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Abstract: Internet users are increasingly concerned about their privacy and are looking for ways to protect their data.
Additionally, they may rightly fear that companies extract information about them from their online behavior.
The so-called tokenization process allows for the use of trusted third-party managed temporary identities,
from which no personal data about the user can be inferred. We consider in this paper tokenization systems
allowing a customer to hide their credit card number from a webshop. We present here a method for managing
tokens in RAM using a table. We refer to our approach as upcycling as it allows for regenerating used tokens
by maintaining a table of currently valid tokens. We compare our approach to existing ones and analyze its
security. Contrary to the main existing system (Voltage), our table does not increase in size nor slow down
over time. The approach we propose satisfies the common specifications of the domain. It is validated by
measurements from an implementation. By reaching 70 thousand tries per timeframe, we almost exhaust the
possibilities of the “8-digit model” for properly dimensioned systems.

1 INTRODUCTION

Internet users leave digital fingerprints behind them,
even behind a pseudonym. All this data can be stud-
ied in order to infer information about the users and
their behaviors. This is notably done on the largest
e-commerce platforms and social networks. More
specifically, buying patterns of consumers are ex-
tremely valuable to companies, as they help them un-
derstand their market. In addition, the storing of on-
line payment data is not secure and there is always
a risk of a data leak. Last years have witnessed nu-
merous episodes of credit cards thefts online, like
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the Davinci breach (Krebs, Brian, 2019) in February
2019 (2.15 M stolen credit cards), the Bigbadaboom-
II (Thales group, 2018) in March 2018 where compro-
mised details were released by the FIN7 threat group,
and the Bigbadaboom-III (Sussman, 2020) in January
2020 (30 M stolen credit cards), to name only a few. It
is therefore natural for customers to worry about their
card number being leaked and to expect the damage
to be mitigated in case of leakage.

According to (Whatman, 2020), there were 2.8
billion credit cards worldwide in 2019, and the num-
ber of credit card transactions in 2017 was estimated
to 41 billion in the US. Also, according to the Cen-
sus Bureau of the Department of Commerce (U.S.
Department of Commerce, 2020), the estimate of
U.S. retail e-commerce sales for the second quarter
of 2020 was $211.5 billion, an increase of 31.8 per-
cent (±1.2%) from the first quarter of 2020. In total,
the estimated e-commerce sales represent 17% of all



sales.
The ability to use multiple fake but verifiable

credit card numbers over time and to limit their spend-
ing capacity allows for the protection of the cus-
tomer’s identity and data. However, assigning these
new bank identities called “tokens” to customers in
an efficient and secure way is still a challenge.

Our Contributions: In this paper, we study
CCNs tokenization systems. We take a look at existing
approaches to create a tokenization system and then
propose one that avoids their main issues while still
complying with the domain specifications. We refer
to our approach as upcycling since it allows for re-
generating used tokens by maintaining a table of cur-
rently valid tokens, thus eliminating the need to cre-
ate new tables over time and slowing down calcula-
tions. To satisfy auditability requirements, transac-
tional data will be stored in an external database. We
propose a proof of concept implementation and study
its memory and time performances.

Organization of the Paper Section 2 introduces
the background of tokenization systems for CCNs.
Section 3 contains related works on the domain. Sec-
tion 4 presents our approach and the different algo-
rithms composing it. We study the compliance with
the specifications and the impact of different param-
eters on our system. Section 5 gives experimentation
and benchmark results of our proof-of-concept imple-
mentation. The TSP source code used for the tests
and evaluation is available on git as supplementary
material (Albarel., 2021) Section 6 draws conclusions
from our work.

2 BACKGROUND

In this section we introduce the domain of tokeniza-
tion systems for credit card numbers.

2.1 Credit Card Numbers

Credit card numbers (CCNs), or primary account num-
bers (PANs), consist of a maximum of 19 digits that
identify the card issuer and the cardholder. As de-
picted in Figure 1, they are composed up of three main
elements, in accordance with ISO/IEC 7812-1 (Inter-
national Organization for Standardization, 2017):

1. The issuer identification number (INN), which
corresponds to the leading 8 numerical digits.

2. The individual account number (IAN), which can
be of variable length – between 1 and 10 digits.

3. A check digit (CD) computed from all the pre-
ceding digits of the PAN using the Luhn algo-

rithm (Luhn, 1960).

The individual account number is usually 7-digit
long, which amounts to a total of 16 digits in a PAN.

INN IAN CD
Figure 1: Credit Card Numbers format.

As for the payment token, it is possible to adopt a
structure that slightly deviates from the conventional
format (Payment Card Industry, 2015). For instance,
the first four digits can be used to identify the card
issuer; the last four digits are fixed and can be used for
integrity or error detection purposes in the token (such
as a checksum); the remaining 8 “open” digits in the
middle identify the token. In the remaining sections
of the paper, this format – shown in Figure 2 – will be
considered.

TSP ITN fixed
Figure 2: Possible token format.

At the back of a physical card, three additional
digits form the Card Verification Value (CVV). Their
purpose is to guarantee the physical possession of the
card and therefore, they have no use in a digital appli-
cation like tokens. Moreover, according to PCI com-
pliance rules, the CVV should never be stored except
by the card issuer (Payment Card Industry, 2020).

2.2 Tokenization

Nowadays, in order to increase the security of online
transactions, many payment systems use to provide
users with a temporary identity. This reduces trace-
ability, limits the possible inferences and risks of data
leakage.

A common approach is tokenization: this process
replaces an existing payment card number with a sub-
stitute value called token, that is issued by a trusted
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Figure 3: A Standard Tokenization System.

third-party, called a Token Service Provider (TSP),
that serves as a proxy masking the user’s real iden-
tity. A token is then used during a payment transac-
tion, allowing one to proceed with the payment with-
out exposing actual bank details. The Token Service
Provider associates the original card number with the
tokens and stores all sensible data securely.

More precisely, the TSP manages the entire life-
cycle of tokens. The typical scenario in this context is
depicted in Figure 3:

1. Token Request. The customer requests a token
from the TSP.

2. Query. The TSP queries all data needed for the
creation of the token (usually from the card issuer
or customer).

3. Tokenization. The TSP creates a token from the
Credit Card Number and sends it to the customer.

4. Purchase. The customer purchases an item or ser-
vice from an online shop and transmits the token
number instead of their Credit Card Number.

5. Payment Request. The merchant site returns the
token to the TSP and claims the payment.

6. Detokenization. The TSP converts the token back
to the correct Credit Card Number and transmits
the payment request to the card issuer

7. Payment. The card issuer satisfies the payment
request from the merchant site.

The main role of the TSP is the role of the token
vault: establishing a correspondence between the to-
ken and the Credit Card Number. The TSP can en-
dorse additional responsibilities like domain manage-
ment (giving additional security by limiting the to-
kens to specific channels or retail domains) and au-
thentication (ensuring during the detokenization pro-
cess that the token has been legitimately used by the

correct client). For this, it can verify the identity of
the users, by asking them to claim their identity with
a password, through multi-factor authentication, or
with a cryptographic signature, e.g., the ECDSA stan-
dard (Johnson et al., 2001).

Card issuers can endorse the role of TSP, allowing
full control of the tokenization process. Otherwise,
card issuers may use a third-party TSP and integrate
it with their payment systems.

2.3 Specifications

The specifications for the tokenization systems are
listed hereafter. They ensure that the goals of protec-
tion of the customer are met without loss of quality of
service.
1. Unicity. Each token should be attributed to at

most one user at any given time.
2. Expiry. A token has a maximum number of uses, a

maximum spending amount and/or an expiry date.
3. Formatting. The format of the token should be

identical to CCNs.
4. Distribution. The distribution of the tokens’ open

digits should be uniform.
5. Unlinkability. Tokens should not be linkable to

one another, or to a user.
6. Timeframe. Tokenization and Detokenization

computation times should not exceed a given
timeframe value denoted T f . In this paper, we
consider T f to be 100 ms as a constraint from card
issuers so the TSP slowdown is not too noticeable
from the customer point of view.

7. Unforgeability. An adversary should be unable to
forge a valid token and obtain payment.

8. Reusability. The space of all tokens’ open digits
being smaller than the expected number of token



requests, the same open digits should be able to
be issued several times.

9. Auditability. This depends on the legislation the
TSP is submitted to. It varies from one country to
another. We consider that the time and data for all
tokenizations and all detokenizations (succeeded
or failed) should be stored for 5 years.

10. Security. Any storage of data should be as secure
as possible as long as all previous specifications
are validated.

11. Limited Storage Space. Any data storage used
should be small enough to not create additional
costs for TSPs, as long as all previous specifica-
tions are validated.

3 RELATED WORK

In this section, we present the related work on format-
preserving encryption (FPE) and static pre-computed
tables. We position our contribution with respect to
the described related work.

The authors in (Díaz-Santiago et al., 2014) for-
mally define tokenization systems and identify three
different systems that solve the problem of tokeniza-
tion both securely and efficiently. The first one uses
format-preserving encryption (FPE), while the lat-
ter two systems rely on off-the-shelf cryptographic
primitives using ordinary block ciphers, stream ci-
phers supporting initialization vectors, and physical
random number generators. The difference between
both relies on whether pairs of token and PAN are
stored in the card-vault in the encrypted form or not.
The authors also give several security notions and
provably secure constructions. However, they do not
consider adaptive constructions, and unlike (Cachin
et al., 2017), they do not address updatable tokens.
The authors also refer to the “Voltage Security” so-
lution (Voltage Security, 2012) as the only solution
at this time to the tokenization problem with known
cryptographic guarantees, using static pre-computed
tables.

As a matter of fact, most existing solutions are
static and do not provide key updatability, i.e., they
do not regularly update the cryptographic keys, while
maintaining the tokens’ consistency, which could lead
to security issues. Therefore, in most practical de-
ployments, cryptographic keys must be re-keyed pe-
riodically to ensure continued security. (Cachin et al.,
2017) constructs two tokenization models for updat-
able tokenization with key evolution, in which a key
exposure does not disclose relations among tokenized
data in the past, and where the updates to the tok-

enized data set can be made by an untrusted entity and
preserve the consistency of the data. The authors for-
mally define the security requirements that guarantee
unlinkability among different tokens generated from
a same user.

3.1 Format-preserving Encryption

One common option for the generation of tokens is
the use of Format-preserving Encryption (FPE) (Bel-
lare et al., 2009). FPE can be seen as a key-indexed
pseudorandom permutation of the set of all values of
correct format, called domain. The keyspace can be
much greater than the domain (should have crypto-
graphically big enough size).

FPE has gradually emerged as a useful tool in ap-
plied cryptography in recent years. The initial mo-
tivation for its use came from the encryption issues
raised by companies looking for specific data formats.
For instance, encrypting distinct and unpredictable
16-digit credit card numbers with traditional block ci-
phers would expand the data and change its format,
which would require modifications of the applications
or databases at huge expense (Liu et al., 2010).

The goal of FPE is to avoid the need for a database
to link a token to a CCN. The natural use of FPE is to
encrypt the individual account digits (and the check-
sum digit) as the 8 open digits of the token. The vali-
dation of the token is then done by decryption of the 8
open digits of the token to retrieve a card number that
is then transmitted to the bank for payment. If the to-
ken given by the merchant to the TSP is incorrect, the
corresponding bank account would be invalid.

For now, the domain size remains out of reach of
known attacks on small domains, as it is big enough.
For example, in (Hoang et al., 2018), attacks are pro-
vided on domains up to 8 bits. Following the attacks
discovered in (Durak and Vaudenay, 2017), the Na-
tional Institute of Standards and Technology (NIST)
recommends using domains of at least one million el-
ements (NIST, 2020). With one hundred million do-
mains, the CCNs FPE systems are still out of reach for
now, but this should be a concern for a long-lasting
system.

The first limitation found in the use of FPE is that
the map from users to the 8 open digits is not bijec-
tive, since two banks with different fixed digits can
issue the same open digits to two different users, e.g.,
John Doe, client ID 1234 5678 at BankA and Michel
Dupont, client ID 1234 5678 at BankB. Such a sce-
nario would imply that the tokens generated by these
users would always be the same. These two users can-
not have tokens issued with the same key. Another
possibility is to have an injective map from card is-



suers to TSP that would avoid this type of conflict,
i.e., having a single TSP per card issuer.

Assuming that the indexing secret keys are
changed regularly, two different card numbers with
two different keys can yield the same token. In this
case, in the verification phase, it would be impos-
sible to differentiate the two tokens (see Specifica-
tion 1 of Section 2.3) except with the inclusion of ad-
ditional identification information that would need to
be stored. Additionally, the pairs (token, secret key)
would anyway be kept in a database in order to know
which key needs to be used to decipher a given token.
Storing these pairs and identification data defeats the
advantage of using FPE instead of having a static pre-
computed table (knowingly reducing storage space).

Besides, if we keep the same secret key across
time, it opens the possibility for attackers to trace a
token number, since it is permanently linked to the
card number. This would not comply with Specifica-
tion 5 of Section 2.3.

To summarize, the use of FPE would either cre-
ate collisions or require a database. In the latter case,
it just creates an overhead that can be avoided with
a classical table/database. In conclusion, our system
will not use FPE.

3.2 Static Pre-computed Tables

We call static pre-computed tables those which con-
tains all possible token values computed in advance.

Voltage Security proposed a way to generate and
use tokens (Voltage Security, 2012) in 2012, accord-
ing to the Payment Card Industry Data Security Stan-
dards (PCI DSS) requirements (Payment Card Indus-
try, 2020), which include for example the need to in-
stall and maintain a firewall configuration to protect
cardholder data, to protect the stored data, to encrypt
every transmission of cardholder data across public
networks, etc.

During tokenization, a token is randomly asso-
ciated with the card number. With a good random
number generator and good management of the ta-
ble where the tokens are stored, this solution is com-
pletely in accordance with the PCI DSS and allows for
a quick tokenization process. During the detokeniza-
tion phase, it simply checks if the token exists in the
table and, in that case, the associated bank account is
returned.

However, the Voltage approach leaves some
doubts about the security of the table, which is kept
in plain text. More importantly, no mechanism avoids
the saturation of the table. This could be a problem if
the maximum number of 108 tokens is reached. For
certain this technique allows for a tokenization that

is fast on average, but problems arise whenever the
number of tokens increases. What Voltage proposes
to tackle this issue is to create a new table when the
previous one is saturated. However, this mechanism
increases the detokenization times since multiple ta-
bles have to be searched to find the correct bank ac-
count. Additionally, this creates the need for more
data storage space.

The main design consideration of our contribution
was to remove the increase of storage and computa-
tions over time. Although (Cachin et al., 2017) does
a first step by providing encryption and key updata-
bility, it does not allow for table cleaning and token
reusability. Up to our knowledge, we are the first to
provide all of these features. Our proposition allows
one to have a dynamic table that is more portable.
Moreover, we propose a method that regularly cleans
the table, considering an expiry time for tokens and
a maximum number of uses. This way, our system
allows reusing the tokens that are no longer in use in
order to ensure the sustainability of our system over a
long time.

4 OUR UPCYCLING
TOKENIZATION METHOD

In this section, we introduce our upcycling tokeniza-
tion method. We discuss how to properly chose pa-
rameters and introduce the composing functions of
our system.

4.1 System Overview

Our approach is a modification of Voltage’s static pre-
computed table that integrates a cleaning mechanism.
Thanks to this mechanism, it is not necessary to create
an additional table every time the previous one starts
to be too full. Additionally, we encrypt the table for
more security, and we include a mechanism for updat-
ing encryption keys, as well as a mechanism to detect
accidental modifications in the table. We include an
extra database for audit purposes.

This construction has been built on the supposi-
tion that the storage of all cryptographic secrets (keys,
initialization values) is proper and secure. Also, we
assume the randomness generators to be cryptograph-
ically strong.

The basis of our approach is the creation of a table
in RAM indexed by the token numbers, which there-
fore consists of nmax rows, where nmax is the num-
ber of possible tokens, i.e., 108 in the 8-digit model.
To retrieve data from a token to complete a payment,
there is just to retrieve the data contained in the row of



the table corresponding to the token. A row is there-
fore composed of:

• The credit card number CN, stored on 64 bits to
include the 16 CCNs digits

• A timestamp expiry = current time + lifespan,
which is expressed in seconds and thus stored over
32 bits, or expressed with a larger range or higher
precision and stored over 64 bits. It indicates the
expiry date of the token.

• A counter num_uses of the remaining uses of the
token. An 8-bit integer is enough for the predicted
use of the tokens since increasing the number of
uses of the same token increases its traceability.
If num_uses = 1 for all tokens, this field can be
removed.

• A counter credit of the remaining possible spend-
ing with this token. This field is also optional.

• If the tokenization scheme includes an authenti-
cation mechanism, all the required data should be
stored in the row, e.g., password, verification keys,
email address, or phone number for multi-factor
authentication.

• The random number rand used to generate the to-
ken (32 bits) can also be stored, it allows for the
verification of the row during the Clean_table op-
eration.

We propose the functions Tokenization and Deto-
kenization to create and use tokens, and also a
Clean_table function verifies the contents of the table
and removes decayed tokens.

Ideally, the table should be created contiguous in
memory so that the access to the nth element could be
done by calculating the offset from the first element.
This way, tokens are perfectly indexed by their value.
This allows keeping a constant access time for lookup
while keeping a minimal database space (Specifica-
tion 6). For security purposes, it is also recommended
that the database should be encrypted via a secret key.

Note that according to the volume of data to store
for authentication the table size can vary. However, a
good computer could have it entirely in RAM without
the use of non-volatile memory.

The number of uses given for a token and its lifes-
pan should be very carefully chosen according to the
expected rate of use of tokens. For example, imagine
an e-commerce scenario, we can say that tokens have
a 10-minute lifespan, since most transactions that are
longer than this become invalid for security reasons.

If the tokens have only one use, every consumer
that fails to complete the transaction leaves an unused
token in the table. If they have more than one, it is
increasingly probable that at least one will never be

used in a transaction and leave a token in the table.
The expiry of the tokens allows to detect them and
remove them periodically.

The best parameters would be to choose the min-
imal numUses and li f espan values that validate the
design constraints on the system. The cleaning of the
table (Clean_table) should be executed periodically,
e.g., once a day or week or month, according to the
expected number of tokens that will not be used dur-
ing their lifespan, the period should be high enough
to ensure there is always room to create new tokens.

All the actions done in the table and every call to
our functions can be stored with a timestamp in a per-
manent external encrypted database to comply with
auditability requirements. According to the legisla-
tion applied on the TSP, some fields are expected to
be stored or not. The legislation may require the data
to be stored for a given amount of time and deleted af-
terward. Since this is classical database management,
we will just present when our system adds data into
the database.

4.2 Description of the Functions

The three following functions enable one to complete
the whole tokenization and detokenization process, as
well as the maintenance of the table. Hereafter fol-
lows a detailed description of each process.

4.2.1 Tokenization

The tokenization process consists in generating a to-
ken tok from a card number CN. It also implies stor-
ing the data concerning the user in order to proceed
with subsequent detokenizations.

The algorithm Tokenization(Tab, CN, num_uses,
credit expiry, auth, sk) takes as input the table Tab,
the credit card number of the user CN, the maximum
number of uses of the token num_uses, a timestamp
expiry, and any extra information auth that would be
useful to retrieve at the time of detokenization (e.g.
cryptographic public key), as well as the system’s
cryptographic key (and iv) sk.

First, if required, a tokenization call is added to
the external database.

Then, the algorithm picks uniformly a 32 bit rand
and computes the 32 last bits of

hash32 = SHA224(CN,expiry,auth, rand).

To ensure the uniformity of the output distribution,
this process is repeated with a new rand while hash32
is greater than the biggest multiple of 108 written in
32 bits (happens 0.1% of time).
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Then, given nmax the maximum number of rows it
computes tok= hash32 mod nmax.

This way, a token (8 open digits) is generated uni-
formly by hashing the data including rand and reduc-
ing the result into the token space by carrying out a
modulo nmax operation on it.

num_uses is not included since it will vary over
time. Then, it checks whether tok corresponds to
an empty row of the table. If the token already
exists and is valid, then the process restarts and
tries with a fresh rand value until a new token
is found. Once an empty row is found, it inserts
Encryptsk(CN |num_uses |credit |expiry | rand |auth)
in the row.

If the duration of the algorithm came to exceed
time f rame, the algorithm would stop with a failure
flag. Else, it would return a success flag and the 8-
digit token that got created.

The TSP should ensure to format properly the to-
ken back to a full token format by adding the TSP
identifier and the checksums.

All fields required for audit purposes (e.g., the to-
ken number) are transmitted to the external database.

4.2.2 Detokenization

The detokenization process consists in retrieving a
credit card number CN from a token tok.

If needed (e.g., to detect malicious users request-
ing payments), the algorithm saves the detokenization

call in the external database.

The algorithm Detokenization(Tab, tok, debit,
verif, sk) takes as input the table Tab, the token tok
to verify (as an 8-digit value), verif the data possi-
bly required for authentification (e.g., cryptographic
signature) and sk the system’s cryptographic key (and
iv).

It checks whether the table row indexed by tok
is empty or not. If it is empty, the token is invalid
and the algorithm stops with a failure flag. Oth-
erwise, the row is deciphered with sk to retrieve
(CN |num_uses |expiry |credit | rand |auth). If the to-
ken is depleted or invalid, or credit < debit the row
is deleted and the algorithm stops with a failure flag.
Else, the algorithm Verify_signature(auth,verif) to
authenticate the consumer. If Verify_signature re-
turns a failure flag, Detokenization stops and returns a
failure flag. We further detail authentication methods
in Section 4.5.

Else, everything went well, num_uses is decre-
mented, debit is substracted from credit. If it reaches
0, the row is deleted, else the row is kept encrypted in
the table. Either way, the CCN is returned. It can be
sent to the card issuer for completion of the payment.

Also, any changes to the token can be reported in
the external database for audit purposes.



4.2.3 Cleaning the Table

To perform the cleaning, each row of the table is
checked and kept only if the token is still alive and
correct.

The algorithm Clean_table (Tab,sk) takes as in-
put the table Tab and sk the system’s cryptographic
key (and iv). For all rows, it deciphers the row to re-
trieve (CN |num_uses |credit |expiry | rand |auth).

The call to this function can be saved in the exter-
nal table if needed.

The number of remaining uses and the expiry date
are verified. If the validity date has passed or if the
maximum number of times the token has been used is
reached, then the row is erased. In order to detect er-
rors in the table, the algorithm can also compute if CN
is a valid CCN by verifying its checksum, and whether
SHA224(CN,expiry,auth, rand) mod nmax is the in-
dex of the row. If no error is found, the token stays
as it was and the algorithm continues with the next
one. Each cleaned row can also be stored in the exter-
nal database.

Also, keeping the same secret key for a long
time is insecure, it should be changed regularly.
Clean_table could also be used as a key updater by
taking as additional input the new_key. Each row
is deciphered with sk, and after normal operations,
the rows are inserted back in the table encrypted with
new_key, which now acts as sk.

4.3 Conformity with Specifications

We prove that given a correct set of parameters, each
specification is validated by our approach.

1. Unicity. Each token is unique because Tokeniza-
tion only returns a non-existing token.

2. Expiry. This is guaranteed by the verification
process during Detokenization and the fact that
num_uses is decremented after each use. expiry
and num_uses are never incremented.

3. Formatting. The token format matches the one of
CCNs because of the formatting step at the end of
Tokenization.

4. Distribution. Any newly issued token has a num-
ber taken from a uniform distribution (property of
the hashing function).

5. Unlinkability. Since our systems includes random
values into the hash, there is no information de-
ductible from the observation of multiple tokens,
even with all other fields of the row being the
same. Therefore no link can be inferred between
tokens and consumers.

6. Timeframe. Tokenization times can be guaranteed
to be bounded, with the probability of failure to
deliver a new token being arbitrarily low. How-
ever, the implementation optimization, the com-
puter performances, and the value of T f have an
impact that we quantified in the upcoming para-
graph. Detokenization times are bounded because
the table access is in constant time.

7. Unforgeability. Without authentication of the cus-
tomer during a payment request, a merchant site
could submit a random illegitimate token and send
a payment request. The probability of success
is equal to the number of currently valid tokens
divided by the total number of tokens. In a to-
ken space of 108, this causes a lot of design con-
straints. Therefore, authentication is needed to en-
sure this property.

8. Reusability. A properly sized system ensures by
cleaning regularly the table that all expired tokens
can be used again.

9. Auditability. All functions called and all tokens
created and modified can be stored in a permanent
external encrypted database according to TSP reg-
ulations.

10. Security. The table and the external database are
encrypted. Good key management is necessary.

11. Limited Storage Space. For normally sized au-
thentication data, the table can be in a computer’s
RAM. The external database should contain only
the required data to limit costs.

4.4 Probability of Tokenization Failure

Let us consider a token space of size nmax, the num-
ber of already generated tokens n and the number of
tries T to generate a new token that can be done in the
given timeframe T f .

We study the maximum n, such that the probabil-
ity of a failure to create a new token is smaller than
2−λ, where λ is the security parameter. The probabil-
ity of failure is the probability of obtaining consecu-
tively T already existing tokens, which happens with
a probability of n

nmax
. Thus we obtain the following

inequality:(
n

nmax

)T

<
1
2λ
⇐⇒ n < 2log2(nmax)− λ

T . (1)

When λ� T , n ≈ nmax. Therefore with reason-
able security parameters, e.g., 128 or 256, we need to
optimize enough the implementation so that T is big
enough. As long as this is the case, n≈ nmax, and any
failure to create a token in an upcycling table is proof



that either the system isn’t properly dimensioned or
that the 8-digit model is no longer big enough. (It
would imply that around ≈ 100Musers are instanta-
neously in a transaction.)

4.5 Authentication methods

Here we propose three authentication solutions to en-
sure unforgeability.

1. Password: During the token request, the cus-
tomer chooses a password and sends a hash to the
TSP as auth. During detokenization the customer
submits verif, Verify_signature will just check
whether auth = verif (Halevi and Krawczyk,
1999). Note that using always the same pass-
word would allow an observer to infer that mul-
tiple detokenizations may be linked.

2. Signature: During the token request, the customer
sends a cryptographic public key auth. Dur-
ing detokenization the customer submits verif, its
cryptographic signature. Verify_signature is the
cryptographic verification of the signature (John-
son et al., 2001). Note that no information can be
inferred from proper cryptographic signatures.

3. Multi-factor Authentication: During the token re-
quest, the customer sends contact data auth, such
as email address or phone number. During detok-
enization Verify_signature picks a code C, sends
it via email or SMS to the customer. If the cus-
tomer then submits verif =C, then the authentica-
tion is validated (N. Owen and Shoemaker, 2008).
Since C is chosen at random independently of the
user, no link can be inferred between two detok-
enizations.

5 PERFORMANCES

In this section, we evaluate our solution in terms of
table fill rate and time taken by tokenization, detok-
enization, and the cleaning of the table. We also pro-
vide the RAM usage needed to run our solution.

We decided to use the C language to have good
memory management. This choice allows us not only
to reduce the amount of RAM used, but also to reduce
the token generation time by controlling precisely the
size of the data. For the sake of reproducibility, our
source code is publicly available on a repository (Al-
barel., 2021).

5.1 Tokenization time and Table fill rate

We performed our experiments on an AMD EPYC
7742 64-Core Processor. Each processor has an av-
erage speed of 3240.029MHz.

For each experiment, we generated tokens cor-
responding to random credit card numbers and then
filled our 108 rows table with tokens. We tried to
generate new tokens until the table is so full that a
new token could not be generated in less than the Tf
timeframe of 100ms. We repeated this experiment
10 times to obtain statistically significant results. We
then evaluate several metrics: the table fill rate be-
fore the first failure happened, the number of missed
tries that lead to this first failure, the maximum num-
ber of tries before inserting a correct value, and the
time needed to fill the table before an insertion fails.
Hereafter, Figure 5 shows the box plot of these four
metrics computed for 10 fill table operations.

Our results show that the table can be filled to
a median of 99.99% with a standard derivation of
0.002 (Figure 5a) before the first failed token creation,
which is very satisfying.

The number of tries per timeframe can be bounded
between the number of tries before the first failure
(Figure 5b) for which the median is 70,268, with a
small standard deviation equal to 634 and the number
of tries per timeframe is the number of tries before
inserting, which median is equal to 65,251.

The median time to fill the table before a failure
occurs (Figure 5d) is 1344 seconds (i.e., 22 minutes
and 44 seconds), also with a very small standard de-
viation equal to 28 seconds.

Suppose a TSP wants to ensure a very low proba-
bility of failure e.g 1

2128 . From 1, with T = 70000, we
find a maximum table fill rate of 99.8733%, which in-
dicates that the bottleneck is more the size of the table
than the performances.

Our experimentation show that single try for
tokenization lasts approximately 100ms/70,268 =
0.0014233ms. Since 99.99% of 108 tokens are cre-
ated in 1350s, an insertion took in average 0.0135ms,
or 75,750 tokens created per second.

To illustrate, credit cards can do 5000 transactions
per second. There is an average of 1 billion credit
card transactions per day worldwide, or an equivalent
of 11574 transactions per second (CardRates, 2020).
Our construction covers 6.5 times this rate. Further-
more, with a 10-minute token lifespan, with maxi-
mum token creation speed, a maximum of 45 million
valid tokens can be in the table at any given time. So
with Clean_table called every 10 minutes, there is no
possibility for the table fill rate to go over the security
threshold.



(a) Final table fill
rate (%)

(b) Tries before first
failure

(c) Max number of
tries before success

(d) Time to fill the
table (s)

(e) Time to detok-
enize the table (s)

(f) Time to clean the
table (s)

Figure 5: Box plot of evaluation metrics for Tokenization, Detokenization and Clean_table.

5.2 Detokenization and Cleaning table
time

Finally, we also measured the average time needed
to detokenize and clean the table. In addition to the
tokenization metrics, Figure 5 also provides statistics
about the Detokenization and Clean_table operations.

We observe that the Detokenization operation
(Figure 5e) for a table filled with tokens takes on av-
erage 660 seconds, i.e., 11 minutes, with a very low
standard deviation of 26 seconds. This represents
only 6µs for a single detokenization, which is far less
than the expected 100ms timeframe.

The Clean_table operation was also run on a ta-
ble filled with depleted tokens. The median time for
cleaning the table (Figure 5f) is 36.6 seconds with a
standard derivation of 0.43 seconds. This illustrates
that our upcycling tokenization technique can cope
well with large data as it is able to clean the table in a
very short time.

5.3 RAM Usage

The theoretical amount of RAM usage depends on the
row length and encryption design of the table. De-
pending on the security requirements, one can decide
whether to encrypt the table or not. If it is the case, the
table would be encrypted with Advanced Encryption
Standard (AES) and thus in 128-bit blocks.

For our experiments (64 bits expiry and a 64 bit
auth), the data in a row being stored on 232 bits, the
encryption would be done on 2 blocks of 128 bits.
With nmax = 108 rows to store, 25.6GB of RAM are
necessary for the storage of the encrypted table. If we
choose not to encrypt the table, only 23.2 GB of RAM
are used for storage. Note that if auth is bigger, extra
AES blocks must be added which would increase the
memory requirements for the table.

6 CONCLUSIONS

In this paper, we proposed a solution for tokeniza-
tion systems for Credit card numbers. This system is
based on the possibility to keep a full table of tokens
in RAM so that computations are fast enough to guar-
antee a tokenization within a 100ms timeframe as long
as the table is not filled more than 99.87%. An exter-
nal database allows us to keep transaction data for au-
ditability while also allowing the table to be cleaned
regularly from expired tokens.

Our approach is still limited by its single point of
failure nature and extra mechanisms should be added
to improve availability and resilience.

For example, each modification in the RAM could
be duplicated in a SSD, in order to have a non-volatile
backup almost up to date. The RAM can also be
duplicated into another RAM to increase availability
with minimal losses in case of failure. The TSP role
could also be split across multiple computers by allo-
cating a partition of the token space to each computer.

Also, in order to reduce the memory requirements
of the table and store more data per row, one could
implement a scalable data structure such as a binary
tree or more advanced dynamic storage mechanisms.

Our experiments showed that our implementa-
tion satisfies the specifications of the Token Service
Providers, and is efficient enough to manage 6 times
the current number of worldwide credit card transac-
tions.
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