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Simple Summary: Cancer spheroids are reproducible and relevant multicellular in vitro preclinical
models. Thus, their use is required more and more for drug development processes in oncology in
order to improve the prediction of anticancer drugs responses. Moreover, spheroid models allow
for the reduction in animal experimentation, in accordance with the rule of Reduce, Refine, Replace
(3Rs). In order to optimize and extend the use of these spheroid models, this works was focused
on the development of an original methodology to keep these cancer spheroids in the long term.
This innovative concept is based on a cold storage for up to 7 days of Triple-Negative Breast Cancer
(TNBC) spheroids cultured in the synthetic serum-free OptiPASS® culture medium. Major spheroid
characteristics could be preserved with this new conservation method, allowing their use in high
throughput screening tests.

Abstract: Cancer spheroids are very effective preclinical models to improve anticancer drug screening.
In order to optimize and extend the use of spheroid models, these works were focused on the
development of a new storage concept to maintain these models in the longer term using the Triple-
Negative Breast Cancer MDA-MB-231 spheroid models. The results highlight that the combination of
a temperature of 4 ◦C and oxygen-free conditions allowed the spheroid characteristics of OptiPASS®

serum-free culture medium to preserve the spheroid characteristics during 3-, 5- or 7-day-long
storage. Indeed, after storage they were returned to normal culture conditions, with recovered
spheroids presenting similar growth rates (recovery = 96.2%), viability (Live/Dead® profiles) and
metabolic activities (recovery = 90.4%) compared to nonstored control spheroids. Likewise, both
recovered spheroids (after storage) and nonstored controls presented the same response profiles
as two conventional drugs, i.e., epirubicin and cisplatin, and two anti-PARP1 targeted drugs—i.e.,
olaparib and veliparib. This new original storage concept seems to induce a temporary stop in
spheroid growth while maintaining their principal characteristics for further use. In this way, this
innovative and simple storage concept may instigate future biological sample preservation strategies.

Cancers 2021, 13, 1945. https://doi.org/10.3390/cancers13081945 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-0386-7171
https://orcid.org/0000-0003-4500-6505
https://orcid.org/0000-0002-2474-6910
https://doi.org/10.3390/cancers13081945
https://doi.org/10.3390/cancers13081945
https://doi.org/10.3390/cancers13081945
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13081945
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13081945?type=check_update&version=1


Cancers 2021, 13, 1945 2 of 20

Keywords: triple-negative breast cancer; preclinical spheroid models; MDA-MB-231 spheroids; new
spheroid storage concept; drug screening

1. Introduction

Cancer remains a global health care issue, with 18.1 million new diagnosed cases and
9.6 million deaths worldwide in 2018 [1]. Particularly, the Triple-Negative Breast Cancer
(TNBC) subtype is characterized by an absence of estrogen and progesterone receptor ex-
pression and the absence of epidermal growth factor receptor-2 (HER2) overexpression [2].
This very heterogeneous pathology has a poor prognosis due to a high aggressiveness
and a frequent rate of local and metastatic recurrences [3]. Recently, precision medicine
has introduced targeted therapies to improve the treatment of these tumors, such as the
Poly ADP-Ribose Polymerase (PARP) inhibitors family [4]. However, only 30% of TNBCs
present a BRCAness phenotype, generating heterogeneity in the sensitivity of PARP in-
hibitors [5]. This is why drug discovery studies need to be carried out with the objective of
TNBC treatment optimization [6], implying explorations of preclinical models. One major
limitation in the pharmaceutical research field is the significant failure rate of anticancer
drugs validation during clinical trials [7,8]. To improve the oncological drug development
process and reduce time and costs spent in inconclusive trials, it is essential to increase the
effectiveness and the prediction of the drug response in patients [9]. This is why, during
the last decade, efforts have been made to develop preclinical predictive models in order to
improve cancer development studies and anticancer treatments, especially for aggressive
tumoral subtypes [8].

In this context, three-dimensional (3D) cell cultures models appeared as a pertinent
in vitro option. More precisely, multicellular spheroids are compact round cell aggregates
generated from cancer cell lines [10,11]. Their principal asset is to reproduce important cell–
cell and cell–extracellular matrix interactions in the avascular tumorigenesis phase. Indeed,
these interactions are major elements of the cancer microenvironment, indispensable for
the maintenance of intercellular communications and mechanical forces [12,13]. Spheroid
compaction is also at the origin of an avascular tumor-like cell organization with the
generation of nutrient, oxygen, pH and metabolic waste removal gradients. Tumoral
cells thus form different metabolic layers with a hypoxic core enriched with necrotic
cells, middle layers of quiescent cells and a proliferative front at the periphery. All these
characteristics allow cell metabolic heterogeneity and a gene expression profile close to
those observed in in vivo avascular solid tumors to be recreated [14,15]. Thereby, in the
drug development process, spheroid models are filling the gap between the proof of concept
made for classic monolayer cell cultures and the preclinical final validation for animal
models [16]. Indeed, they more precisely recapitulate in vivo solid tumor characteristics
than classic cell cultures and discard some animal experimentation limitations linked with
experiment number, costs and ethical issues [17,18].

The predictability and reproducibility of the 3D culture models’ drug responses
depend on various parameters, such as the composition of the culture medium [19,20].
The majority of cell culture media are supplemented with fetal calf serum (FCS), which
presents several disadvantages in terms of reproducibility [21,22]. The use of a chemically
defined serum-free synthetic media in cell culture systems appears now to be a key element
for reproducibility of in vitro models. In our previous works, two spheroid models obtained
from two TNBC cell lines, MDA-MB-231 and SUM1315, were developed in the serum-
free OptiPASS® medium [23]. These works presented clearly optimized spheroid growth
and viability for OptiPASS® cultured models compared to others cultured in the serum-
supplemented medium. Moreover, OptiPASS® medium improved the spheroids’ drug
sensibility threshold and also allowed a prolonged culture of spheroids. Alongside this,
other studies recently highlighted an innovative approach to store colorectal multicellular
tumor spheroids under cold (4 ◦C) and anoxic conditions [24]. This methodology allowed



Cancers 2021, 13, 1945 3 of 20

spheroid integrity to be maintained for 18 days without changing the response to anticancer
treatment.

In the context of the development and optimization of predictive preclinical models
in oncology, this work aimed to evaluate the potential of using the synthetic OptiPASS®

medium in combination with anoxia and cold storage conditions, for the preservation of
TNBC MDA-MB-231 spheroids, over time.

2. Materials and Methods
2.1. Maintenance of Cell Cultures

The triple-negative breast cancer MDA-MB-231 cell line (ATCC®, HTB26™) was
stored in the Biological Resource Center of Jean Perrin Comprehensive Cancer Center
under the No. BB-0033-00075 (Clermont-Ferrand, France). After absence of mycoplasma
contamination check (Mycoplasmacheck test, Eurofins Genomics, Luxembourg), MDA-MB-
231 cells were cultured in RPMI 1640 medium (Gibco, Dublin, Ireland) supplemented with
10% decomplemented fetal calf serum (Eurobio Scientific, Paris, France) and 20 µg/mL
Gentamycin (Panpharma, Paris, France) at 37 ◦C under 5% CO2 in humid incubator.

2.2. Spheroids Formation, Culture and Storage

MDA-MB-231 spheroids were formed as previously described [23,25]. Briefly, cells
in suspension in RPMI 1640 (Gibco) or OptiPASS® (BIOPASS Society, Aubière, France)
were seeded in ultralow attachment round-bottom microplates (Corning, New-York, NY,
USA, catalogue #4520) at a concentration of 1000 cells/well. After 24 h at 37 ◦C in hu-
mid incubator, Geltrex LDEV-Free Reduced Growth Factor Basement Membrane Matrix
(Gibco, Dublin, Ireland, catalogue #A1413202) diluted in cold RPMI1640 or cold OptiPASS®

culture medium was dispensed in each well for a final concentration of 2%. Microplates
were then shacked for 20 min at 200rpm to promote the formation of a unique cell aggregate
per well. The day after, compact spheroids were observable in bright field microscopy.

For both conditions, spheroid size and integrity were measured by bright field mi-
croscopy at days D1, D3, D4, D7, D10 and D14. Spheroid viability was assessed at D3,
D4, D7 and D14 using Live/Dead® fluorescence microscopy test. Metabolism activity of
spheroids was also quantified at D3, D7 and D14 with resazurin metabolic activity test.

After 3 days of culture, microplates were stored for different times at 4 ◦C or remained
in the incubator in normal culture conditions (control). For the oxygen-free storage condi-
tion, microplates were packed in a hermetically closed plastic bag (Flo™, Marcilly, France,
catalogue #763783) with anaerobic gas generating AnaeroGen™ 2.5L (Oxoid™, Dardilly,
France, catalogue #AG0025A) before being kept at 4 ◦C for storage period of 1, 3, 5, 7, 14 or
30 days (Figure 1). The confirmation of the anaerobic atmosphere (0% O2) was checked
with monogaz O2 detector (Honeywell, Charlotte, NC, USA) (Appendix A) and Resazurin
Anaerobic Indicator (Oxoid™, Dardilly, France, catalogue #BR0055B). After each storage
time, microplates were taken out of the bags and 20 µL of RPMI1640 or OptiPASS® cul-
ture medium was added to each well, before replacing microplates in normal cell culture
conditions (37 ◦C, 5% CO2 in humid incubator) for 11 other days, giving a total culture
time of 14 days (Figure 1). For control nonstored condition, microplates were maintained
continuously for 14 days in normal culture conditions with a 20 µL RPMI1640 or OptiPASS®

culture medium addition per well at the 4th culture day.
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Figure 1. Schematic representation of MDA-MB-231 spheroids cold storage experiments. MDA-MB-231 spheroids were 
cultured in RPMI 1640 fetal calf serum-supplemented or OptiPASS® medium and maintained in classic cell culture condi-
tions (humid incubator, 37 °C, 5% CO2). (a) For nonstored control condition, spheroids were continuously maintained at 
37 °C, i.e., in classic culture conditions, for 14 days. (b) For storage experiments, after 3 days of culture, the spheroids in 
microplates were stored at 4 °C in normoxic or oxygen-free conditions for 1, 3, 5, 7, 14 or 30 days. After storage, spheroids 
in microplates were replaced in classic culture conditions for 10 supplemental days—i.e., between the 4th and the 14th 
days of culture. 

2.3. Spheroids Growth Evaluation 
Each spheroid of the microplates was automatically imaged using bright field mi-

croscopy module of the Cytation™3MV cell analyzer (Biotek®-M = 4X) coupled with Gen5 
3.08 software (Biotek®, Winooski, USA). The “Cellular analysis” tool was applied to a 
stitched picture to calculate the object size of each well (threshold = 20,000, background = 
light, min. object size = 150 µm, max. object size = 1000 µm). Spheroid size was recorded 
for each condition on the 1st, 3rd, 4th, 7th, 10th, and 14th days of culture (D1, D3, D4, D7, 
D10 and D14) allowing growth kinetic curves to be set. Growth curve slopes were calcu-
lated for each spheroid condition between the 4th and the 14th culture days (correspond-
ing to the poststorage period) [26]. 

2.4. Spheroids Viability Assessment 
The spheroid cell viability was monitored after 3, 4, 7 and 14 days of culture (D3, D4, 

D7 and D14) using Live/Dead® fluorescent microscopy kit (Invitrogen, Carlsbad, USA, 
catalogue #L3224). Spheroids were incubated for 30 min at room temperature in a working 
solution containing 1 µM calcein-AM and 2 µM ethd-D1 in D-PBS (Sigma, Saint-louis, 
USA, catalogue #D8537). They were then transferred to a µ-Slide 8 Well (Ibidi, catalogue 
#µ-Slide 8 Well) to be imaged using the fluorescent microscopy module of the Cy-
tation™3MV cell analyzer (Biotek®-M = 4X-fluorescence filters = green fluorescent protein 
and propidium iodide). 

2.5. Spheroid Metabolic Activity Assay 
Additionally, global spheroid metabolic activity was measured at days 3, 7 and 14 

(D3, D7 and D14) by transferring each spheroid to 100 µL of a sterile 60 µM resazurin 

Figure 1. Schematic representation of MDA-MB-231 spheroids cold storage experiments. MDA-MB-231 spheroids were
cultured in RPMI 1640 fetal calf serum-supplemented or OptiPASS® medium and maintained in classic cell culture conditions
(humid incubator, 37 ◦C, 5% CO2). (a) For nonstored control condition, spheroids were continuously maintained at 37 ◦C,
i.e., in classic culture conditions, for 14 days. (b) For storage experiments, after 3 days of culture, the spheroids in microplates
were stored at 4 ◦C in normoxic or oxygen-free conditions for 1, 3, 5, 7, 14 or 30 days. After storage, spheroids in microplates
were replaced in classic culture conditions for 10 supplemental days—i.e., between the 4th and the 14th days of culture.

2.3. Spheroids Growth Evaluation

Each spheroid of the microplates was automatically imaged using bright field mi-
croscopy module of the Cytation™3MV cell analyzer (Biotek®-M = 4X) coupled with Gen5
3.08 software (Biotek®, Winooski, VT, USA). The “Cellular analysis” tool was applied
to a stitched picture to calculate the object size of each well (threshold = 20,000, back-
ground = light, min. object size = 150 µm, max. object size = 1000 µm). Spheroid size
was recorded for each condition on the 1st, 3rd, 4th, 7th, 10th, and 14th days of culture
(D1, D3, D4, D7, D10 and D14) allowing growth kinetic curves to be set. Growth curve
slopes were calculated for each spheroid condition between the 4th and the 14th culture
days (corresponding to the poststorage period) [26].

2.4. Spheroids Viability Assessment

The spheroid cell viability was monitored after 3, 4, 7 and 14 days of culture (D3, D4, D7
and D14) using Live/Dead® fluorescent microscopy kit (Invitrogen, Carlsbad, CA, USA,
catalogue #L3224). Spheroids were incubated for 30 min at room temperature in a working
solution containing 1 µM calcein-AM and 2 µM ethd-D1 in D-PBS (Sigma, Saint-louis,
MI, USA, catalogue #D8537). They were then transferred to a µ-Slide 8 Well (Ibidi, cat-
alogue #µ-Slide 8 Well) to be imaged using the fluorescent microscopy module of the
Cytation™3MV cell analyzer (Biotek®-M = 4X-fluorescence filters = green fluorescent
protein and propidium iodide).

2.5. Spheroid Metabolic Activity Assay

Additionally, global spheroid metabolic activity was measured at days 3, 7 and
14 (D3, D7 and D14) by transferring each spheroid to 100 µL of a sterile 60 µM resazurin so-
lution in D-PBS (ACROS Organics™, Waltham, MA, USA, catalogue # 189900010). This test
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was based on the transformation of resazurin to resorufin by the mitochondrial respiration
chain in living cells. The resorufin concentration, which can be measurable by fluorimetry,
was directly proportional to the metabolic activity in spheroids [27]. After 17 h incubation at
37 ◦C, the fluorescence intensity of resorufin (593 nm) was measured using Cytation™3MV
fluorimetry module (gain = 70). Blank subtraction was applied to data obtained from
spheroid-free wells.

2.6. Spheroid Tumoral Proliferation Gradient Analysis

Spheroids cultured in OptiPASS® medium without storage (control spheroids) or
stored for 3, 5 or 7 days at 4 ◦C in oxygen-free conditions were harvested at days 4, 7
and 14.

For ki67 immunostaining, after a 12 h fixation in paraformaldehyde 4% (Sigma-Aldrich
catalogue #P6148), spheroids were successively incubated in 15 and 30% sucrose D-PBS
solutions to be dehydrated. Spheroids were then placed in cryostat embedding medium
to be quickly frozen in liquid nitrogen and cut into 10 µm sections with a cryostat device
(CICS, Université Clermont Auvergne, France). Obtained slides were then incubated in
saturation/permeabilization solution (PBS, 1%BSA, 0.5X Triton) for 1 h. They were then
incubated with PBS 0.1% BSA diluted primary antibodies anti-ki67 (polyclonal rabbit,
1/250, Merck, Darmstadt, Germany, catalogue #AB9260), or Mouse IgG1 isotypic control
for 1 h. After three washes in PBS, slides were incubated with PBS 0.1% BSA diluted
secondary fluorescent antibodies antirabbit (Donkey anti-Rabbit IgG coupled to Alexa
Fluor™568, 1/800, Invitrogen, Carlsbad, CA, USA, catalogue # A10042) for 1 h, followed
by a nuclear counterstaining with Hoechst33258 (Sigma, Saint-Louis, MI, USA, catalogue
#B2883; 1 µg/mL) for 5 min. Negative controls with no primary antibodies were also
performed. Slides were mounted with Prolong Diamond Antifade (Invitrogen, Carlsbad,
CA, USA, catalogue # P36970) and imaged with Cytation™3MV fluorescent microscopy
module (M = 10X-fluorescence filters = Texas Red and DAPI). Thanks to the “cellular
analysis” algorithm of Gen5 3.08 software, nuclei were detected and localized on DAPI
channel (threshold = 5000, background = dark, min. object size = 5 µm, max. object size =
50 µm). For ki67 staining, some nuclei presented intense and specific staining compared
to other ones, agreeing with an on/off activation of the transcription factor expression
depending on cell cycle. Thereby, adapted algorithm was used to select nuclei subpopula-
tion presenting activated ki67 expression (Texas Red fluorescent intensity > 3000). For the
quantification of ki67 expression in each spheroid, the following formula was applied:

Global marker expression in the spheroid
= % ki67positive nuclei per spheroid × mean f luorescent intensity o f positive nuclei

(1)

2.7. Spheroid Hypoxia Level Analysis

For spheroid global hypoxia level evaluation, ROS-ID® orange reagent (EnzoLife-
Sciences, Farmingdale, NY, USA, catalogue #ENZ-51042) was used. This probe was at-
tached to a nitro group that was specifically reduced by nitro reductase activity in hypoxic
cells, releasing an orange fluorescence. Spheroids were exposed with Hypoxia Red reagent
at a concentration of 250 µM diluted in OptiPASS® medium for 4 h in humid incubator at
37 ◦C and 5% CO2 (Figure S1). They were then transferred to a µ-Slide 8 Well (Ibidi, Gräfelf-
ing, Germany, catalogue #µ-Slide 8 Well) to be imaged using the fluorescent microscopy
module of the Cytation™3MV cell analyzer (Biotek®, Winooski, VT, USA, M = 4X, fluores-
cence filter = Texas Red). Mean fluorescence intensity of spheroids was calculated with
“cellular analysis” algorithm of Gen5 3.08 software (threshold = 9000, background = dark,
min. object size = 100 µm, max. object size = 1000 µm).

2.8. Anticancer Drugs Solubilization and Exposure

Epirubicin (Carbosynth, Compton, UK, catalogue #FE22741) and cisplatin (Carbosynth,
Compton, UK, catalogue #FC20460) were solubilized in distilled water and DMSO, respec-
tively, to prepare 10 mM stock solution. Adapted dilutions were prepared in OptiPASS®
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medium for final treatment concentrations of 0.1, 1 or 10 µM. Olaparib (Carbosynth Comp-
ton, UK, catalogue #FO33122) and veliparib (BOC sciences®, Ney York, NY, USA, catalogue
#912445-05-7) were solubilized in DMSO to prepare 50 mM stock solution. Adapted dilu-
tions were prepared in OptiPASS® medium for final treatment concentrations of 0.5, 5 or
50 µM. With the exception of epirubicin treated samples, the final DMSO concentration
remained constant at 0.1% in all treated spheroid conditions.

2.9. Spheroids Anticancer Drug Treatments

MDA-MB-231 spheroids cultured in OptiPASS® medium without the storage step or
stored for 3, 5 or 7 days at 4 ◦C in oxygen-free conditions were treated for 5 days (between
the 5th and the 10th culture days), with increased concentrations of selected anticancer
drugs. The size of the untreated control and treated spheroids was monitored daily using
Cytation™5MV (Biotek®, Winooski, VT, USA) coupled with BioSpa™ automated cell incu-
bator (Biotek®, Winooski, VT, USA) and Gen5 3.08 software (Biotek®, Winooski, VT, USA).
Growth curve slopes were calculated for each spheroid between the 5th and the 10th culture
days. At the end of the treatment, spheroid viability was assessed by the Live/Dead®

and resazurin tests as described previously. Normalized viability was determined by the
percentage of treated spheroids resorufin values on untreated control values.

2.10. Statistical Analysis

Results were presented as mean ± standard deviation. All experiments were per-
formed independently on at least three separate occasions. An unpaired 2-sided Student’s
t-test or two-way ANOVA (confidence interval = 95%, Dunnett’s multiple comparison)
was used to evaluate statistical significance. Results were considered statistically different
when p < 0.05 (*). Stronger differences were noted as follows: p < 0.01 (**), p < 0.001 (***),
p < 0.0001 (****) and p < 0.00001 (*****). Nonsignificant results were noted as “ns”.

3. Results
3.1. Normoxic and Cold Storage Action on MDA-MB-231 Spheroid Preservation in RPMI1640
and OptiPASS® Culture Media

MDA-MB-231 spheroid models cultured for three days in RPMI1640 or OptiPASS®

medium were firstly stored in normoxic conditions at 4 ◦C, for one to three days. Then, 3D
cell cultures were then exposed to standard cell culture conditions—i.e., at 37 ◦C under 5%
CO2 [23]. Recovery was analyzed for 11 days using several cell culture parameters such as
spheroid integrity, spheroid growth, cell viability/mortality and cell metabolic activity in
comparison to nonstored control spheroids cultured in RPMI 1640 medium or OptiPASS®

medium, respectively.
In RPMI 1640 culture medium, the integrity, compaction level and size of spheroids were

followed over time. For spheroids stored for one or three days, a translucent and less cohesive
aspect was detected at day 4, in comparison to nonstored control spheroids (Figure 2a). In con-
trast, after 14 days of culture, the spheroids previously stored for one and three days at 4 ◦C
presented the same aspects as nonstored controls (Figure 2a). However, at D14 spheroid size
after one day (374.3 ± 66.7 µm) and three days (478.2 ± 37.1 µm) of 4 ◦C storage remained
greatly lower compared to nonstored control cells at 890.9 ± 45.4 µm (p = 10−113 and 10−86,
2-sided t-test). Then, spheroid cell proliferation was analyzed between the 4th and the 14th
days of culture by a growth curve slope analysis. Slopes of nonstored control spheroids were
47.3 ± 10.9 and clearly superior to one- or three-day storage conditions, at 3.0 ± 7.2 (p = 10−72,
2-sided t-test) and 14.7 ± 8.6 (p = 10−37, 2-sided t-test), respectively (Figure 2b). The viability
analysis of poststorage spheroids, using the Live/Dead® fluorescent imaging kit, showed a large
part of red dead cells located in the periphery of the spheroids for both storage conditions at
day 4 (Figure 2c). Similarly, at the 14th day of culture, only a poor or absent viable green cells
population remained in spheroids. In contrast, nonstored control spheroids presented cohesive
viable green cell masses at D4 and D14 (Figure 2c). Finally, the metabolic activity of spheroids was
monitored for each storage condition at D3, D7 and D14 using the resazurin test. For nonstored
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control spheroids, the metabolic activity increased regularly over time, with 16.1 ± 4.5 × 103

UF (fluorescence intensity units) at D3 to 21.4 ± 2.8 × 103 UF at D7 and to 52.0 ± 5.5 × 103 UF
at D14 (Figure 2d). In contrast, after one and three days of cold storage, the metabolic activity
of spheroids decreased dramatically at D7 (0.3 ± 0.5 × 103 UF) and D14 (0.2 ± 0.1 × 103 UF)
(p = 10−3, 2-sided t-test) compared to 16.1 ± 4.5 × 103 UF at D3 (before storage) (Figure 2d).

In OptiPASS® culture medium, after one day of cold storage, the spheroid compaction
aspect was similar to controls at day 4 and day 14 (Figure 2e). Interestingly, for this condition,
spheroid size was close to those of nonstored controls at day 14 (816.1 ± 58.8 µm compared
to 908 ± 52.1 µm; p = 10−15, 2-sided t-test) (Figure 2e). In contrast, after three days of cold
storage in OptiPASS® medium, spheroids were less compact and significantly smaller than
nonstored spheroid controls at day 14 (483.4 ± 34.6 µm compared to 908 ± 52.1 µm; p = 10−108,
2-sided t-test) (Figure 2e). For growth curve slope parameter analysis, after one day of spheroid
storage in OptiPASS® medium, the slopes were significantly lower (30.5 ± 8.3) than controls
(43.1 ± 11.6) (p = 10−17, 2-sided t-test) (Figure 2f). For spheroids stored for three days, the
growth curve slopes were negative with −7.6 ± 3.1 and clearly lower to those of nonstored
spheroids (p = 10−198, 2-sided t-test) (Figure 2f). The spheroid viability profiles in OptiPASS®

medium stored for one day presented similar viability/mortality profiles to nonstored controls
with mainly green cells at day 4 and day 14 (Figure 2g). In contrast, for the cultures stored
for three days, spheroids presented a noncohesive and rare viable green cell population, for
both days (day 4 and day 14) (Figure 2g). Finally, in OptiPASS® medium, spheroid controls
presented an increasing metabolic activity over time, with 16.1 ± 1.6 × 103 UF at day 3,
22.4 ± 3.4 × 103 UF at day 7 and 38.9 ± 4.5 × 103 UF at day 14 (p = 10−3 and 10−6) (Figure 2h).
Similarly, spheroids stored for one day presented an increasing metabolic activity during the
culture time—16.1 ± 1.6 × 103 UF, 21.3 ± 8.1 × 103 UF and 22.5 ± 11.6 × 103 UF at D3, D7
and D14, respectively (Figure 2h). In contrast, after three days of cold and normoxic storage,
OptiPASS® cultured spheroids presented a decreased metabolic activity at 7.8 ± 1.3 × 103 UF
at D14 compared to 16.1 ± 1.6 × 103 UF, before the storage step (Figure 2h).

All these results suggest a clear loss of spheroid proliferation capacity, cell viability
and cell metabolic activity, after one- or three-day cold and normoxic storage in RPMI
1640 medium. In contrast, in OptiPASS® medium culture, these parameters seemed
to be partially preserved for only one day of cold and normoxic storage of MDA-MB-
231 spheroids.

3.2. Oxygen-Free and Cold Storage Combination Impact on MDA-MB-231 Spheroid Preservation
in RPMI1640 and OptiPASS® Culture Media

In order to achieve cold and oxygen-free conditions, spheroids in microplates were
first cultured for 3 days under normal conditions in both RPMI1640 and OptiPASS® media
and were then hermetically packed using the Anaerogen™ oxygen-consumer. Spheroids
were then stored for three days at 4 ◦C. Then, microplates were incubated in 37 ◦C and 5%
CO2 and spheroid recovery was analyzed in the same conditions as previously presented.

In RPMI 1640 medium, oxygen-free spheroids that were cold-stored for 3 days pre-
sented less cohesive structures than nonstored spheroids at D4 (Figure 3a). These spheroids
evolved to a more compact aspect than controls at D14. However, the mean size of oxygen-
free cold-stored spheroids (654.6 ± 212.2 µm) was significantly lower than nonstored
controls at D14 at 913.2 ± 73.3 µm (p = 10−10, 2-sided t-test). Viability/mortality spheroid
cell analysis by live/dead tests showed, for oxygen-free cold-stored spheroids, an absence
of viable green cells at D4 and a low proportion of viable green cells at D14 (Figure 3a).
In contrast, for nonstored spheroid controls compact green spheroids were detected at
D4 and D14 (Figure 3a). In parallel, the growth curve slope for oxygen-free cold-stored
spheroids in RPMI1640 was lower than nonstored controls at 36.6 ± 18.5 (compared to
47.3 ± 10.8, p = 10−8, two-sided t-test) (Figure 3b). Finally, metabolic activities of spheroids,
assessed with resazurin tests after the oxygen-free cold storage, were 12.4 ± 5.2 × 103 UF at
D7 and of 36.8 ± 2.0 × 103 UF at D14 (Figure 3c). These values remained lower than those
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obtained for nonstored controls equal to 21.4 ± 2.8 × 103 UF at D7 and 52.0 ± 5.5 × 103 UF
at D14 (p = 10−2 and 10−3, 2-sided t-test).
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Figure 2. MDA-MB-231 spheroid preservation analysis after 4 ◦C storage in RPMI1640 and OptiPASS® media culture.
Three-day-old spheroids were placed for 1 or 3 days at 4 ◦C before being exposed to normal culture conditions—i.e., 37 ◦C,
5% CO2 in both RPMI1640 and OptiPASS® medium cultures. Spheroid integrity aspect and size (a) in RPMI and (e) in
OptiPASS® were analyzed with bright field microscopy and object size algorithm (Cytation™3MV, Gen5, BioTek®-M =
4X, scale bar = 1000 µm). Spheroid cell proliferation was measured by the analysis of growth curve slopes between D4
and D14 (b) in RPMI and (f) in OptiPASS®, reflecting proliferation capacities and recovery of cell spheroids after storage
step. Spheroid cell viability after storage was analyzed by Live/Dead® tests (c) in RPMI and (g) in OptiPASS® with
green fluorescence for viable cells and red fluorescence for dead cells, using Cytation™3MV equipped with GFP and IP
fluorescence cubes (M = 4X, scale bar = 1000 µm). Spheroid cell metabolic activity change after storage was quantified using
the resazurin test (d) in RPMI and (h) in OptiPASS®, at D3, D7 and D14 with normalized 593 nm Fluorescence Intensity (FI)
measures. For each storage condition, significances compared to nonstored condition were indicated as ns (not significant;
p > 0.05), * p < 0.05, **** p < 0.0001, ***** p < 0.00001.
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In OptiPASS® culture medium, after an oxygen-free 3-day long cold storage step,
compact and cohesive spheroids, comparable to nonstored controls, were detected with
bright field microscopy at D4 and D14 (Figure 3d). The mean sizes of stored OptiPASS®

cultured spheroids were 473.2 ± 50.2 µm at D4 and 881.5 ± 50.5 µm at D14. These results
were in the same value range as nonstored controls sizes with sizes of 508.3 ± 101.1 µm at
D4 and 913.2 ± 73.3 µm at D14 (p = 10−7 and 10−3, 2-sided t-test). Live/Dead® tests showed
a vast majority of green/viable cells giving similar viability profiles to nonstored controls
(Figure 3d). Growth curve slopes between D4 and D14 were 41.7 ± 8.5 for oxygen-free
cold-stored spheroids and comparable to nonstored controls at 43.1 ± 11.6 (p = 0.3, 2-sided
t-test), showing similar proliferation rates between the two conditions (Figure 3e). Similarly,
the metabolic activity evolution for oxygen-free cold storage, with 24.8 ± 3.0 × 103 UF at
D7 and 35.6 ± 4.5 × 103 UF at D14, remained close to nonstored control spheroids, with
22.4 ± 3.4 × 103 UF at D4 and 38.9 ± 4.5 × 103 UF at D14 (p = 0.3 and 0.3, 2-sided t-test).

All these results showed that in OptiPASS® medium, the combination of oxygen-free
and cold storage over 3 days made it possible to preserve the properties of the MDA-MB-
231 spheroids in comparison to nonstored controls. This last condition for the storage of
MDA-MB-231 spheroids had no impact on these culture parameters, and longer storages
in OptiPASS® medium were then studied.
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Figure 3. MDA-MB-231 spheroid preservation study after three-day storage at 4 ◦C and oxygen-free conditions in RPMI1640
and OptiPASS® media culture. Three-day-old spheroids cultured in normal culture conditions, i.e., 37 ◦C, 5% CO2 in
RPMI1640 or OptiPASS® media culture, were exposed to oxygen-free conditions for 3 days at 4 ◦C. Then, the cultures were
exposed again to normal culture conditions in which spheroid recovery was analyzed at day 3, day 4 and day 14. Spheroid
integrity aspect and size (a) in RPMI and (d) in OptiPASS® were analyzed with bright field microscopy and object size
algorithm (Cytation™3MV, Gen5, BioTek®, M = 4X, scale bar = 1000 µm). Spheroid cell viability after storage was studied
by Live/Dead® tests (a) in RPMI and (d) in OptiPASS® with green fluorescence, for viable cells and red fluorescence, as
well as for dead cells, using Cytation™3MV equipped with GFP and IP fluorescence cubes (M = 4X, scale bar = 1000 µm).
Spheroid cell proliferation was measured by the growth curve slope analysis between D4 and D14 (b) in RPMI and (e) in
OptiPASS®. Spheroid metabolic activity after storage (c) in RPMI and (f) in OptiPASS® medium culture was quantified
using the resazurin tests. For each storage condition, significances compared to nonstored condition were indicated as ns
(not significant; p > 0.05), ** p < 0.01, *** p < 0.001.
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3.3. OptiPASS® Synthetic Medium Allows Longer Cold and Oxygen-Free Storage of
MDA-MB-231 Spheroids without Changing Model’s Phenotype

OptiPASS® medium cultured MDA-MB-231 spheroids were maintained for 3 days
under normal conditions and then exposed to oxygen-free conditions at 4 ◦C for 5, 7, 14 or
30 days. After each storage, microplates were exposed to 37 ◦C and 5% CO2. This is the
same as previous parameters—i.e., spheroid integrity, growth, viability/mortality profile,
metabolic activity and also ki67 proliferation marker expression—and spheroid hypoxia
levels were analyzed at different times in comparison to nonstored spheroid controls.

First, concerning spheroid topology in terms of cell mass cohesion and cellular com-
paction, no difference was detected at D4 between the spheroids stored for 5 and 7 days
and the nonstored controls with compact and ovoid spheroids (Figure 4a). In contrast,
the spheroids stored for 14 and 30 days presented less cohesive shapes than the con-
trol nonstored spheroids with less regular borders (Figure 4a). Mean sizes of spheroids
at D4 (just after return in culture conditions) were 466.3 ± 3.5 µm, 449.7 ± 29.9 µm,
367.2 ± 35.8 µm and of 465.1 ± 64.9 µm for spheroids stored for 5, 7, 14 and 30 days, re-
spectively, compared to 508 ± 101.1 µm for nonstored controls (p = 10−9, 10−18, 10−44 and
10−7, 2-sided t-test). Otherwise, at D14, the spheroids stored for 5, 7 and 14 days showed
regularly round and cohesive shapes with a mean size in the same range as nonstored
controls—831.3 ± 51.3 µm, 845.0 ± 70.8 µm and 825.5 ± 140.2 µm, respectively, compared
to 908.1 ± 52.1 µm for controls (p = 10−24, 10−13 and 10−8, 2-sided t-test). For 30-day
storage, spheroids presented a compaction loss aspect (Figure 4a) with a mean size greatly
inferior to control values at day 14 (421.0 ± 54.9, p = 10−227, 2-sided t-test).

Then, to characterize spheroids’ proliferation poststorage recovery, the growth curve
slopes were analyzed from D4 to D14. For spheroids stored for 5 and 7 days, slopes were at
41.5 ± 5.5 and 41.3 ± 9.5, respectively, similar to the nonstored control value of 43.1 ± 11.6
(p = 0.09 and 0.07, 2-sided t-test) (Figure 4b). However, significant differences were detected
between control values and slopes of spheroids stored for 14 days (31.5 ± 10.9, p = 10−12,
2-sided t-test) and of spheroids stored for 30 days (-3.7 ± 4.3, p = 10−208, 2-sided t-test)
(Figure 4b). In parallel, Live/Dead® tests carried out at D4 and D14 revealed a majority of
green fluorescent viable cells comparable to nonstored controls after 5 and 7 days of cold
storage (Figure 4c). For experiments with longer storage times (14 and 30 days), red dead
cells combined with a persistent green cell population were detected for spheroids stored
for 14 days and exclusively read dead cells for samples stored for 30 days (Figure 4c).

These viability profiles were then confirmed with the resazurin metabolic activity test
performed on D3, D7 and D14. The spheroids stored for 5 and 7 days presented metabolic
activity evolutions similar to nonstored controls (Figure 4d), with fluorescent intensities
of 23.0 ± 3.0 × 103 at D7 and 34.4 ± 3.0 × 103 at D14 for spheroids stored for 5 days
compared to 22.4 ± 3.4 × 103 and 38.9 ± 4.5 × 103 for nonstored spheroid controls (p = 0.82
and 0.13, 2-sided t-test). However, the spheroids stored for 14 days showed significantly
decreased metabolic activity, with 11.1 ± 2.4 × 103 at D7 and 17.6 ± 3.0 × 103 at D14
(p = 10−4 and 10−5, 2-sided t-test). Finally, the results obtained for the spheroids stored
for 30 days were dramatically lower than those of nonstored control and close to blank
background (0.3 ± 0.5 × 103 and 0.4 ± 0.3 × 103 for D7 and D14, respectively, p = 10−4

and 10−5, 2-sided t-test), presenting an almost total loss of spheroid viability after the
storage step.

Regarding the absence of an impact of 3-, 5- and 7-day-long cold and oxygen-free
storage on OptiPASS® cultured MDA-MB-231 spheroids in terms of proliferation, viability
and metabolic activity, phenotypic characterization was then studied for these three storage
conditions in comparison to nonstored control conditions.

Firstly, ki67 expression was analyzed by immunostaining on spheroid cuts. For
all tested conditions, specific staining was achieved showing the presence of orange
intense ki67-positive nuclei (Figure 4e). Ki67-positive nuclei were distributed in all
spheroid areas at D3 and D7, while they were rather located in spheroid borders at D14
(Figure 4e). The spheroid ki67 global expression (% ki67-positive cells x fluorescence inten-
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sity) was then analyzed (Figure 4f). For nonstored controls, ki67 expression decreased from
25.4 ± 9.4 × 102 UF at D4, to 9.2 ± 5.7 × 102 UF at D7 and to 0.2 ± 0.2 × 102 UF at D14.
This evolution was similar to those seen for spheroids stored for 3 days, with values of
22.2 ± 6.0 × 102 UF at D4 (p = 0.4, 2-sided t-test), 9.4 ± 1.1 × 102 UF at D7 (p = 0.9, 2-sided
t-test) and 6.2 ± 4.3 × 102 UF at D14 (p = 0.01, 2-sided t-test). These results were also similar
for spheroids stored for 5 and 7 days spheroids (Figure 4f). Secondly, the spheroid hypoxia
level was evaluated using a ROS-ID® fluorescence kit. For all tested conditions, fluorescent
staining was homogeneously distributed on all spheroid surfaces (Figure 4g). The spheroid
hypoxia level remained relatively stable over time for nonstored controls with a mean of
30.0 ± 3.3 × 103 UF at D3, of 37.8 ± 7.8 × 103 UF at D4 and of 36.6 ± 3.8 × 103 UF at D14
(Figure 4h). Similar values were obtained after spheroid storage with 42.1 ± 4.2 × 103

UF, 34.5 ± 5.5 × 103 UF and 37.8 ± 2.0 × 103 UF at D4 for 3-, 5- and 7-day-long storage
conditions, respectively (p = 0.20, 0.40 and 0.99, 2-sided t-test) (Figure 4h). In the same way,
at D14, the stored spheroids’ hypoxia levels were similar to those obtained for nonstored
control with 38.5 ± 5.0 × 103 UF, 35.9 ± 4.8 × 103 UF and 33.1 ± 1.5 × 103 UF for 3-,
5- and 7-day-long storage conditions, respectively (p = 0.80, 0.98 and 0.35, 2-sided t-test)
(Figure 4h).

These results suggest that OptiPASS® synthetic medium in oxygen-free and cold
conditions had the ability to preserve MDA-MB-231 spheroids for a maximum time of 7
days. For the studied parameters, under these storage conditions, spheroids would have
the same characteristics as nonstored control spheroids in terms of proliferation, viability
metabolic activity, ki67 expression rate and hypoxia level.

3.4. Anticancer Drug Sensitivity Evaluation of MDA-MB-231 Spheroids After Cold and
Oxygen-Free Storage in OptiPASS® Medium Culture

In order to evaluate the drug sensitivity of MDA-MB-231 spheroids after oxygen-free
4 ◦C storage for 3, 5 or 7 days in OptiPASS® medium, these spheroids were treated with
two conventional chemotherapeutics—i.e., epirubicin and cisplatin at 0.1, 1 and 10 µM
or two anti-PARP targeted chemotherapeutics—i.e., olaparib and veliparib at 0.5, 5 and
50 µM. Drug cytotoxicity action on spheroids was assessed by the analysis of growth curve
slopes, spheroid viability/mortality profile and cell metabolic activity in comparison with
nonstored control spheroids.

When the epirubicin concentration increased, dose-dependent decreases in growth curve
slopes was detected for nonstored spheroids with 54.8 ± 4.7 for control, 47.5 ± 3.3 for 0.1 µM,
36.9 ± 3.7 for 1 µM and 23.3 ± 3.3 for 10 µM of epirubicin, respectively (Figure 5a). The same
decreases in growth of curve slopes were observed for spheroids cold-stored for 3, 5 and 7
days with pooled data of 57.3 ± 2.2, of 47.1 ± 2.7, of 37.9 ± 2.7 and of 20.1 ± 3.6 for control,
0.1, 1 and 10 µM epirubicin concentrations, respectively (p ≥ 0.9, >0.9, 0.9 and >0.9, ANOVA)
(Figure 5a). In parallel, for the three storage conditions similar spheroid viability/mortality
profiles were observed with a majority of viable green cells after 0.1 and 1 µM epirubicin
treatments and a large proportion of red dead cells after 10 µM epirubicin treatment (Figure 5b).
The same profiles were observed for nonstored controls. For the metabolic activity parameter, a
dose-dependent decrease was also detected in presence of increasing epirubicin concentration.
Indeed, the nonstored epirubicin treated spheroids presented metabolic activities of 95.8 ± 5.4%
with 0.1 µm, of 73.9 ± 5.5% with 1 µM and of 10.4 ± 3.6% with 10 µM of this drug (Figure 5c).
Pooled data of spheroids stored for 3, 5 or 7 days also presented the same metabolic activity
evolutions as nonstored spheroids, with 96.6 ± 10.5%, 75.0 ± 9.0% and 10.2 ± 5.5% for
0.1, 1 and 10 µM epirubicin, respectively (p ≥ 0.9, ANOVA). Similarly, the epirubicin IC50
values were 2.19 µM for nonstored spheroid controls and 2.29, 2.20 and 2.29 µM for 3-, 5- and
7-day-long storage conditions, respectively.
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Figure 4. MDA-MB-231 spheroid preservation analysis after several days of storage in oxygen-free and 4 ◦C storage
in OptiPASS® medium culture. Three-day-old spheroids cultured in normal culture conditions, i.e., 37 ◦C, 5% CO2 in
OptiPASS® medium culture were exposed to oxygen-free conditions at 4 ◦C for 5, 7, 14 or 30 days. After each storage
time, spheroid recovery was analyzed in comparison to nonstored control spheroids. Samples’ integrity aspects and sizes
(a) were studied with bright field microscopy and object size algorithm (Cytation™3MV, Gen5, BioTek®, M = 4X, scale
bar = 1000 µm). Growth curve slopes were calculated using spheroids’ size values between the 4th and the 14th days of
culture, reflecting recovery of proliferation capacities after storage step (b). Spheroid viability after storage was assessed
by Live/Dead® tests showing viable cells (green fluorescence) and dead cells (red fluorescence) using Cytation™3MV
equipped with GFP and IP fluorescence cubes (M = 4X, scale bar = 1000 µm) (c). Complementary to this, spheroid metabolic
activity was quantified using resazurin tests (d). Otherwise, spheroid tumoral proliferation gradient analysis was carried
out by ki67 immunostaining at D4, D7 and D14 and imaged with Texas Red filter (M = 10X, scale bar = 200 µm) on
Cytation™3MV instrument (BioTek®). Ki67-positive nuclei (in orange) were identified among other nuclei (in blue) with
adapted algorithm on Gen5 software (BioTek®, pictures showed for nonstored controls and spheroids stored for 7 days)
(e). Global ki67-expression was quantified and compared between nonstored controls and 3-, 5- and 7-day-long cold and
oxygen-free storage conditions in OptiPASS® medium (f). Finally, spheroid hypoxia level was studied using ROS-ID® kit
staining at D3, D4 and D14 (g,h). Spheroids were imaged with Cytation™3MV equipped with Texas Red fluorescence
cube (M = 4X, scale bar = 500 µm) (g). Hypoxia level was quantified by acquired fluorescent signal intensity with Gen5
software (BioTek®) (h). For each storage condition, significances compared to nonstored condition were indicated as ns (not
significant; p > 0.05), ** p < 0.01, **** p < 0.0001, ***** p < 0.00001.
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Figure 5. Anticancer drug sensitivity evaluation on recovered MDA-MB-231 spheroids after 4 ◦C and oxygen-free storage
in OptiPASS® medium. Three-day-old spheroids cultured in normal culture conditions, i.e., 37 ◦C, 5% CO2 in OptiPASS®

medium culture, were stored at 4 ◦C in oxygen-free conditions for 3, 5 or 7 days. After returning to normal culture
conditions for 2 days, spheroids were treated with epirubicin (0.1, 1 or 10 µM), cisplatin (0.1, 1 or 10 µM), olaparib (0.5, 5 or
50 µM) or veliparib (0.5, 5 or 50 µM) up to D10. For each condition, growth curve slopes during treatment were calculated
for epirubicin (a), cisplatin (d), olaparib (g) and veliparib (j). Live/Dead® test profiles were imaged with plate reader
Cytation™3 MV (GFP and IP filters-M = 4X) for epirubicin (b), cisplatin (e), olaparib (h) and veliparib (k). Metabolic activity
rates were evaluated with resazurin test (Cytation™3MV-fluorimetry 593nm) for epirubicin (c), cisplatin (f), olaparib (i) and
veliparib (l). ns = p > 0.05.
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After 0.1, 1 and 10 µM cisplatin treatments of nonstored spheroids, the curve slopes
remained unchanged at 56.2 ± 3.6, 56.4 ± 4.6, and 56.3 ± 1.7, respectively, similar to the
0.1% DMSO control spheroids at 54.6 ± 4.0 (p = 0.68, 0.74 and 0.56, ANOVA (Figure 5d)).
Comparable curve slopes were also obtained for spheroids stored for 3, 5 and 7 days, with
pooled data of 56.6 ± 5.1, 58.8 ± 5.6, 57.7 ±6.0 and 56.0 ± 3.5 for 0.1% DMSO control
and 0.1, 1 and 10 µM cisplatin, respectively (p ≥ 0.9, ANOVA) (Figure 5d). Likewise,
for nonstored spheroids and all stored spheroid conditions, the same Live/Dead® test
profiles with compact and viable cell masses were detected (Figure 5e). For metabolic
activity analysis, no difference was detected between cisplatin treated nonstored spheroid
controls and cisplatin treated spheroids stored for 3, 5 and 7 days. Pooled data were
100.8 ± 12.6%, 100.0 ± 11.3% and 98.2 ± 14.0% for 0.1, 1 and 10 µM cisplatin, respectively
(p ≥ 0.9, ANOVA) (Figure 5f).

In presence of increasing olaparib concentrations, the growth curve slopes of MDA-
MB-231 nonstored spheroids were 57.9 ± 3.7 for 0.5 µM and of 53.5 ± 5.0 for 5 µM, similar to
0.1% DMSO treated nonstored control spheroids at 54.6 ± 4.0 (p = 0.36 and 0.93, ANOVA). In
contrast, with 50 µM anti-PARP1 growth curve slopes decreased significantly to 39.4 ± 3.7
(p = 10−5, ANOVA) compared to DMSO control (Figure 5g). The same results were
observed with spheroids stored for 3, 5 and 7 days with pooled data of 56.6 ± 5.1, 57.7 ± 4.5,
53.1 ± 7.0 and 39.0 ± 4.4 after treatment with 0.1% DMSO control and 0.5, 5 and 50 µM
olaparib, respectively (p ≥ 0.9, ANOVA) (Figure 5g). Live/Dead® fluorescent analysis
presented the same green compact cell masses in stored and nonstored as well as treated
or nontreated conditions (Figure 5h). After olaparib treatment of nonstored spheroids,
metabolic activity rates were similar for 0.5 and 5 µM, at 96.0 ± 8.4% and 94.4 ± 12.8%
(p = 0.91, ANOVA). Otherwise, for 50 µM olaparib metabolic activity decreased significantly
to 72.3 ± 9.7% (p = 10−3, ANOVA) (Figure 5i). Comparable results were obtained for
spheroids stored for 3, 5 and 7 days with pooled data of 99.5 ± 11.6%, 95.0 ± 12.3% and
70.3 ± 9.8% after 0.5, 5 and 50 µM anti-PARP1 treatments, respectively (p ≥ 0.9, ANOVA)
(Figure 5i). These data allowed us to estimate the Olaparib IC50 doses, which were 127.9,
111.3, 123.8 and 117.9 µM for nonstored controls and spheroids stored for 3, 5 and 7 days,
respectively.

Finally, after veliparib treatment, nonstored spheroid growth curve slopes were
54.6 ± 4.0 for 0.1% DMSO control and similar to 52.9 ± 2.6 with 0.5 µM (p = 0.46, ANOVA)
and to 51.4 ± 3.5 with 5 µM (p = 0.21, ANOVA). For 50 µm of this anti-PARP1, growth
curve slopes decreased significantly to 39.4 ± 3.1 (p = 10−5, ANOVA) (Figure 5j). Then,
Live/Dead® tests of veliparib treated spheroids presented viable green cell masses for all
concentrations and all storage conditions (Figure 5k). The nonstored spheroid metabolic
activity rates were 101.7 ± 8.8% for 0.5 µM, of 99.0 ± 10.4% for 5 µM and of 80.7 ± 8.2%
for 50 µM. They were comparable to the values obtained for 3-, 5- and 7-day-long storage
conditions with pooled data of 101.1 ± 12.0%, 97.8 ± 14.8% and 78.9 ± 11.0% after 0.5,
5 and 50 µM veliparib treatments, respectively (p = >0.9, ANOVA) (Figure 5l). Close values
of estimated veliparib IC50 doses were obtained with 212.0, 197.6, 173.6 and 195.8 µM for
nonstored controls and spheroids stored for 3, 5 and 7 days, respectively.

These results indicated different MDA-MB-231 spheroid drug responses according
to the selected anticancer agent. Indeed, a strong cytotoxic effect was detected after
epirubicin treatment, while no effect was detected after cisplatin treatment. For both anti-
PARP1 targeted therapy drugs, only the highest-tested concentration had an impact on
spheroid growth and metabolism activity. Otherwise, and very interestingly, spheroid drug
responses were similar between nonstored spheroids and 3-, 5- or 7-day-long oxygen-free
cold-stored spheroids cultured in OptiPASS®. This suggests that selected spheroids storage
conditions in OptiPASS® medium do not impact MDA-MB-231 spheroids’ anticancer
drug sensitivity.
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4. Discussion

Spheroid in vitro models remain particularly relevant for preclinical evaluation of
anticancer treatments, combining production reproducibility and predictivity of response
at the same time [28]. Their use is more and more solicited in the drug development
process, especially for aggressive tumoral types such as TNBCs [29]. They allow rapid
investigation of drug response in terms of heterogeneity of metabolic cell layers and drug
penetration inside cell masses [14]. In addition, these models are of great interest as they
allow the use of animals to be reduced, refined and replaced (rule of 3Rs) during the long,
expensive and exhausting drug development process [17,30]. Moreover, recent advances in
3D culture formation have enabled scientists to replicate models of avascular tumor in high
number with acceptable reproducibility applicable for scalable and large range preclinical
trials. Another key factor for in vitro modeling using 3D models is the culture medium [19].
In this way, our previous works focused on the development of two TNBC spheroid
models using MDA-MB-231 and SUM1315 cell lines in the new serum-free culture medium
entitled OptiPASS® [23]. Our results highlighted a clear repeatability and reproducibility
of spheroid formation in these experimental conditions. Furthermore, cell proliferation,
viability, and drug sensibility, for both MDA-MB-231 and SUM1315 models, were clearly
optimized in OptiPASS® medium. These results also highlight the key role of the culture
medium in the optimization of the culture model’s predictive response [23]. This approach
is relevant for improving drug sensibility threshold in spheroids, thereby making drug
screening more efficient.

To optimize the use of a high number of 3D culture models in high throughput
screening assays, a concept of spheroid storage should be considered. In this field, cry-
opreservation methods represented the gold standard to maintain the viability/integrity
of biological samples for several years or decades. However, in the case of 3D culture
models, these techniques are time consuming, difficult to apply and often require specific
equipment. Moreover, the compulsory use of cytotoxic cryoprotectants causes a partial
cell viability recovery after thawing [31,32]. Thereby, in the last few years, other alternative
methodologies such as hypothermia, hypoxia and synthetic serum-free medium conditions,
leading to biological properties preservation of various cell types, have been developed.
Indeed, hypothermic storage, i.e., cold temperature close to 4◦C, was successfully used
to preserve pluripotent stem cell-derived cardiomyocytes, bone marrow-derived mes-
enchymal stem cells or hepatocytes. In fact, hypothermia allows the majority of biological
processes to be stopped and thus force cells to enter dormant states. This phenomenon
is crucial to limit cell damages and arrest their evolution during the storage time [33–35].
Hypoxia was also described to prevent oxidative stress and the formation of ROS in the
culture medium at 4 ◦C to preserve red blood cells [36]. Likewise, synthetic serum-free
media have been shown to play a role in preservation of multipotent mesenchymal stromal
cells at 4◦C [37]. More recent works carried out on 3D cell culture models also showed
that the combination of cold (4 ◦C) and anoxic storage conditions, but in presence of
serum-supplemented culture medium, allowed the preservation of colorectal multicellular
tumor spheroids for 18 days [24]. These works revealed the importance of the decrease
in oxygen pressure to reversibly arrest spheroid growth while maintaining their principal
characteristics [38].

In this context, with the objective of developing a new storage concept of 3D cell culture
models, our works were focused on the development of a spheroid storage methodology
using the TNBC MDA-MB-231 cell line as a model in the new synthetic OptiPASS® medium,
in comparison with RPMI FBS-supplemented medium preconized for this cell line.

For this, several culture conditions were studied. Indeed, the spheroids were cultured
in both tested medium cultures in microplates under conventional conditions at 37 ◦C in
each culture medium for 3 days. Then, they were stored at 4 ◦C with or without anoxia for
1, 3, 5, 7, 14 or 30 days. After each conservation period, spheroids were placed back under
5% CO2 conditions at 37 ◦C. Spheroid recovery was evaluated with several parameters
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such as (i) spheroid growth via spheroid growth curve slopes between day 4 and day 14,
(ii) cell viability via live/dead test and (iii) metabolic activity via resazurin test.

Firstly, the 3-day storage at 4 ◦C in normoxic conditions in both RPMI1640 and
OptiPASS® culture medium led to an incomplete preservation of spheroid growth curve
slopes (decreases of 93.7 and 101.5%) and metabolic activity (restauration values of 1.9 and
20.1%), respectively. Indeed, the cold-only storage condition is far from sufficient to obtain
usable spheroids for further experiments.

Secondly, in order to optimize the spheroid storage step in both media, spheroids
were placed in an oxygen-free environment at 4 ◦C for 3 days, according to previous works
of Gomes et al. [24]. The results showed that this condition led to an improvement of
spheroid integrity in RPMI medium for 14 days. However, the cell proliferation and cell
metabolic activity were only partially restored (recoveries of 77.4 and 70.8%, respectively).
In contrast, 3 days of cold (4 ◦C) and oxygen-free storage in OptiPASS® medium preserved
the properties of the MDA-MB-231 spheroids. Indeed, in this condition, between day 4 and
day 14, no impacts on spheroid integrity in growth curve slopes (recovery of 96.8%) and
cell metabolic activity (preservation of 91.5%) were detected. All these results show that
the properties of the MDA-MB-231 spheroids can be preserved after their storage for 3 days
in OptiPASS® medium at 4 ◦ C and under oxygen-free conditions for further recovery.

Then, in order to optimize the conservation in OptiPASS® medium at 4 ◦C and
in oxygen-free conditions, longer storage times of 5, 7, 14 and 30 days were analyzed
in this medium. Interestingly, after 5- and 7-day-long cold and oxygen-free storage in
OptiPASS®, the spheroid growth curve slopes (recoveries of 96.2 and 95.6%, respectively)
and the metabolic activity (recoveries of 91.3 and 88.4%, respectively) were preserved
compared to nonstored controls, confirming an absence of impact on this spheroid growth
parameter. In contrast, the longer storage times, i.e., 14 and 30 days, did not allow spheroid
growth curve slopes (recoveries of 73.1 and −0.1%, respectively) and metabolic activity
(decreases of 45.2 and 99.9%, respectively) to be maintained compared to nonstored controls.
Therefore, in MDA-MB-231 spheroid models, cell proliferation, cell viability and cell
metabolic activity parameters may be preserved after storage times of 3, 5 or 7 days in
OptiPASS® medium at 4 ◦C and in oxygen-free conditions. This conservation methodology
was then selected for the following experiments.

MDA-MB-231 spheroid recovery performances were then assessed with ki67 expres-
sion rate and spheroid global hypoxia level analyses, reflecting the cell proliferation capacity
and global hypoxia status [30,31]. After 3, 5, and 7 days of storage, the ki67 expression rate
recoveries on spheroids at day 4 were 87.2, 90.9 and 122.5%, respectively, in comparison to
nonstored controls. Similarly, spheroid hypoxia level was not disturbed by the storage step
with hypoxia rate recovery at day 14 of 111.4, 91.2 and 99.8%, respectively. These results
suggest that-tested storage conditions had no influence on these parameters and thus
on tumoral proliferation gradients and hypoxia levels of MDA-MB-231 spheroid models.
Indeed, the maintenance of these parameters was significant as they may influence the
spheroid response in drug screening.

Thereafter, to ensure that the storage step did not affect spheroids sensibility threshold
to anticancer drugs, the spheroid drug response was analyzed. For this, MDA-MB-231
spheroids, after 3, 5 and 7 days of storage in OptiPASS® medium at 4 ◦C and in oxygen-free
conditions, were treated with increasing concentrations of two classic chemotherapies,
i.e., epirubicin or cisplatin, and two PARP1 inhibitors—i.e., olaparib or veliparib. In pres-
ence of various drugs, whatever the storage conditions, recovered spheroids presented
similar cell proliferation decreases (57.5 and 64.1% with 10 µM epirubicin, 0.2 and 1.1%
with 10 µM cisplatin, 32.0 and 32.6% with 50 µM olaparib and 23.7 and 27.8% with 50 µM
veliparib) and cell metabolic activity decreases (96.2 and 89.4% with 10 µM epirubicin, 2.6%
and 0.3% with 10 µM cisplatin, 29.7 and 27.7% with 50 µM olaparib and 20.6 and 22.4%
with 50 µM veliparib) compared to nonstored controls. All these results indicate that this
new methodology combining a spheroid storage at 4 ◦C and oxygen-free atmosphere in
OptiPASS® medium does not influence spheroid responses to various drugs in terms of
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growth, viability, and metabolic activity. In terms of the unchanged model’s behavior and
drug sensitivity profiles, stored spheroids can be used in drug screening tests the same
way as nonstored spheroids.

In our experimental conditions, the comparison of both media culture performances
highlighted that our innovative spheroid storage concept is principally permitted thanks
to the new OptiPASS® serum-free medium, in comparison to serum-supplemented media.
This culture medium with an original confidential formulation (developed by BIOPASS
company) probably plays a major role in the spheroid recovery process. Indeed, serum-
free media enriched in antioxidants substrates have already been described as improving
the preservation of stromal stem cell monolayer cultures at 4 ◦C [37]. Otherwise, other
parameters specific to cell type models such as energy metabolism may also play a role
to conserve biological characteristics. Indeed, energy metabolism reprogramming is a
significant hallmark of cancer cells [39]. For basal-like cancer cell line models, such as MDA-
MB-231, mitochondrial defects are described compared to other breast cancer subtypes [40].
This glycolytic switch t the origin of the differences in metabolism between tumoral and
nontumoral cell lines. However, cold and oxygen-free conditions have been already
used successfully for the conservation of different cell types such as cardiomyocytes and
mesenchymal stem cells presenting upregulated mitochondrial respiration [33,34,37].

Furthermore, this new methodology of storage spheroids was relatively simple to ap-
ply and did not require expensive specific equipment. Especially, there is no need to transfer
spheroid models to different supports or to change the cell culture medium. This point
may be very important, especially for high added-value models, allowing the reduction in
spheroid manipulations and thus limiting spheroid disturbances or losses. Moreover, the
oxygen-free atmosphere generating device allows the induction of anoxic conditions very
quickly and reproducibly. Indeed, once the system is closed, oxygen pressure decreases to
0% after less than 20 min (Appendix A). This concept could be easily applied to spheroids
from others cancer cell lines. Moreover, another great interest of this methodology is that
during optimized storage conditions, spheroid size did not evolve during storage time
in OptiPASS® medium. Indeed, the spheroid size ratio measured between the day when
spheroids were placed at 4 ◦C and the day after their return in culture incubator was close
to 1 (1.02 ± 0.09, 0.94 ± 0.08 and 1.05 ± 0.15 for 3, 5 and 7 days of storage, respectively),
while it was of 1.22 ± 0.18 for nonstored controls (p < 0.0001). Thereby, this methodology
allowed the cessation of spheroid growth while maintaining their ability to restart after
their return to normal cell culture conditions. It should be considered as a break in spheroid
culture time, allowing the MDA-MB-231 model to be preserved for up to 7 days. This
mechanism can be related to the tumoral cellular quiescence phenomenon. Indeed, the
stress caused by cold and oxygen-free conditions may have induced spheroid cell entry
in dormancy, which is at the origin of a reversible arrest of spheroid growth. Moreover,
cellular quiescence generally occurs in response to stress or to a hostile environment and
drives cancer cells to enter in a dormant state, corresponding to a reversible cell cycle arrest
in order to survive and being reactivated in favorable conditions [41]. This mechanism
is known in cancer biology to initiate metastases and generate resistance mechanism to
anticancer therapies [42,43]. This approach could turn out to be very relevant for modelling
cancer dormancy. Indeed, it can represent a way to artificially recreate avascular tumor-
like dormant cell masses useful for testing dormancy-targeting drugs in development.
For example, several epigenetic-targeting drugs, including inhibitors of histone lysine
demethylase, have been developed to eradicate tumoral dormant cells [44]. This storage
concept may be the starting point for the development of future cancer dormancy study
models.

Otherwise, in our previous studies, the serum-free OptiPASS® medium had already
demonstrated the improvement in growth of TNBC spheroids while maintaining their
drug sensitivity in normal culture conditions [23]. Moreover, these specific works highlight
the capacity of this medium to (i) preserve and (ii) relevantly recover spheroid models
similarly to nonstored spheroids. These properties represent an innovative added value
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considering the use of this medium for preclinical models. Thus, this alternative concept to
cryoconservation could be adapted to other tumoral or nontumoral multicellular models
and also various clinical samples.

Therefore, this concept opens the way (i) to the development of new tumor dormancy
models, (ii) to the preservation of precious biological materials in the laboratory, and also
(iii) to easy handling during interlaboratory transport for several days. These works are
currently underway.
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Author Contributions: Conceptualization, A.G., C.D. and M.B.; methodology, A.G., and C.D.;
validation, A.G., C.D., M.B., P.D., C.A., M.D., E.M., J.G., B.V. and F.P.-L.; formal analysis, A.G.,
C.D. and M.B.; investigation, A.G., C.D., and M.D.; data curation, A.G., C.D. and M.B.; writing—
original draft preparation, A.G. and M.B.; writing—review and editing C.D., P.D. and E.M.; funding
acquisition, M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Clermont Auvergne Métropole.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are not publicly available and are
available on request from the corresponding author.

Acknowledgments: Our thanks to the BIOPASS society for kindly providing us with the OptiPASS®

synthetic serum-free cell culture medium.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Cancers 2021, 13, x 19 of 21 
 

 

Appendix A 

 
Figure A1. Validation of the oxygen-free atmosphere generating system. 

In order to validate oxygen-free atmosphere generating system for spheroid storage, 
a microplate containing culture medium was packed in hermetically closed plastic bag 
(Flo™, Marcilly, France, catalogue #763783) with anaerobic gas generating AnaeroGen™ 
2.5L (Oxoid™, Dardilly, France, catalogue #AG0025A) at 4 °C. Oxygen pressure was 
measured with a monogaz O2 detector (Honeywell, Charlotte, USA) every minute for 20 
min. Once the system was closed, the oxygen pressure rapidly decreased in the system, 
falling from 20.9 ± 0.0% at T0 (0 min) to 0.7 ± 0.4% after 10 min and to 0.1% ± 0.0% after 20 
min. These values validate this system for artificially creating oxygen-free conditions for 
the storage of MDA-MB-231 spheroids. 

References 
1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates 

of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424, 
doi:10.3322/caac.21492. 

2. Schmadeka, R.; Harmon, B.E.; Singh, M. Triple-Negative Breast Carcinoma: Current and Emerging Concepts. Am. J. Clin. Pathol. 
2014, 141, 462–477, doi:10.1309/AJCPQN8GZ8SILKGN. 

3. Palma, G.; Frasci, G.; Chirico, A.; Esposito, E.; Siani, C.; Saturnino, C.; Arra, C.; Ciliberto, G.; Giordano, A.; D’Aiuto, M. Triple 
Negative Breast Cancer: Looking for the Missing Link between Biology and Treatments. Oncotarget 2015, 6, 26560–26574, 
doi:10.18632/oncotarget.5306. 

4. Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. 
Specific Killing of BRCA2-Deficient Tumours with Inhibitors of Poly(ADP-Ribose) Polymerase. Nature 2005, 434, 913–917, 
doi:10.1038/nature03443. 

5. Lin, P.-H.; Chen, M.; Tsai, L.-W.; Lo, C.; Yen, T.-C.; Huang, T.Y.; Chen, C.-K.; Fan, S.-C.; Kuo, S.-H.; Huang, C.-S. Using Next-
Generation Sequencing to Redefine BRCAness in Triple-Negative Breast Cancer. Cancer Sci. 2020, 111, 1375–1384, 
doi:10.1111/cas.14313. 

6. Gadi, V.K.; Davidson, N.E. Practical Approach to Triple-Negative Breast Cancer. J. Oncol. Pract. 2017, 13, 293–300, 
doi:10.1200/JOP.2017.022632. 

7. Arrowsmith, J.; Miller, P. Trial Watch: Phase II and Phase III Attrition Rates 2011–2012. Nat. Rev. Drug Discov. 2013, 12, 569, 
doi:10.1038/nrd4090. 

8. Lee, I.-C. Cancer-on-a-Chip for Drug Screening. Curr. Pharm. Des. 2018, 24, 5407–5418, doi:10.2174/1381612825666190206235233. 
9. Ibarrola-Villava, M.; Cervantes, A.; Bardelli, A. Preclinical Models for Precision Oncology. Biochim. Biophys. Acta Rev. Cancer 

2018, 1870, 239–246, doi:10.1016/j.bbcan.2018.06.004. 
10. Weiswald, L.-B.; Bellet, D.; Dangles-Marie, V. Spherical Cancer Models in Tumor Biology. Neoplasia 2015, 17, 1–15, 

doi:10.1016/j.neo.2014.12.004. 
11. Ravi, M.; Ramesh, A.; Pattabhi, A. Contributions of 3D Cell Cultures for Cancer Research. J. Cell. Physiol. 2017, 232, 2679–2697, 

doi:10.1002/jcp.25664. 

Figure A1. Validation of the oxygen-free atmosphere generating system.
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2.5L (Oxoid™, Dardilly, France, catalogue #AG0025A) at 4 ◦C. Oxygen pressure was
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falling from 20.9 ± 0.0% at T0 (0 min) to 0.7 ± 0.4% after 10 min and to 0.1% ± 0.0% after
20 min. These values validate this system for artificially creating oxygen-free conditions
for the storage of MDA-MB-231 spheroids.
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