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Exceptional Model Mining meets Multi-objective Optimization

Alexandre Millot ∗ Rémy Cazabet † Jean-François Boulicaut∗

Abstract

Exceptional Model Mining (EMM) is a local pattern mining

framework that generalizes subgroup discovery. In EMM,

we look for subsets of objects - subgroups - whose model

deviates significantly from the same model fitted on the

overall dataset. Multi-objective Optimization (MOO) is

an area of Multiple Criteria Decision Making where two

or more functions need to be optimized at the same time

and the goal is to find the best compromise between the

concurrent objectives. We introduce a new model class for

EMM in a MOO setting called Exceptional Pareto Front

Mining. We design fitting quality measures that take into

account both the distance between models and the relevance

of the subgroups. We propose a beam search for top-K

EMM whose added-value is studied on both synthetic and

real life datasets. Among others, we discuss a use case on

hyperparameter optimization in machine learning for both

regression and multi-label classification.

1 Introduction

Exceptional Model Mining (EMM) has been recently
proposed [7]. It is a generalization of subgroup discovery
[12, 13]. Given labeled data, subgroup discovery aims
at discovering subsets of objects - subgroups - described
by interesting descriptions or patterns according to a
quality measure computed for the target variable. The
measure has to capture deviations between the target
variable distribution on the selected subset of objects
and the distribution on the overall dataset. In EMM, we
look for subgroups whose model deviates significantly
from the same model fitted on the entire dataset. Where
subgroup discovery is inherently limited to a unique
target concept, EMM is able to handle data where two
or more targets exist. It supports the discovery of more
complex interactions between variables. An example of
complex interactions between variables can be found in
multi-objective optimization (MOO) [4]. It is part of
the Multiple Criteria Decision Making area where two
or more functions need to be optimized simultaneously.
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If an order of importance can be defined between the
objectives, the problem can be investigated as uni-
objective either by giving weights to each objective
and then summing the weighted objective values or
by optimizing the objectives one by one following a
predefined order. However, when no order can be
defined a priori, the use of a method based on Pareto
optimization has to be investigated [5, 24]. It is based on
the dominance between solutions of the objective space.
A solution is said to be non-dominated - or Pareto
optimal - if it is impossible to improve an objective
without degrading another. The set of Pareto optimal
solutions is known as the Pareto front. The result of a
MOO algorithm then involves not one but a set of equal
solutions - the Pareto front.

We introduce a new model class for EMM based
on the discovery of exceptional Pareto fronts. We look
for deviations in the shape of the Pareto front left
by the absence of a subgroup of objects compared to
the Pareto front computed on the overall dataset. We
have to design new quality measures that take into
account both the distance between Pareto fronts and the
subgroup relevancy. We propose a beam search strategy
to mine high quality exceptional Pareto fronts in an
efficient way. We show the relevance of our approach
on both synthetic and real life data. Among others, we
discuss an application to hyperparameter optimization
in machine learning.

This paper is organized as follows. Section 2
formalizes our mining task. In Section 3, we discuss
related work. We detail our contribution in Section 4
before introducing our experimental results in Section
5. Finally, Section 6 concludes.

2 Preliminaries

2.1 Exceptional Model Mining. EMM is a gener-
alization of subgroup discovery that can handle more
than one target attribute by using model classes. In
EMM, a dataset (G,M, T ) is a set of objects G, a set of
attributes M and a set of targets T . In a given dataset,
the set of attributes M contains real and categorical at-
tributes while the set of targets mainly depends on the
model class at hand. For us, the domain of any target
t ∈ T is a finite set: when considering numerical values,
only occurring values are part of the domain.



Definition 2.1. A subgroup p can be described either
by its intent - the description of the subgroup in terms
of attribute values - or by its extent - the coverage of
the subgroup in the dataset. The intent of a subgroup
p is given by pd = 〈ϕ1, ..., ϕ|M |

〉
where each ϕi is a

restriction on the domain value of mi ∈ M . The
intent pd of subgroup p covers the set of objects denoted
ext(pd) ⊆ G.

For example, given attributes m1 (resp. m2) with
domain values {a, b, c} (resp. {1, 2.7, 6.2}), we could
find a subgroup whose intent is 〈m1 = a, m2 = 2.7〉.

In subgroup discovery, we have only one target. The
quality of a subgroup is usually defined as the discrep-
ancy between the distribution of the target variable in
the subgroup and its distribution over the entire dataset.
Since important discrepancies can easily be achieved
with small subsets of objects, a factor taking into ac-
count the size of the subgroup can be used as well (see,
e.g., the popular Weighted Relative Accuracy measure).
Exceptional Model Mining enables for two or more tar-
get variables depending on the chosen model class. In
our current setting, given a dataset (G,M, T ), the inter-
estingness of a subgroup p is measured by a numerical
value that quantifies the deviation between the model
fitted on the subgroup and the same model fitted on the
overall dataset. In most common EMM algorithms, the
search space of subgroups is traversed in a general to
specific way. At each stage, a specialization operator is
applied to create more complex subgroups by addition
of a restriction on an attribute.

2.2 Multi-objective Optimization. Many real
world optimization problems are intrinsically multi-
objectives.

Definition 2.2. A multi-objective optimization prob-
lem can be defined as follows:

Minimize F (x) = (f1(x), ..., fn(x))T , x ∈M

where M is the attribute space and x is an attribute
vector. F (x) consists of n objective functions fi : M →
R, i ∈ {1, ..., n}, where Rn is the objective space.

However, the objectives usually conflict with each other
and the improvement of an objective might lead to a
degradation for others. For this reason, we lack a single
solution that enables the optimization of all objectives
at the same time. When no order or relevance can be
defined a priori on the different objectives, a Pareto
optimization method is required. It is based on the
dominance between solutions of the objective space.

Definition 2.3. A vector a = (a1, ..., an)T is said to
dominate a vector b = (b1, ..., bn)T , denoted a ≺ b if
and only if ∀i ∈ {1, ..., n}, ui ≤ vi and u 6= v.

A non-dominated solution is called Pareto optimal.

Definition 2.4. A solution x is called Pareto optimal
if and only if @y ∈ M such that F (y) ≺ F (x). The set
of all Pareto optimal solutions is called the Pareto Front
PF = {F (x)|x ∈M |@y ∈M,F (y) ≺ F (x)}.

3 Related Work

Although we are not aware of previous proposals con-
necting EMM to multi-objective optimization, related
topics have been seriously investigated. Subgroup dis-
covery has been mainly concerned with problems involv-
ing a unique target concept. When it comes to subgroup
discovery and the optimization of a numerical target,
few works exist. Among them, we find SD-Map* [1] and
OSMIND [18] that both find optimal subgroups accord-
ing to a quality measure calculated on a numerical tar-
get. In [18], it is shown that subgroup discovery can be
used to mine high quality subgroups that optimize a nu-
merical variable. However, such subgroup discovery al-
gorithms are unable to deal with multiple numerical tar-
gets and can not be used in a multi-objective optimiza-
tion setting. EMM generalizes subgroup discovery for
multiple targets [7]. Several algorithms have been de-
veloped to build upon classical beam search approaches.
To this end, heuristic [14], exhaustive [16] and sampling-
based [19] methods were introduced to produce better
patterns or to compute them faster. The type of model
mined in EMM is crucial. Since any type of model can
technically be used, many approaches involving differ-
ent models have been proposed. In [8], the authors mine
exceptional regression models, but one finds also the
search for exceptional Bayesian networks [9] or excep-
tional correlations [6]. Regarding the association of sub-
group discovery and multi-objective optimization, a few
approaches have been proposed [3, 15, 22, 23]. [3] pro-
poses an evolutionary algorithm to mine subgroups of-
fering the best trade-offs between multiple quality mea-
sures (e.g., support, confidence, unusualness). The no-
tion of skyline patterns is exploited in [23] to mine high
quality patterns according to multiple measures at the
same time: the user only needs to input the measures
he is interested in and the algorithm returns the best
patterns by exploiting the concept of dominance. How-
ever, these approaches work on defining the dominance
between subgroups, while we are interested in the dom-
inance between observations.

We have to design resilient quality measures to com-
pare Pareto fronts. In the multi-objective optimization
literature (see, e.g., [17]), numerous quality measures
have been introduced to evaluate the distance between
the true Pareto front and the Pareto fronts resulting
from the optimization algorithms. Among others, an



averaged version of the Hausdorff distance was shown
to give promising results [20]. [11] investigates the se-
lection of a subset or a unique solution from the Pareto
front when it is needed.

4 Contributions

4.1 Approach. We want to build a model class for
EMM in a MOO setting: we propose to look for
Exceptional Pareto Front Models (EPFM). In a given
dataset, we define the true Pareto front - denoted
PF true - as the set of all non-dominated objects over
the whole dataset. In typical EMM approaches, an
exceptional model is computed directly on the objects
of the subgroup. Then a quality measure is used
to measure the deviation between the model built on
the subgroup and the same model built on the whole
dataset.

Our goal hereafter is to capture subgroups repre-
senting local phenomena with the highest influence on
the shape of PF true, meaning that we need to measure
the effects on PF true of removing these objects from
the data. Therefore, when a subgroup is generated, we
remove all its objects from the dataset. Then, we com-
pute the new Pareto front PF on the remaining data.
Finally, we can compute the deviation between PF true

- i.e., the Pareto front for the dataset - and PF .
Let us first define which objects of each Pareto

front are taken into account when computing distances
between Pareto fronts.

Definition 4.1. Given Pareto fronts PF1 and PF2,
the Partial Pareto Front PPF (PF1, PF2) is equal to:

{x ∈ PF1|@y ∈ PF2, x = y}

The PPF is defined as the subset of objects of a Pareto
front that are not in the set of objects of the other Pareto
front. A PPF can be computed either for PF true by
keeping its objects which are not in PF or for PF by
keeping its objects which are not in PF true. Figure 1
depicts the PPFs of PF (left) and PF true (right). In
Figure 1 (left), the PPF of the model - denoted by
PPF model - is the set of objects of PF (i.e., the Pareto
front of the data that is left once the subgroup has been
removed) which do not belong to the Pareto front of the
dataset - denoted by PF true.

Conversely, in Figure 1 (right), the PPF of the
dataset - denoted by PPF true - is the set of objects
of PF true which do not belong to the Pareto front of
the model - denoted by PF model.

In our figures, NDP or ND stand for normal data
point, SG denotes a subgroup, PF true represents the
best known Pareto front and PF model represents the
Pareto front of a subgroup.

4.2 Designing quality measures

4.2.1 Measuring distances between Pareto
fronts. Multi-objective optimization needs for algo-
rithms that approximate as well as possible the true
Pareto front for any given problem. Many quality mea-
sures have been introduced to estimate the quality of
the computed Pareto front compared to the true Pareto
front or to an ideal point [17]. Thanks to some of these
measures, the distance between two Pareto fronts can
be computed. In traditional multi-objective optimiza-
tion measures, only the distance between either the true
Pareto front and the approximate Pareto front or the
approximate Pareto front and the true Pareto front is
computed. However, [20] shows that taking into ac-
count both distances provides measures that are more
resilient to outliers and uncommonly shaped Pareto
fronts. Therefore, we compute both the Euclidean dis-
tance between the partial Pareto front of the subgroup
PPF and the Pareto front of the overall dataset PF true,
and the Euclidean distance between the partial Pareto
front of the overall dataset PPF true and the Pareto
front of the subgroup PF . Then, the largest one is
kept as the true distance. Furthermore, it is important
to normalize each of the objectives such that they con-
tribute equally to the measure. We normalize each of
them to get a value between 0 and 1 using the standard
scaling x

′

j = (xj −minj)/(maxj −minj), where minj

and maxj are respectively the minimum and maximum
of Objective j. In our figures, we use non-normalized
ranges for a better understanding.

Figure 1: Partial Pareto fronts of PF (left) and PF true

(right).

Figure 2: Low entropy (left) and large (right) sub-
groups.



Our measure is based on the popular Hausdorff
Distance that estimates how far two subsets of a metric
space are from each other: informally, it is defined as
the largest of all the distances from a point in one subset
to its closest point in the other subset.

Definition 4.2. The Hausdorff Distance between PF
and PF true is defined as:

HD(PF, PF true) = max(

max(mind(PPF, PF true)),

max(mind(PPF true, PF )))

The Median Hausdorff Distance between PF and
PF true is defined as:

MHD(PF, PF true) = max(

med(mind(PPF, PF true)),

med(mind(PPF true, PF )))

mind computes the minimal Euclidean distance from
each point of the partial Pareto front to the other Pareto
front, max returns the largest value in a set of distances
and med returns the median value in a set of distances.

Let us now consider a modified version of the Averaged
Hausdorff Distance (AHD) introduced in [20].

Definition 4.3. The Averaged Hausdorff Distance
AHD(PF, PF true) between PF and PF true is:

max(
1

N

N∑
i=1

(mind(PPFi, PF true)),

1

M

M∑
i=1

(mind(PPF true
i , PF )))

N is the number of objects of PPF and M is the number
of objects of PPF true. mind computes the minimal
Euclidean distance from object i of the partial Pareto
front to the other Pareto front. The average of all
minimal distances is then computed. Finally, max takes
the largest distance of the two.

4.2.2 A generic quality measure for EPFM.
Unfortunately, knowing the distance between Pareto
fronts may not be enough to mine interesting subgroups.
Indeed, an issue can arise when either outliers are apart
of the true Pareto front or when the density of objects is
very low close to some part of the Pareto front. Indeed,
in such cases, the removal of subgroups with very few
objects on the true Pareto front can create unwanted
large deviations in the Pareto front of the model leading

to overfitting and trivial subgroups. Figure 2 (left)
depicts an example of this phenomenon. Furthermore,
since our method relies on evaluating the effect on
the true Pareto front of removing subgroups from the
dataset, subgroups with a large coverage can create
large deviations or even completely change the Pareto
front of the dataset. Despite of their high quality, such
subgroups are not interesting. Figure 2 (right) depicts
an example of this phenomenon. To summarize, given
the previously defined distance measures, we can get
either very large or very small subgroups.

To deal with the first issue, we propose to use the
entropy of the split between the objects of the Pareto
front which are not part of the subgroup, and those who
are.

Definition 4.4. The entropy of a subgroup p is
ent(p) = − n

N lg
(
n
N

)
− N−n

N lg
(
N−n
N

)
where lg denotes

the binary logarithm, N is the total number of objects
on the true Pareto front and n is the number of objects
of p that belong to the true Pareto front.

The entropy favors balanced splits over unbalanced
ones. It returns 0 when the subgroup has no point on the
true Pareto front or the subgroup covers the whole true
Pareto front. It returns 1 when a perfect 50/50 split
is achieved. This way, our quality measure is driven
toward finding more relevant subgroups with enough
objects on the true Pareto front. It is worth noting that
this introduces a bias against subgroups which cover
most of the true Pareto front (or the whole Pareto front)
although these subgroups might be interesting.

To deal with the second issue (i.e., unwanted large
subgroups), let us introduce a locality factor.

Definition 4.5. The locality factor of a subgroup p is
loc(p) = 1−

(
n
N

)
where N is the total number of objects

of the dataset and n is the number of objects of p.

This locality factor favors smaller subgroups over larger
ones. It is especially useful for cases where objects
can be removed from a subgroup without modifying
the Pareto fronts. We can now define our aggregated
measure to take into account both the distance between
Pareto fronts and the relevance of the subgroups.

Definition 4.6. Our aggregated quality measure qdisrel
for a subgroup p is defined as:

qdisrel(p) = dist(p)× ent(p)× loc(p)

dist(p) can be any measure of distance between the
Pareto fronts. ent(p) is the entropy of the subgroup p
and loc(p) denotes its locality.



4.3 Algorithm. Our search space exploration
method is based on a top-K beam search [7]. The
evaluation part of the process is by far the most costly
here. To compute the Pareto front of a subgroup, we
employ a greedy approach where each object not in
the subgroup is compared to all the objects not in
the subgroup to check whether it is dominated by at
least one other object. If it is not dominated by any
other object, we add it to the Pareto front. Finally,
we implemented a simple pruning technique that leads
to a large reduction in the number of subgroups that
need to be evaluated. Indeed, for a subgroup to be
interesting, its removal has to create a deviation in the
shape of the Pareto front. Due to the nature of the
dominance relation, the removal of any object not on
the Pareto front cannot lead to a change in the Pareto
front. It means that only subgroups that contain at
least one object that belong to the dataset Pareto front
are of interest. As a result, during our search, we ignore
any subgroup and their specializations if it does not
contain an object that belongs to the dataset Pareto
front.

5 Experiments

Let us now consider experiments on both synthetic
and real life datasets. The source code and datasets
used in our experiments are available at https://bit.
ly/3oXcSqO. In the following experiments, the beam
width was set to 10 and the search depth to 5. These
parameters were chosen to explore the search space as
much as possible while keeping the running times in
an acceptable range. When not specified, the quality
measure is qdisrel with HD. In the figures, both red
and orange objects belong to the best subgroup.

5.1 Synthetic data

5.1.1 Fonseca-Fleming. Numerous test functions
for multi-objective algorithms have been proposed in
the literature. The true Pareto front of these functions
is usually known and they are designed such that Pareto
front approximation by algorithms is difficult. We con-
sider here the Fonseca-Fleming function [10] that im-
plies 3 descriptive variables from {x1, x2, x3} and 2 ob-
jectives. It is described by functions f1 and f2 that both
need to be minimized:

f1(p) = 1− exp

(
−

3∑
i=1

(
xi −

1√
3

))
, xi ∈ [−4, 4]

f2(p) = 1− exp

(
−

3∑
i=1

(
xi +

1√
3

))
, xi ∈ [−4, 4]

Figure 3: Best computed model on the Fonseca dataset
(PF model) compared to the known true Pareto front
of the Fonseca-Fleming function (PF true). PF dataset
represents the Pareto front of the overall dataset.

The goal of this experiment is to show how our
algorithm is able to discover exceptional models leading
to better results. Here, it means finding a subgroup
with a description in the attribute space that leads to
a better approximation of the true Pareto front. To do
this, we generated a dataset made of 5000 random data
points and ran our method.

As can be seen in Figure 3, our algorithm is able
to discover an exceptional model that provides action-
able information on how to better approximate the true
Pareto front of the Fonseca-Fleming function. Indeed,
removing this subgroup from the dataset (i.e., remov-
ing the red and orange objects) leads to a way worse
approximation of the true Pareto front. Moreover, this
exceptional model can be described in terms of descrip-
tive attributes. Here, the description of the subgroup
is x1 ∈ [−0.798, 0.801] and x2 ∈ [−0.8, 0.8] and x3 ∈
[−0.8, 0.799]. It supports its interpretation and gives
explicit indications on which values for which variables
lead to better points to improve the true Pareto front
approximation. What is interesting here is that these
interpretations can be extended to use cases where the
true Pareto front is unknown. Indeed, our method is
able to discover exceptional models that produce criti-
cal and useful information to further improve the opti-
mization model, to explore yet unexploited zones of the
objective space or to determine which solutions of the
Pareto front are better than others.

5.1.2 Crop data. Let us now consider the impact of
discretization on the quality of the discovered models.

https://bit.ly/3oXcSqO
https://bit.ly/3oXcSqO


We use here the Python Crop Simulation Environment
PCSE1 to generate a dataset of 300 plant growth recipes
made of 9 numerical attributes and 2 numerical target
labels which need to be optimized. We then generated
several datasets by using discretization techniques on
the main dataset. We used equal-width and equal-
frequency, two of the most well-known discretization
techniques and for each technique, we tried respectively
2, 3, 5, 10, 15 and 20 cut-points. It leaves us with 12
datasets on which we can experiment with our method
to study the effect of discretization on the quality of
the discovered models. We run our algorithm with the
three described distance measures and only retained the
best subgroup found for each run. The results can be
found in Table 1. The overall best model found for
each distance measure is highlighted in red. Although
the discretization technique seems to have some impact
on the quality of the best exceptional models (equal-
width best model for both HD and AHD, and equal-
frequency best model for MHD), the main issue w.r.t.
quality seems to be the number of cut-points. Indeed, in
almost all cases, the quality of the best model decreases
as the number of cut-points increases. Finding large
enough subgroups to create significant deviations in the
Pareto front indeed becomes harder as the number of
values that can be taken by each attribute grows.

5.2 Real world data. Let us now consider use cases
that are less common in the multi-objective optimiza-
tion community. Here, the data is limited to the avail-
able one (i.e., it cannot be easily extended) and the
underlying model is unknown, making it impossible to
run something else than a Pareto front computation.

5.2.1 Real Estate. This first dataset has been ex-
tracted from the UCI repository2. It concerns over 400
sales of houses in Taiwan between 2012 and 2013. It
is made of 4 descriptive variables (latitude, longitude,
house age, and number of convenience stores in the liv-
ing circle on foot) and 2 objective variables: the price
of the house and the distance to the closest massive
rapid transit station which both need to be minimized.
We run our method and retain the Top 3 exceptional
models. Figure 4 gives an illustration of the best com-
puted model on the left and the description of the Top
3 models on the right. SG Desc provides a subgroup
intent and Qual denotes its quality. Here, our method
allows us to discover a more interesting part (i.e., a sub-
set) of the Pareto front that possesses a description in
the description space of the attributes. The objects of

1https://pcse.readthedocs.io/en/stable/index.html
2https://archive.ics.uci.edu/ml/datasets.php

Rank SG Desc Qual

1

latitude ∈
[24.949, 24.965] and

nb conv stores ∈
[4.0, 6.0]

0.79

2

latitude ∈
[24.949, 24.965] and

longitude ∈
[121.529, 121.548]

0.76

3

house age ∈
[8.76, 17.52] and

longitude ∈
[121.529, 121.548]

0.75

Figure 4: Representation of the best computed model
(left) and Top-3 subgroups (right) in Real Estate data.

PF true that belong to the subgroup can be seen as
better solutions than the rest of PF true since their re-
moval leads to a large deviation in the shape of the
Pareto front (i.e., PF model in Figure 4). In other
terms, it can be used to find houses (including their
location and characteristics) that offer a more interest-
ing trade-off between price and distance to the nearest
transport station.

5.2.2 Plant defenses. Let us now consider the
trade-off between physical and chemical defense in plant
seeds. The dataset Plant, made of 163 observations,
was extracted from the Datadryad website3. Each ob-
servation is described by the family and the mass of
the plant seed. The objective variables are the fiber -
physical defense - and the tannin contents - chemical
defense - that both need to be maximized. Again, we
compute the Top 3 models. Their description is in Fig-

Rank SG Desc Qual

1
family =

’Melastomataceae’
0.26

2
family =

’Combretaceae’
0.13

3
family =

’Menispermaceae’
0.11

Figure 5: (left) Representation of the best computed
model (right) Top-3 subgroups in Plant.

ure 5 (right) and an illustration of the best computed
model is in Figure 5 (left). Once again, our method
enables the discovery of more interesting parts of the
Pareto front that possess descriptions in the attribute
description space. The best subgroup is described by
family =′ Melastomataceae′. It means that removing
plant seeds that belong to this family of plants leads to

3https://datadryad.org/stash

https://pcse.readthedocs.io/en/stable/index.html
https://archive.ics.uci.edu/ml/datasets.php
https://datadryad.org/stash


Table 1: Impact of the discretization on the quality of the best model for our 3 distance measures.

Measure
Disc. tech. Equal-Width Equal-Frequency

2 3 5 10 15 20 2 3 5 10 15 20
qdisrel with AHD 0.033 0.02 0.02 0.01 0.01 0.01 0.02 0.03 0.02 0.01 0.01 0.01
qdisrel with HD 0.14 0.08 0.05 0.03 0.02 0.02 0.1 0.06 0.05 0.03 0.02 0.02

qdisrel with MHD 0.028 0.02 0.02 0.01 0.01 0.01 0.02 0.029 0.02 0.01 0.01 0.01

a large deviation in the Pareto front. In other terms,
we identified a family of plants with a more interesting
trade-off between physical and chemical defenses than
other families.

5.3 Hyperparameter optimization for Machine
Learning. We propose to apply our algorithm when
one needs to optimize multiple metrics at the same time
(e.g., precision and recall, bias and variance, quality
and runtime, accuracy and interpretability). A metric
can be any measure that needs to be optimized (e.g., a
quality measure or the complexity of a model). Since
multiple metrics need to be optimized at the same time,
a trade-off has to be found. It has already been shown
in the literature that one metric can often not be enough
to assess the quality of a model [2, 21]. We show how
we can discover exceptional models that lead to better
trade-offs and higher quality learning models.

5.3.1 Regression. Let us first consider the optimiza-
tion of the hyperparameters of a neural network, and
more precisely of a multi-layer perceptron regressor. We
use the California Housing dataset from the scikit-
learn library4. It is made of 20640 observations, 9 vari-
ables and the goal is to predict the sale price of each
house. We retain 9 hyperparameters and discretize each
of them into a list of values to sample from. For ev-
ery run of the neural network, we sample random val-
ues from the list of each hyperparameter. To evaluate
the quality of the neural network depending on the hy-
perparameter values, we run the model 200 times and,
for each run, we compute the maximum residual error
and the explained variance of the model. Finally, we
build a dataset made of 200 observations with 9 de-
scriptive variables - the hyperparameter values of each
run - and 2 objective variables - the maximum resid-
ual error and the explained variance - which both need
to be minimized. We then use our algorithm to dis-
cover exceptional models. The best computed model
is in Figure 6. We have a subgroup that creates a
large deviation in the Pareto front. Its description is
learning rate init = 0.01 and it contains several ob-
jects of PF true that lead to better trade-offs between

4https://bit.ly/38UGJe9

Figure 6: Best model in California Housing.

explained variance and maximum residual error for the
neural network (i.e., removing those objects leaves neu-
ral networks with poorer trade-offs). This is interesting:
we now know that running our neural network with a
learning rate of 0.01 will lead to higher quality models.
It can also be used as a basis for further hyperparameter
optimization.

5.3.2 Multi-label classification. We now consider
the optimization of hyperparameters for a multi-label
classification task using a random forest classifier. We
use the popular yeast dataset from the OpenML5

repository. It is made of 2416 observations, 103 de-
scriptive variables, and 14 binary labels to classify. We
use 5 hyperparameters that are discretized into a list of
values to sample from. For each run of the classifier, we
select random values from the list of each hyperparam-
eter. We run the classifier 200 times with different sets
of hyperparameter values for each run and we assess
the quality of the model by computing the recall and
the precision of each model. Indeed, it is known that
both precision and recall are important in classification
tasks and that a trade-off between the two measures
has to be found. Indeed, to do this, the F1 measure
has been proposed. However, simplifying the problem

5https://www.openml.org/
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Figure 7: Best model in yeast.

of optimizing both measures into optimizing only one is
a well-known trope in multi-objective optimization and
it has been shown that it can lead to suboptimal results
and loss of information. In other terms, we argue that
optimizing both precision and recall at the same time is
better than trying to optimize the F1 measure only. We
finally build a dataset made of the 200 runs of the clas-
sifier with 5 descriptive variables - the hyperparameter
values - and 2 objectives - the precision and recall - that
need to be maximized. Using our algorithm to mine the
best exceptional models in the data, we get the results
in Figure 7. The best discovered subgroup, described
by n estimators = 900 and min samples leaf = 0.01
creates deviations in multiple spots of the Pareto front.
The objects of the PF true that belong to the subgroup
not only have a common description, but also offer a
good trade-off between recall and precision. It can be
used to prune the hyperparameter search space for fur-
ther optimization of the classifiers, or be used to build
high quality multi-label classifiers with an interesting
trade-off between recall and precision.

So far, we have considered two objectives only. Our
approach can however be generalized to more objectives.
For instance, let us consider the same settings as with
the previous example though adding the running time
of each classifier as a third objective. Our goal is to
look for models that maximize both the precision and
recall and at the same time minimize the running time.
Since we have now a larger objective space, we increase
the number of multi-label classifier executions to 400 to
make sure that the dataset provides a good enough cover
of the objective space. After building our new dataset
made of 400 observations, 5 descriptive variables and
3 objectives to be optimized, we run our algorithm to
return the best computed model. When dealing with
Pareto fronts which are more than two-dimensional, one

way to study their characteristics is to use scatter plots
and visualize the pair-wise relationship of objectives (see
Figure 8). As can be seen on each of the 3 scatter plots,
the removal of the subgroup leads to a large deviation
in all 3 pair-wise relationships that compose the overall
Pareto front. The corresponding subgroup is described
by min samples leaf = 0.01 and min samples split =
0.02. From Figure 8, we can infer that the objects
which compose the subgroup highly optimize the recall
but show poorer results on execution time. This
information as well as the subgroup description can
be used to investigate the reasons why optimizing the
recall leads to overall higher execution times, while the
same relationship does not exist between precision and
execution time. Next, if concessions can be made on
the degree of optimization of the execution time (i.e.,
we still want solutions on the Pareto front but other
objectives can be prioritized when a conflict occurs),
the subgroup can be exploited to further optimize the
classifiers by looking for solutions which both optimize
the recall and precision while keeping the execution time
as low as possible.

6 Conclusion.

We propose a new model class for Exceptional Model
Mining in a multi-objective optimization setting. We
look for deviations in the shape of the Pareto front
created by the absence of a subgroup of objects com-
pared to the same Pareto front computed on the whole
dataset. We designed a new generic quality measure
that combines both the distance between Pareto fronts
and the relevance of the subgroup in the data. We pro-
pose a beam search strategy for top-K EMM with an
interesting though simple pruning strategy. Thanks to
experiments on both synthetic and real life data, we
show how our method can be used for multiple purposes.
On typical multi-objective optimization scenarios, it can
be used to identify key features in the description space
leading to a better approximation of the true Pareto
front. On less common scenarios with limited data and
unknown underlying models, it can be used either to
identify a subspace of the current Pareto front where
data might be missing or to select a subset of more inter-
esting solutions of the Pareto front with an explicit and
concise description in the attribute description space.
We also introduced a use case on hyperparameter opti-
mization for machine learning. It would be interesting
to improve the proposed quality measure and its theo-
retical basis as well as to investigate the use of skyline
patterns to discover exceptional models with the best
trade-offs between multiple constraints.
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Figure 8: Scatter plots of the best computed model showing the pair-wise relationship between objectives.
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