Markov chain defined according to the
induction rule:

(lN , aN )


lNk+1 = λ∞(1− e−βh) + lNk e

−βh + aNk+1h,

aNk+1 = (aNk + αζNk+11UNk+1<l
N
k ·h

)e−βh,

lN0 = x,

aN0 = 0.

Definition 1.5. Given N ∈ N∗ and T > 0, the N -th DTHP intensity (λ̃Nt )t∈[0,+∞) and the Hawkes auxiliary

process (ξ̃Nt )t∈[0,+∞) (if the kernel is an Erlang function) are defined as the càdlàg process

λ̃Nt = lNbNtT c
,

ξ̃Nt = aNbNtT c
,

where lNbNtT c
and aNbNtT c

are defined in 1.4.

This process takes the values of the Markov chain on the grid points. Indeed

λ̃Nti = lNb iTNTN c
= lNi and ξ̃Nti = aNb iTNTN c

= aNi .

The following theorem, which will be proven in the following sections, states the main result:

Theorem 1.6. Let (Ht)t∈[0,+∞) be a Hawkes process, (Lt)t∈[0,+∞) its loss and (λt)t∈[0,+∞) its intensity.

1. If φ is an exponential kernel: Let (λ̃Nt )t∈[0,+∞) be an N -th DTHP intensity (defined in 1.5). Then we
have the convergence

(λ̃Nt )t∈[0,+∞) =⇒N→+∞ (λt)t∈[0,+∞)

weakly in the Skorokhod space DR+
[0,+∞), the set of all right continuous with left limits (càdlàg) non-

negative functions on R+ = [0,+∞).

2. If φ is an Erlang kernel: Let (λ̃Nt , ξ̃
N
t )t∈[0,+∞) be an N -th DTHP intensity and auxiliary process (defined

in 1.5). Then we have the convergence

(λ̃Nt , ξ̃
N
t )t∈[0,+∞) =⇒N→+∞ (λt, ξt)t∈[0,+∞)

weakly in the Skorokhod space DR2
+

[0,+∞).

Remark 1.7. Normally the intensity is a càglàd process because it should be predictable (beyond the scope of
this paper) but we work with the càdlàg version because the convergence results that we have in [5] as well as
the Markov generator expression in [4] are for the càdlàg version.
Therefore we make the change λt ← λt+ = limδ�0 λt+δ.

2 Preliminary Results

2.1 General Notations and Lemmas

We denote by R+ = [0,+∞) and we set E = R+ or R2
+. Ĉ(E) the space of real continuous functions on E

vanishing at infinity.

DE [0,+∞) refers to the set of all right continuous with left limits (càdlàg) functions x : [0,+∞)→ E.
On the other hand, càglàd is used to refer to left continuous functions with right limits.

Lemma 2.1. (R+, |.|) is locally compact for the topology induced by the absolute value.

Proof. (R, |.|) is locally compact: every point has a compact neighbourhood.
The topology induced on R+ is simply the set Top+ = {R+ ∩ O,O ∈ Top} with Top being the usual topology
on R. Thus [0, 1) is an open set containing 0 for (R+, |.|), which means that [0, 1] is a compact neighbourhood
of 0. Any x > 0 has a compact neighbourhood [x− ε, x+ ε] for ε small enough.
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Lemma 2.2. (Ĉ(R+), ‖.‖) is a Banach space for ‖f‖ = supx∈R+
|f(x)|.

Proof. Let (fn)n∈N be a Cauchy sequence in Ĉ(R+). Let ε > 0, there exists M such that ∀n, p ≥M , ‖fn−fp‖ ≤
ε. Set x ∈ R+, |fn(x) − fp(x)| ≤ ‖fn − fp‖ ≤ ε for n, p ≥ M . Since R is complete,

(
fn(x)

)
n∈N converges for

every x ∈ R+. We call the point-wise limit f(x). Set p ≥M and x ∈ R+,

|fp(x)− f(x)| = |fp(x)− lim
n→+∞

fn(x)|,

= lim
n→+∞

|fp(x)− fn(x)|,

≤ lim
n→+∞

‖fn − fp‖,

and since n ≥ M (it goes to infinity) we have |fp(x) − f(x)| ≤ ε. Because M is independent from x we have
the the uniform convergence ‖fp − f‖ ≤ ε.
Let n be such that ‖fn − f‖ ≤ ε and K such that |fn(x)| ≤ ε if x > K (remember that the functions vanish at
infinity). For all x ∈ R+, by the triangle inequality

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ ‖f − fn‖+ |fn(x)|.

If x > K then |f(x)| ≤ 2ε, which means that f vanishes at infinity.

To prove the continuity of the limit function, let a ∈ R+ and n such that ‖fn − f‖ < ε. fn is continuous at
a therefore there exists η > 0 such that |x− a| < η =⇒ |fn(x)− fn(a)| < ε. By the triangle inequality:

|f(x)− f(a)| ≤ |fn(x)− f(x)|+ |fn(x)− fn(a)|+ |f(a)− fn(a)|,
≤ 2‖fn − f‖+ |fn(x)− fn(a)|,

thus |f(x)− f(a)| ≤ 3ε if |x− a| < η.
In conclusion, f is continuous and vanishes at infinity thus Ĉ(R+) is a Banach space.

From now on the convergence in Ĉ(E) refers to the convergence in the uniform norm ‖f‖ = supx∈E |f(x)|.

Lemma 2.3. The set of twice continuously differentiable functions with compact support Ĉ2
c (R+) is dense in

Ĉ(R+) for the norm ‖.‖.

Proof. Let K ∈ R+. Take a non-negative infinitely differentiable function φk with a compact support [K,K+1].

φK is integrable and one can define ψK(x) = 1∫ +∞
0

φK(t)dt

∫ +∞
x

φK(t)dt, an infinitely differentiable function.
ψK(x) = 1∫ +∞

0
φK(t)dt

∫ +∞
x

φK(t)dt = 1 if x < K,

ψK(x) ∈ [0, 1] if x ∈ [K,K + 1],

ψK(x) = 1∫ +∞
0

φK(t)dt

∫ +∞
x

φK(t)dt = 0 if x > K + 1.

Here is an illustration of ψK : Ĉ2
c (R+) is clearly a sub-algebra of Ĉ(R+). We prove its density using the locally

Figure 3: ψK is constructed using φK(x) = exp( −1
1−(2·x−2·K+1)2 ) and K = 10.

compact version of the Stone-Weierstrass Theorem.

• Let c 6= c′ be two elements of R2
+. Assume, without loss of generality that c < c′. Set f(x) = ψcn(xn)

where n is such that 1
n < c′ − c.

Clearly f ∈ Ĉ2
c (R+) and f(c) = 1 whereas f(c′) = 0.
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• For any c ∈ R+, the last function guarantees that f(c) 6= 0 thus Ĉ2
c (R+) vanishes nowhere.

We conclude that Ĉ2
c (R+) is dense in Ĉ(R+) for the norm ‖.‖.

Lemma 2.4. The set of twice differentiable functions with compact support Ĉ2
c (R2

+) is dense in Ĉ(R2
+) for the

norm ‖.‖.

Proof. The proof of this lemma is an extension of the previous one. Set

B = {(x, y) −→
n∑
k=1

fk(x)gk(y), n ∈ N∗, (fk, gk) ∈ Ĉc2(R+)2}

a sub-algebra of Ĉ(R2
+) (that is stable by sum, product as well as scalar multiplication). In order to apply the

Stone-Weierstrass Theorem one must make sure that B separates points and vanishes nowhere.

• Let X 6= X ′ be two vectors in R2
+. Assume, without loss of generality that their first components c and

c′ are such that c < c′. Set f(x, y) = ψcn(xn) where n is such that 1
n < c′ − c.

Clearly f ∈ B and f(X) = 1 where as f(X ′) = 0.

• For any X ∈ R2
+, the last function guarantees that f(X) 6= 0 thus B vanishes nowhere.

We conclude that B and a fortiori Ĉ2
c (R2

+) is dense in Ĉ(R2
+) for the norm ‖.‖.

2.2 General Results on Continuous Time Markov Processes

Definition 2.5. A family of bounded linear operators
(
T (t)

)
t≥0 on Ĉ(E) is called a semigroup if for each

s, t ≥ 0:

• T (t+ s) = T (t) · T (s),

• T (0) = Id.

A semigroup is called:

• A contraction semigroup if ∀f ∈ Ĉ(E) and ∀t ≥ 0, ‖T (t)f‖ ≤ ‖f‖.

• Strongly continuous if ∀f ∈ Ĉ(E), limt→0 ‖T (t)f − f‖ = 0.

• Conservative if T (t)1E = 1E . Where 1E is the function that takes the value 1 everywhere.

• Positive if ∀t ≥ 0 and ∀f ∈ Ĉ(E) such that f ≥ 0, T (t)f ≥ 0.

If a semigroup has all the previous properties then it is called a Feller semigroup.

Definition 2.6. The infinitesimal generator A of a semigroup
(
T (t)

)
t≥0 on Ĉ(E) is the linear operator defined

by:

Af = lim
t→0

T (t)f − f
t

,

whenever the limit exists in Ĉ(E).
The domain D(A) is the subset of the functions f ∈ Ĉ(E) for which the limit exists.

Definition 2.7. Let A be the generator of a Feller semigroup T (t) on Ĉ(E). Let D be a dense subspace of
Ĉ(E) with D ⊂ D(A). If T (t) : D −→ D for all t ≥ 0, then we say that D is a core for A.

Remark 2.8. The actual definition of a core is different (cf [5], page 17), what we have just introduced above
is merely a sufficient condition for a subset to be a core. It is sufficient for our application nevertheless.
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2.3 Known Results on the Continuous Time Intensity

Theorem 2.9. 1. Let (Ht)t∈[0,+∞) be a Hawkes process whose intensity (λt)t∈[0,+∞) follows the Markov
dynamics of equation (1). Then (λt)t∈[0,+∞) is a Markov process whose semigroup

Te(t)f(x) = E[f(λt)|λ0 = x]

is a well defined Feller semigroup that satisfies Te(t) : Ĉ(R+)→ Ĉ(R+).
The domain of the generator is D(Ae) = C1(R+) Moreover, the generator -defined on the set of continu-
ously differentiable functions C1(R+)- is

Aef(λ) = β(λ∞ − λ)f ′(λ) + λ

∫ (
f(λ+ αz)− f(λ)

)
dν(z).

2. Let (Ht)t∈[0,+∞) be a Hawkes process whose intensity (λt)t∈[0,+∞) follows the Erlang dynamics of equation
(2). Then (λt, ξt)t∈[0,+∞) (where ξ is the auxiliary process) is a Markov process whose semigroup

TE(t)f(x, y) = E[f(λt, ξt)|λ0 = x, ξ0 = y]

is a well defined Feller semigroup that satisfies TE(t) : Ĉ(R2
+)→ Ĉ(R2

+).
The domain of the generator is D(AE) = C1(R2

+) Moreover, the generator -defined on the set of continu-
ously differentiable functions C1(R2

+)- is

AEf(λ, ξ) =
(
ξ + β(λ∞ − λ)

)
∂λf(λ, ξ)− βξ∂ξf(λ, ξ) + λ

∫ (
f(λ, ξ + αz)− f(λ, ξ)

)
dν(z).

Proof. 1. If the kernel is an exponential function For the proof that (λt)t∈[0,+∞) is a Markov process and
the expression of its generator we refer to [4], section 2.3.
However, we prove that T (t) : Ĉ(R+)→ Ĉ(R+) is a Feller semigroup.
Let t ≥ 0 and f ∈ Ĉ(R+). Start by showing that T (t)f is continuous. To do so, let x ∈ R+ and a sequence
εn → 0 (εn must be positive if x = 0).

T (t)f(x+ εn) = E[f(λt)|λ0 = x+ εn],

= E
[
f(λ∞ + (x+ εn − λ∞)e−βt +

∫
[0,t)

e−β(t−s)dLs)
]
.

Since f is continuous and x + εn → x, and given that f(λ∞ + (x + εn − λ∞)e−βt +
∫
[0,t)

e−β(t−s)dLs) ≤
‖f‖ ∈ L1, one can apply the Dominated Convergence Theorem to conclude that:

T f(x+ εn)→n→+∞ T f(x).

To prove that T (t)f vanishes at infinity we start by setting ε > 0 and we take K such that x > K implies
|f(x)| ≤ ε. If x > (K − λ∞)eβt + λ∞ one has

|f(λ∞ + (x+ εn − λ∞)e−βt +

∫
[0,t)

e−β(t−s)dLs)| ≤ ε.

Thus |T (t)f(x)| ≤ ε and T (t) : Ĉ(R+)→ Ĉ(R+).
Now we prove that the semigroup is Feller.

• Let f ∈ Ĉ(R+), for all x ∈ R+ we have |T (t)f(x)| ≤ E[|f(λt)||λ0 = x] ≤ E[‖f‖|λ0 = x] ≤ ‖f‖. Thus
T is a contraction.

• T (t)1R+(x) = E[1R+(λ∞ + (x− λ∞)e−βt +
∫
[0,t)

e−β(t−s)dLs)|λ0 = x] = 1R+(x). Thus T is conser-
vative.

• If f ≥ 0 then clearly E[f(λt)|λ0 = x] ≥ 0. Thus T is positive.

• To prove strong continuity, we start by taking ε > 0, f ∈ Ĉ(R+) and fn ∈ Ĉ2
c (R+) such that

‖fn − f‖ ≤ ε (cf lemma 2.3). Since we will make t→ 0 it is possible to assume t < 1.
Using Jensen’s inequality:

‖T (t)fn − fn‖ = sup
x∈R+

∣∣E[fn(λ∞ + (x− λ∞)e−βt +

∫
[0,t)

e−β(t−s)dLs)− fn(x)]
∣∣,
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≤ sup
x∈R+

E[
∣∣fn(λ∞ + (x− λ∞)e−βt +

∫
[0,t)

e−β(t−s)dLs)− fn(x)
∣∣],

≤ E[ sup
x∈R+

∣∣fn(λ∞ + (x− λ∞)e−βt +

∫
[0,t)

e−β(t−s)dLs)− fn(x)
∣∣],

Now set αx = λ∞ + (x − λ∞)e−βt +
∫
[0,t)

e−β(t−s)dLs, since we assumed that t < 1 we have λ∞ +

(x− λ∞)e−β ≤ inf(x, αx).
Using the mean value theorem, there is λ∞ + (x− λ∞)e−βt ≤ θx (random) such that

fn(αx)− fn(x) = (αx − x) · f ′n(θx),

=
(
(x− λ∞)(e−βt − 1) +

∫
[0,t)

e−β(t−s)dLs
)
· f ′n(θx).

the function fn is C1 with compact support. Therefore the following inequalities are obtained:

(a) |f ′n(x)| ≤M where M ∈ [0,+∞) (deterministic), for any x ∈ R+.

(b) |(x− λ∞)f ′n(θx)| ≤M ′ where M ′ ∈ [0,+∞) (deterministic), for any x ∈ R+. This is due to the

fact that λ∞ + (x− λ∞)e−
1
τ ≤ θx which imposes that if x is too large, then f ′(θx) = 0.

Moreover, since e−β(t−s) ≤ 1 for s ∈ [0, t) one has∫
[0,t)

e−β(t−s)dLs ≤
∫
[0,t)

1dLs,

= Lt−,

≤ Lt.

Combining all these elements yields:

‖T (t)fn − fn‖ ≤ E[ sup
x∈R+

|
(
(x− λ∞)(e−βt − 1) +

∫
[0,t)

e−β(t−s)dLs
)
· f ′n(θx)|],

≤ E[M ′ · (1− e−βt) +M ·Ht].

From [2] we have an explicit expression for E[Ht] and we know that limt→0 E[Ht] = 0, thus the result for
fn. Now we extend it by density for the norm ‖‖:

‖T (t)f − f‖ = ‖T (t)(f − fn) + T (t)fn − (f − fn)− fn‖,
≤ ‖T (t)(f − fn)− (f − fn)‖+ ‖T (t)fn − fn‖,
≤ ‖T (t)(f − fn)‖+ ‖(f − fn)‖+ ‖T (t)fn − fn‖.

Finally, since T is a contraction, ‖T (t)(f − fn)‖ ≤ ‖(f − fn)‖ and we conclude that

‖T (t)f − f‖ → 0.

2. If the kernel is an Erlang function:
The generator and its domain can be found in [3]. All the other computations are identical to those of
the exponential kernel case.

3 Proof of the Main Result

The main result (Theorem 1.6) is an immediate corollary of the following theorem (Theorem 2.7 from [5] page
168):

Theorem 3.1. Let E be locally compact and separable. For N = 1, 2, · · · let µN (x,Γ) be a transition function
on E × B(E) such that TN defined by

TNf(x) =

∫
f(y)µN (x, dy),

8



satisfies TN : Ĉ(E) −→ Ĉ(E). Suppose that
(
T (t)

)
t≥0 is a Feller semigroup on Ĉ(E). Let hN > 0 satisfy

limN→+∞ hN = 0 and suppose that for every f ∈ Ĉ(E),

lim
N→+∞

T bt/hNcN f = T (t)f, t ≥ 0.

For each N ≥ 1, let (Y Nk )k≥0 be a Markov chain in E with transition function µN (x,Γ) and suppose that Y N0
has a limiting distribution ν. Define XN by XN

t = Y Nbt/hNc.

Then there is a Markov process X corresponding to
(
T (t)

)
t≥0 with initial distribution ν and sample paths in

DE [0,+∞[ and XN =⇒ X.

In this section we prove that the process (λ̃Nt )t∈[0,+∞) satisfies the conditions of Theorem 3.1.

In the context of this paper, (Y Nk )k≥0 = (lNk )k≥0 (or (lNk , a
N
k )k≥0), XN = λ̃N (or (λ̃N , ξ̃N )).

3.1 Initial Condition

First of all, we fix lN0 = x (and aN0 = 0 if the kernel is an Erlang function) for some x ∈ R+ independently from
N , thus lN0 does have a limiting distribution δx.

3.2 Convergence of the Operators

Now the trickier part to prove is the convergence of the discrete one-step operator to the Feller semigroup
associated with the Hawkes intensity. Unfortunately, we do not know that much about the semigroup nor about
the composition of one-step operator with itself. That is why using generators is indispensable.
We start this part by mentioning the lemmas (from [5]) that will be used:

Lemma 3.2. Let L be a Banach functional space on E.

For N = 1, 2, · · · let TN be a linear contraction on L, let hN be a positive number and put AN = h−1N (TN−Id).
Assume that limN→+∞ hN = 0. Let

(
(T (t))t≥0

)
be a strongly continuous contraction semigroup on L with

generator A and let D be a core for A. Then the following are equivalent:

1. For each f ∈ L, T bt/hNcN f −→ T (t)f for all t ≥ 0.

2. For each f ∈ D there exists fN ∈ L such that fN −→ f and ANfN −→ Af .

Proof. Cf [5] page 31.

Lemma 3.3. Ĉ2
c (E) is a core for Aj, j ∈ {e, E}.

Proof. Let us start with the exponential kernel case. According to Definition 2.7 one must show that T (t) :
Ĉ2
c (R+) −→ Ĉ2

c (R+), the density has been proven in Lemma 2.3.
Let t ≥ 0 and f ∈ C2

c (R+). There exists B > 0 such that x ≥ B ⇒ f(x) = 0.
If x ≥ (B − λ∞)eβt + λ∞, then λt ≥ λ∞ + (x− λ∞)e−βt ≥ B.
It follows that T (t)f(x) = E(f(λt)|λ0 = x) = 0.
The interchangeability of the derivative and the expectation is possible because ‖f ′‖ < +∞ and ‖f ′′‖ < +∞,
thus the (twice) differentiability of T (t)f .
If the kernel is an Erlang function, the computations are similar.

Proposition 3.4. E = R+ or R2
+.

1. We assume that the kernel is exponential. The one-step transition operator T Ne associated to lN and
evaluated at a function f ∈ Ĉ(E) is:

T Ne f(y) :=E[f(lNk+1)|lNk = y],

=f
(
λ∞(1− e−βh

)
+ ye−βh)(1− yh)1yh<1

+

∫
f
(
λ∞(1− e−βh) + (y + αz)e−βh

)
dν(z)(yh1yh<1 + 1yh≥1).
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2. If the kernel is an Erlang function, then the one-step transition operator T NE associated to (lN , aN ) and

evaluated at a function f ∈ Ĉ(E) is:

T NE f(y, v) := E[f(lNk+1, a
N
k+1)|lNk = y, aNk = v],

=f
(
λ∞(1− e−βh) + ye−βh + vhe−βh, ve−βh

)
(1− yh)1yh<1

+

∫
f
(
λ∞(1− e−βh) + ye−βh + h(v + αz)e−βh+, (v + αz)e−βh

)
dν(z)(yh1yh<1 + 1yh≥1).

Proof. Let N ∈ N∗ and T > 0.

1. Set F (l, u, ζ) = λ∞(1−e−βh)+(l+αζ1u<l·h)e−βh. F is clearly measurable and lNk+1 = F (lNk , U
N
k+1, ζ

N
k+1),

where lNk is σ(UNi , ξ
N
i , i ∈ J0, kK) measurable, for any k ∈ N. Thus, (lNk )k∈N is a Markov chain.

When it comes to the one-step transition operator, computing the expected value yields:

T Ne f(y) := E[f(lNk+1)|lNk = y],

= E[f
(
λ∞(1− e−βh) + (lNk + αξNk+11UNk+1<l

N
k ·h

)e−βh
)
|lNk = y],

= E
[
f
(
λ∞(1− e−βh) + (y + αξNk+11UNk+1<y·h

)e−βh
)]
,

and since UNk+1 and ξNk+1 are independent from lNk ∈ σ(UNi , ξ
N
i , i ∈ J0, kK) and since 1UNk+1<y·h

is a Bernoulli

variable with parameter y · h independent from ξNk+1:

T Ne f(y) =f
(
λ∞(1− e−βh

)
+ ye−βh)(1− yh)1yh<1

+

∫
f
(
λ∞(1− e−βh) + (y + αz)e−βh

)
dν(z)(yh1yh<1 + 1yh≥1).

2. Set

F (l, a, u, ζ) =

(
λ∞(1− e−βh) + le−βh + (a+ αζ1u<l·h)he−βh

(a+ αζ1u<l·h)e−βh

)
a measurable function. Clearly (lNk+1, a

N
k+1) = F (lNk , a

N
k , U

N
k+1, ζ

N
k+1) where (lNk , a

N
k ) is σ(UNi , ξ

N
i , i ∈

J0, kK) measurable, for any k ∈ N. Thus, (lNk , a
N
k )k∈N is a Markov chain.

The Erlang one-step generator can be obtained just like exponential one.

Theorem 3.5. E = R+ or R2
+.

Let f ∈ Ĉ2
c (E), A be the generator of a Hawkes intensity and T Nj where j ∈ {e, E} the operator described in

Proposition 3.4. Then

‖
T Nj f − f

hN
−Ajf‖ −→ 0.

Proof. First we remind that h = hN .
If the kernel is an exponential function
E = R+.

Let f ∈ Ĉ2
c (E) be a fixed function. We start by giving an alternative expression for

T Ne f(y)−f(y)
hN

for a fixed
y ∈ E:

T Ne f(y)− f(y)

hN
=
[
f(λ∞(1− e−βh) + ye−βh)(1− yh)1yh<1

+

∫
f(λ∞(1− e−βh) + (y + αz)e−βh)dν(z)(yh1yh<1 + 1yh≥1)− f(y)

]
h−1N ,

=
[
f(λ∞(1− e−βh) + ye−βh)(1− yh) +

∫
f(λ∞(1− e−βh) + (y + αz)e−βh)dν(z)yh− f(y)

]
h−1N 1yh<1

+
[ ∫

f(λ∞(1− e−βh) + (y + αz)e−βh)− f(y)dν(z)
]
h−1N 1yh≥1,
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since
∫
dν(z) = 1.

Now using the fact that f is twice differentiable, we use Taylor expansion with a Lagrange remainder:

f
(
λ∞(1− e−βh) + ye−βh

)
=f(y) + f ′(y)

[
(λ∞ − y)(1− e−βh)

]
+

1

2
f ′′(θy)

[
(λ∞ − y)(1− e−βh)

]2
,

where θy ∈
[

inf(y, λ∞(1− e−βh) + ye−βh), sup(y, λ∞(1− e−βh) + ye−βh)
]
⊂ [ye−βT , λ∞(1− e−βT ) + y].

The last inclusion will be used later.
We apply another Taylor expansion to obtain:

f
(
λ∞(1− e−βh) + (y + αz)e−βh

)
= f(y + αz) + f ′(γy)

[
(λ∞ − y − αz)(1− e−βh)

]
where γy ∈ [(y + αz)e−βT , λ∞(1− e−βT ) + y + αz].
Thus we have:

T Ne f(y)− f(y)

hN
1yh<1 =

(
�
��f(y) + f ′(y)

[
(λ∞ − y)(1− e−βh)

]
+

1

2
f ′′(θy)

[
(λ∞ − y)(1− e−βh)

]2
− yhf(y)− yhf ′(y)

[
(λ∞ − y)(1− e−βh)

]
− yh1

2
f ′′(θy)

[
(λ∞ − y)(1− e−βh)

]2
+ yh

∫
f(y + αz) + f ′(γy)

[
(λ∞ − y − αz)(1− e−βh)

]
dν(z)−�

��f(y)
)
h−11yh<1,

a Taylor expansion for small h yields 1− e−βh = βh+O(h2) = O(h), thus:

T Ne f(y)− f(y)

hN
1yh<1 =

(
f ′(y)(λ∞ − y)

(
β +O(h)

)
+

1

2
f ′′(θy)(λ∞ − y)2

1− e−βh

h
O(h),

− yf(y)− yf ′(y)(λ∞ − y)O(h)− y 1

2
f ′′(θy)(λ∞ − y)(1− e−βh)O(h)

+ y

∫
f(y + αz)dν(z) + y

∫
f ′(γy)(λ∞ − y − αz)dν(z)O(h)

)
1yh<1,

=
(
β(λ∞ − y)f ′(y) + y

∫ (
f(y + αz)− f(y)

)
dν(z)

)
1yh<1 +R(y)O(h)1yh<1,

=Aef(y)1yh<1 +R(y)O(h)1yh<1,

The remainder R has the expression:

R(y) =f ′(y)(λ∞ − y) +
1

2
f ′′(θy)(λ∞ − y)2

1− e−βh

h

+ yf ′(y)(λ∞ − y)− y 1

2
f ′′(θy)(λ∞ − y)2(1− e−βh) + y

∫
f ′(γy)(λ∞ − y − αz)dν(z).

Note that the remainder is bounded. Remember that f is continuous with compact support (so are its deriva-
tives), so the function y → supx∈[ye−βT ,λ∞(1−e−βT )+y] |f ′′(x)| is also continuous with compact support, which in

turn means that y → yk supx∈[ye−βT ,λ∞(1−e−βT )+y] |f ′′(x)| for k = 2, 3 is also compact support, thus bounded
by a positive constant independently from y. Applying the same logic to the terms involving f ′ yields:∣∣R(y)

∣∣ ≤ C,
where C is a positive constant independent from y. After all these computations, we prove the uniform conver-
gence for.
Let ε > 0 and B a constant such that y > B implies f(y) = f ′(y) = 0.
For all y ∈ R+ we have:

|T
N
e f(y)− f(y)

hN
−Aef(y)| =

∣∣(T Ne f(y)− f(y)

hN
−Aef(y)

)
1yh<1 +

(T Ne f(y)− f(y)

y
−Aef(y)

)
1yh≥1

∣∣
11



≤
∣∣(T Ne f(y)− f(y)

hN
−Aef(y)

)∣∣1yh<1 +
∣∣(T Ne f(y)− f(y)

hN
−Aef(y)

)∣∣1yh≥1.
Now we plug in the inequality obtained previously for the term in front of 1yh<1 and expand the one in front
of 1yh≥1:

|T
N
e f(y)− f(y)

hN
−Aef(y)| ≤ Ch1yh<1 +

∣∣[ ∫ f
(
λ∞(1− e−βh) + (y + αz)e−βh

)
− f(y)dν(z)

]
h−1N −Aef(y)

∣∣1yh≥1
where O(h) has been absorbed by the constant C.

Let N0 be the integer such that if N ≥ N0, then N
T e
−β TN ≥ B. Such integer exists because N

T e
−β TN ≥

N
T e
−βT → +∞ as N → +∞.

Set N1 = bCTε c+ TB +N0.
For every N ≥ N1 and every y ∈ R+ only one of these two scenarios is possible:

• 1yh<1 = 1 and 1yh≥1 = 0, so
∣∣T Ne f(y)−f(y)

hN
−Aef(y)

∣∣ ≤ ε because N ≥ N1 ≥ bCTε c.

• 1yh<1 = 0 and 1yh≥1 = 1 which means y ≥ N
T , thus y ≥ B and (y + αz)e−βh ≥ N

T e
−β TN ≥ B.

Therefore f(λ∞(1− e−βh) + (y + αz)e−βh) = f(y) = f ′(y) = 0 ∀z ∈ R+.

Which leads to
∣∣T Ne f(y)−f(y)

hN
−Aef(y)

∣∣ ≤ 0.

Each scenario leads to the same result:
∣∣T Ne f(y)−f(y)

hN
−Aef(y)

∣∣ ≤ ε.
In conclusion, since the rank N1 is independent from the choice of y, one can deduce that ∀N ≥ N1

‖T
N
e f − f
hN

−Aef‖ ≤ ε.

If the kernel is an Erlang function

E = R2
+. Let f ∈ Ĉ2

c (E) be a fixed function. We start by giving an alternative expression for
T NE f(y)−f(y)

hN
for a

fixed (y, v) ∈ E:

T NE f(y, v)− f(y, v)

hN
=
[
f
(
λ∞(1− e−βh) + ye−βh + vhe−βh, ve−βh

)
(1− yh)1yh<1

+

∫
f
(
λ∞(1− e−βh) + ye−βh + h(v + αz)e−βh+, (v + αz)e−βh

)
dν(z)

(yh1yh<1 + 1yh≥1)− f(y, v)
]
h−1N ,

=
[
f
(
λ∞(1− e−βh) + ye−βh + vhe−βh, ve−βh

)
(1− yh)

+

∫
f
(
λ∞(1− e−βh) + ye−βh + h(v + αz)e−βh+, (v + αz)e−βh

)
dν(z)yh− f(y, v)

]
h−1N 1yh<1

+
[ ∫

f
(
λ∞(1− e−βh) + ye−βh + h(v + αz)e−βh+, (v + αz)e−βh

)
− f(y, v)dν(z)

]
h−1N 1yh≥1

since
∫
dν(z) = 1.

Now using the fact that f is twice differentiable, we use Taylor expansion with a Lagrange remainder:

f
(
λ∞(1− e−βh) + ye−βh + vhe−βh, ve−βh

)
=f(y, v) +

(
(λ∞ − y)(1− e−βh) + vhe−βh

)
∂λf(y, v)

+ v(e−βh − 1)∂ξf(y, v) +
1

2
v2(e−βh − 1)2∂ξξf(θy, θv)

+
1

2

(
(λ∞ − y)(1− e−βh) + vhe−βh

)2
∂λλf(θy, θv)

+
(
(λ∞ − y)(1− e−βh) + vhe−βh

)
v(e−βh − 1)∂λξf(θy, θv),

where θy ∈ [ye−βT , λ∞(1− e−βh) + y + vh] and θv ∈ [ve−βT , v].
Just like the exponential case, it is possible to bound all the second order terms by a constant, thus:

f
(
λ∞(1− e−βh) + ye−βh + vhe−βh, ve−βh

)
=f(y, v) +

(
(λ∞ − y)(1− e−βh) + vhe−βh

)
∂λf(y, v)
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+ v(e−βh − 1)∂ξf(y, v) +R1(y, v)h2,

where R1 is a compact support function that contains all the second derivatives. We apply another Taylor
expansion to obtain:

f
(
λ∞(1− e−βh) + ye−βh + h(v + αz)e−βh+, (v + αz)e−βh

)
=f(y, v + αz) + (v + αz)(e−βh − 1)∂ξf(γy, γv)

+
(
(λ∞ − y)(1− e−βh) + h(v + αz)e−βh

)
∂ξf(γy, γv),

where γy ∈ [ye−βT , λ∞(1− e−βh) + y+ (v+αz)h] and γv ∈
[
(v+αz)e−βT , (v+αz)

]
. And it is possible to write

it under the form:

f
(
λ∞(1− e−βh) + ye−βh + h(v + αz)e−βh, (v + αz)e−βh

)
=f(y, v + αz) +R2(y, v, z)O(h),

where R2 is not necessarily bounded as z goes to infinity but it is not a problem since
∫
zdν(z) is bounded.

Hence:

T NE f(y, v)− f(y, v)

hN
1yh<1 =

[(
����f(y, v) +

(
(λ∞ − y)(1− e−βh) + vhe−βh

)
∂λf(y, v)

+ v(e−βh − 1)∂ξf(y, v) +R1(y, v)O(h2)−����f(y, u)
)
(1− yh)

]
h−11yh<1

+
[
yh

∫
f(y, v + αz) +R2(y, v, z)O(h)− f(y, v)dν(z)

]
h−11yh<1,

=
[((

(λ∞ − y)
(
βh+O(h2)

)
+ vO(h)

)
∂λf(y, v)

+ v
(
− βh+O(h2)

)
∂ξf(y, v) +R1(y, v)O(h2)

)
(1− yh)

]
h−11yh<1

+
[
y�h

∫
f(y, v + αz)− f(y, v)dν(z) + �h

∫
yR2(y, v, z)dν(z)O(h)

]
��h−11yh<1,

=AEf(y, v)1yh<1 +R(y, v)O(h)1yh<1.

The remainder R(y, v) contains R1(y, v) and
∫
R2(y, v, z)dν(z) as well as their products with y and v. It is a

compact support functions thus it is bounded by a constant C independent from y, v and h.
Let ε > 0 and B a constant such that y > B or v > B implies f(y, v) = f ′(y, v) = 0 .
For all y ∈ R+ we have:

|T
N
E f(y)− f(y)

hN
−AEf(y)| =

∣∣(T NE f(y)− f(y)

hN
−AEf(y)

)
1yh<1 +

(T NE f(y)− f(y)

y
−AEf(y)

)
1yh≥1

∣∣
≤
∣∣(T NE f(y)− f(y)

hN
−AEf(y)

)∣∣1yh<1 +
∣∣(T NE f(y)− f(y)

hN
−AEf(y)

)∣∣1yh≥1.
Now we plug in the inequality obtained previously for the term in front of 1yh<1 and expand the one in front
of 1yh≥1:

|T
N
E f(y, v)− f(y, v)

hN
−AEf(y, v)| ≤Ch1yh<1

+
∣∣[ ∫ f

(
λ∞(1− e−βh) + ye−βh + h(v + αz)e−βh, (v + αz)e−βh

)
− f(y, v)dν(z)

]
h−1N

−Aef(y, v)
∣∣1yh≥1

where O(h) has been absorbed by the constant C.

Let N0 be the integer such that if N ≥ N0, then N
T e
−β TN ≥ B. Such integer exists because N

T e
−β TN ≥ N

T e
−βT →

+∞ as N → +∞.

Set N1 = bCTε c+ TB +N0.
For every N ≥ N1 and every (y, v) ∈ E only one of these two scenarios is possible:

• 1yh<1 = 1 and 1yh≥1 = 0, so
∣∣T Ne f(y,v)−f(y,v)

hN
−Aef(y, v)

∣∣ ≤ ε because N ≥ N1 ≥ bCTε c.
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• 1yh<1 = 0 and 1yh≥1 = 1 which means y ≥ N
T , thus y ≥ B and ye−βh ≥ N

T e
−β TN ≥ B.

Therefore f(λ∞(1 − e−βh) + ye−βh + (v + αz)e−βh, (v + αz)e−βh) = f(y, v) = ∂λf(y, v) = ∂ξf(y, v) = 0
∀z ∈ R+.

Which leads to
∣∣T NE f(y,v)−f(y,v)

hN
−AEf(y, v)

∣∣ ≤ 0.

In conclusion

‖T
N
E f − f
hN

−AEf‖ ≤ ε.

4 Conclusion

We have proven that the DTHP converges weakly to a time continuous Hawkes process in the case the kernel
is an exponential or an Erlang function. The following figure shows a trajectory of a DTHP with a small time
step.

Figure 4: A trajectory of the loss process as well as the intensity in the case of an exponential kernel for α = 2,
β = 5, λ∞ = 3, λ0 = 4 and N = 100000 points. The financial losses follow an exponential distribution of rate
one. The green stars show the jumping times. Note how they are identical for Lt and λt and exhibit a clustering
behaviour.

This result is generalisable to a wider class of Hawkes processes like the multivariate Hawkes process whose
kernels are exponential/Erlang functions or in the case of a higher order Erlang kernel φ(u) = αune−βu with
n ≥ 2. However, despite being of the same nature, computations for these classes are way too heavy and
repetitive to be included in this document.

It is also worth mentioning that this convergence does not have a quantified speed yet. It would be interesting
to have an upper bound on the distance between the two processes as a function of the time step.
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