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Singular solutions of the BBM equation :

analytical and numerical study

Sergey Gavrilyuk∗, Keh-Ming Shyue †

May 7, 2021

Abstract

We show that the Benjamin-Bona-Mahony (BBM) equation admits
stable travelling wave solutions representing a sharp transition front link-
ing a constant state with a periodic wave train. The constant state is de-
termined by the parameters of the periodic wave train : the wave length,
amplitude and phase velocity, and satisfies both the Rankine-Hugoniot
conditions for the corresponding Whitham modulation system and gen-
eralized Rankine-Hugoniot conditions for the exact BBM equation. Such
stable shock-like travelling structures exist if the phase velocity of the pe-
riodic wave train is not less than the solution average value. To validate
the accuracy of the numerical method, we derive the (singular) solitary
limit of the Whitham system for the BBM equation and compare the cor-
responding numerical and analytical solutions. We find good agreement
between analytical results and numerical solutions.

Keyword : nonlinear dispersive equations, shock–like transition fronts,
Whitham’s modulation equations, solitary limit

Mathematics Subject Classification numbers: 35L40, 35Q35, 35Q74.

1 Introduction

The Benjamin-Bona-Mahony (BBM) equation was proposed as a unidirectional
model of weakly non-linear waves in shallow water [5]:

vt + vx + vvx − vtxx = 0,

involving one dependent variable v(t, x) and two independent variables t (time)
and x (space coordinate). The last term vtxx is responsible for the nonlocal
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nature of the BBM equation. After the change of variables v = u − 1 one gets
the equation :

ut + uux − utxx = 0. (1)

P. Olver [30] justified that (1) admits only three independent conservation
laws:

(u− uxx)t +

(
u2

2

)
x

= 0, (2)(
u2

2
+
u2x
2

)
t

+

(
u3

3
− uutx

)
x

= 0, (3)(
u3

3

)
t

−
(
u2t − u2xt + u2uxt −

u4

4

)
x

= 0, (4)

and proposed a Hamiltonian formulation of the BBM equation [31]. In partic-
ular, (1) can be written as the Euler-Lagrange equation for the Lagrangian

L = −ϕtϕx
2

+
ϕtϕxxx

2
− ϕ3

x

6
, u = ϕx. (5)

A number of important qualitative results have been obtained for the BBM
equation : in [39] the modulation equations were derived; the well (ill)-posedness
of the Cauchy problem for the BBM equation was studied in [2]; the modula-
tional instability of short periodic waves has been proven in [29].

The Riemann problem for the BBM equation is the Cauchy problem

u(0, x) =

{
u−, x < 0,
u+, x > 0.

(6)

with constant values of u±. Such a problem is often called Gurevich-Pitaevskii
problem, who were the first to give its asymptotic solution for the Korteweg-
de Vries (KdV) equation [20]. This approach has been further developed and
applied to both integrable and non-integrable dispersive equations [21, 17, 10,
11, 12, 23, 3, 4]. The Riemann problem for (1) was recently investigated in [8].
The authors analytically and numerically studied the influence of the initial step
data and of a smoothing parameter (the stepwise initial data was replaced by
the hyperbolic tangent having this parameter as a characteristic width of the
transition zone) on the solution structure. The fact that the solution can depend
on the smoothing parameter has been also discussed in [35] for the Serre-Green-
Naghdi (SGN) equations which is a nonlinear bi-directional model of shallow
water flows [36, 18, 19, 34].

The BBM equation admits exact weak stationary solutions which are at
the same time weak solutions to the Hopf equation ut +

(
u2/2

)
x

= 0 [12]. In
particular, for the antisymmetric initial data u+ = −u− < 0 the solution is
a shock satisfying Lax entropy condition, while u+ = −u− > 0 corresponds
to an unstable shock which transforms to a rarefaction wave (which is also a
solution to both the BBM and Hopf equations). Numerically, the Lax shock is
accompanied by narrow zones of very short waves. The shock solution is not
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structurally stable under non-symmetric perturbations. For u+ = −u− > 0,
a transient discontinuous structure appears decaying algebraically in time and
finally degenerating into the rarefaction wave of the Hopf equation [13, 8].

A natural question appears whether non–transient discontinuous structures
can appear as stable solutions of the BBM equation. Such shock-like structures
were recently discovered for the SGN equations and linear Boussinesq equa-
tions [14]. They appeared as solutions of the generalized Riemann problem
where constant initial states were replaced by periodic solutions of the SGN
equations. In particular, the authors of [14] found such shock-like transition
fronts linking a constant state with a periodic wave train. The velocity of such
a shock coincides with the velocity of the periodic wave train. Across the shock
considered as a dispersionless limit, generalized Rankine-Hugoniot conditions
were satisfied. These conditions are the classical conservation laws for mass
and momentum augmented by an additional condition which expresses the con-
tinuity of one-sided first order derivatives of unknowns. Physically, this extra
condition is nothing but the absence of oscillations at the shock front (the one-
sided gradients of unknowns are vanishing). A multi-dimensional version of the
generalized Rankine-Hugoniot conditions was also derived for a class of Euler-
Lagrange equations describing, in particular, the second gradient fluid and fluids
containing gas bubbles [15].

The question about the existence of shock-like transition fronts for the BBM
equation is thus reasonable because the BBM and SGN equations share a com-
mon “hyperbolic” feature: the phase and group velocity obtained for the corre-
sponding linearized equations are finite for any wave number.

One has to mention the result of [38] where the fifth order KdV equation
was studied. The heteroclinic connection of the periodic orbits for the exact
dispersive equation corresponded to the shocks for the Whitham system. Such
a scenario cannot obviously appear for the BBM equation because the peri-
odic solutions of the BBM equation are described by a low order Hamiltonian
differential equation which does not admit periodic-to periodic or periodic-to
constant connections.

The aim of this paper is to give precise conditions for the existence of stable
shock-like structures for the BBM equation. To validate the accuracy of nu-
merical results, we need to test the numerical method (see a short description
in Appendix B) on closed form analytical solutions (e.g., travelling waves) or
asymptotic solutions (e.g., the solutions of modulation equations for the BBM
equation). The test based on travelling wave solution is a little bit trivial. It
is interesting thus to find closed form analytical non-stationary solutions of the
modulation equations (three equations model), but they do not exist in the lit-
erature. Indeed, the BBM equation is not integrable, so no hope to rewrite the
modulation equations in the form of Riemann invariants, as it was done for the
KdV equation [41] and NLS equation [32]. One of the possibilities is to find
the solitary limit of the corresponding modulation equations. For this we need
to find a long wave limit of the wave action conservation law [17]. For generic
Hamiltonian systems such an approach was recently developed in [6] with inter-
esting applications to the second gradient fluids. We will derive such a solitary
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limit for the BBM equation and will obtain corresponding analytical solutions.

2 Periodic solutions of the BBM equation

The travelling wave solutions of the BBM equation u = u(ξ), ξ = x−Dt satisfy
the equation:

−D(u− u′′) +
u2

2
= c1, c1 = const. (7)

Here “prime” means the derivative with respect to ξ. It implies the first integral:

D
u′2

2
= −u

3

6
+D

u2

2
+ c1 u+ c2 =

1

6
(u−u1)(u−u2)(u3−u), c2 = const, (8)

where new constants u1 ≤ u2 ≤ u3 are introduced. They related with D, c1,
and c2:

D =
1

3
(u1 + u2 + u3), c1 = −1

6
(u1u2 + u1u3 + u2u3), c2 =

1

6
u1u2u3. (9)

Another form of the equation is :

(u1 + u2 + u3)u′2 = P (u), P (u) = (u− u1)(u− u2)(u3 − u). (10)

In the following, we will consider only positive solutions (0 < u1 < u2 < u < u3)
(the negative solutions can be found by the symmetry u→ −u and D → −D).
The periodic solution u(x) is given by :

u(x) = u2 + a cn2 (η,m) , (11)

where

m =
u3 − u2
u3 − u1

, a = u3 − u2, η =
ξ + ξ0

2
√

3D

√
a

m
, ξ0 = const. (12)

Here cn (η,m) = cos (ϕ(η,m)), where ϕ is defined implicitly from

η =

∫ ϕ(η,m)

0

dθ√
1−m sin2 θ

. (13)

The wave length is given as

L = 4
√

3

√
Dm

a
K(m). (14)

In particular, the solitary wave solution obtained in the limit L → ∞ and for
the values u1 = u2 > 0, a = u3 − u2 is in the form

u(ξ) = u2 +
a

cosh2(η)
, η =

ξ + ξ0

2
√

1 + 3u2

a

, D = u2 +
a

3
, ξ0 = const. (15)
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We will define the average value of any function f(u) as

f(u) =

∫ u3

u2

f(u)du√
P (u)

/∫ u3

u2

du√
P (u)

. (16)

In particular, the average value of u (denoted below by u) is given by :

u =

∫ u3

u2

udu√
P (u)∫ u3

u2

du√
P (u)

= u1 + (u3 − u1)
E(m)

K(m)
= u2 +

a

m

(
E(m)

K(m)
+m− 1

)
. (17)

Here the complete elliptic integrals of the first and second type are defined as
[1] :

K(m) =

∫ π/2

0

dθ√
1−m sin2 θ

, E(m) =

∫ π/2

0

√
1−m sin2 θ dθ. (18)

The inverse formulas expressing u1, u2 and u3 as functions of u, a and m are
given by

u1 = ū− a

m

E(m)

K(m)
, u2 = ū− a

m

(
E(m)

K(m)
+m− 1

)
, u3 = ū− a

m

(
E(m)

K(m)
− 1

)
.

(19)
One can check that the change of variables is invertible, i.e., its Jacobian matrix
has its inverse because

det

(
∂(u1, u2, u3)

∂(u, a,m)

)
=

a

m2
6= 0. (20)

The determinant becomes singular in the solitary limit m→ 1. The velocity D
is given by the formula

D =
1

3
(u1 + u2 + u3) = ū+

a

m

(
2−m

3
− E(m)

K(m)

)
. (21)

We will show further the importance of a special case D = ū : the phase velocity
coincides with the characteristic of the Hopf equation for the homogeneous state
u. The corresponding value of m is the solution of :

2−m
3

=
E(m)

K(m)
. (22)

This value is unique : m = mc ≈ 0.961149.

3 Whitham modulation equations for the BBM
system

Two equivalent methods can be used to obtain the modulation equations : the
averaging of the conservation laws [40, 7] and Whitham’s method of averaged
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Lagrangian [41]. Both methods are complementary in the analysis of the mod-
ulation equations. The first one assures the initial conservative structure of the
governing equations, while the second one can give an idea about the choice
of “appropriate” variables for the theoretical study of the modulation equa-
tions [41, 23].

The method of conservation laws for the BBM equation was used, in partic-
ular, in [39]. The essence of the method is as follows. We are looking for the
solution u(ξ,X, T, ε) which is periodic with respect to ξ and varies slowly with
respect to time and space, with ξ = X−DT

ε = x−Dt, X = εx, T = εt, ε being
a small parameter. The solution period L is thus also a slowly varying function.
Commuting the averaging with respect to ξ, and time and space derivatives, we
obtain from the first two conservation laws (2)-(3) the equations :

(u)t +

(
u2

2

)
x

= 0,

(
u2

2
+
u′2

2

)
t

+

(
u3

3
−Du′2

)
x

= 0.

We used here the relation u′′ = 0, (uu′)′ = 0. The averaging of the third
equation is equivalent to the phase conservation law [39] :

kt + (Dk)x = 0, k =
1

L
.

For simplicity, we defined here the wave number k as 1/L and not as 2π/L.
Also, instead of the slow variables T, X we returned back to the variables t, x.

Using (10), one can write the modulation equations in an equivalent form :

(u)t +

(
u2

2

)
x

= 0, (23)

(
u2

2
+
P (u)

6D

)
t

+

(
u3

3
− P (u)

3

)
x

= 0, (24)

(1/L)t + (D/L)x = 0. (25)

We choose the variables u, a and m as unknowns. One can find :

u = u2 + a A1, (26a)

u2 = u22 + 2u2a A1 + a2A2 = u2 + a2(A2 −A2
1), (26b)

u3 = u32 + 3u22aA1 + 3u2a
2A2 + a3A3

= u3 + 3ua2(A2 −A2
1) + a3(A3 − 3A1A2 + 2A3

1), (26c)

P (u) =
a3

m
P2(m), (26d)
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with

Ak(m) =

∫ π/2

0

cos2k θ dθ√
1−m sin2 θ

/∫ π/2

0

dθ√
1−m sin2 θ

,

P2(m) =

∫ π/2

0

sin2 θ cos2 θ
√

1−m sin2 θ dθ

/∫ π/2

0

dθ√
1−m sin2 θ

.

The integrals Ak(m) and P2(m) can also be expressed in terms of E(m) and
K(m) (see Appendix A). Still, even if the equations can now be explicitly
written in terms of a, u,m, it is difficult to extract from (23)–(25) “reasonably
simple” closed form solutions to compare with numerical solutions of the exact
BBM equation. The idea is to find the solitary limit of (23), (24), (25) [17, 6].
This limit is singular, and we cannot obtain this limit directly from the three
above written conservation laws. Indeed, (23)–(24) give in the limit the Hopf
equation, while the equation (25) becomes a trivial identity. For this, we need to
find a “non-obvious” additional conservation law (the action conservation law)
of the modulation equations. It can be easily found by the Whitham method of
averaged Lagrangian.

The Whitham method of the averaged Lagrangian consists in looking for a
solution of the Euler-Lagrange equations for (5) of the form [41] :

ϕ = βx− γt+ ψ (θ) , θ = kx− ωt,

with β, γ , k , ω depending on T and X. The following relations are the
compatibility conditions :

βt + γx = 0, kt + ωx = 0. (27)

The function ψ (θ, T,X, ε) is supposed to be 1-periodic with respect to the vari-
able θ. The variables θ and ξ are related: θ = kξ.

The unknown functions should be determined as solutions of the Euler-
Lagrange equations for the averaged Lagrangian

L =

∫ 1

0

Ldθ, (28)

where L is given by (5). The derivation is quite standard and follows directly the
derivation of the modulation equations for the KdV equation (see [41], Section
16.14). We present here a rapid derivation. In zero order one has :

u = ϕx ≈ β + kψθ,

ϕt ≈ −γ − ωψθ = −γ −D(u− β), D =
ω

k
,

ϕxxx = uxx ≈ k2uθθ.

Then the zero order Lagrangian (5) (defined up to the full derivative with respect
to θ) is :

L ≈ u(γ −Dβ)

2
+
Du2

2
− u3

6
+
D

2
k2u2θ.
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The dependence of u on the rapid variable is determined from (7) :

Dk2uθθ −Du+
u2

2
= c1.

It can be integrated once :

Dk2
u2θ
2

=
1

6

(
−u3 + 3Du2 + 6c1u+ 6c2

)
=
P (u)

6
,

where P (u) = −u3 + 3Du2 + 6c1u + 6c2. Then, the averaged Lagrangian (28)
becomes

L ≈ 2k√
3

√
D

∫ u3

u2

√
P (u)du− c1β − c2 +

β(γ −Dβ)

2
, D = ω/k.

The variation with respect to c2 gives us the dispersion relation (which is equiv-
alent to the expression (14) for the wave length ):

1

k
= 2
√

3D

∫ u3

u2

du√
P (u)

.

The variation with respect to c1 gives us the identity β = u. Finally, the last
two Euler-Lagrange equations(

Lγ
)
t
−
(
Lβ
)
x

= 0, (29)(
Lω
)
t
−
(
Lk
)
x

= 0, (30)

should be written. The equation (29) is exactly equation (23) :

ut +

(
u2

2

)
x

= 0.

Its combination with the equation βt + γx = 0 gives us c1 =
γ −Dβ

2
. One also

has :

Lω =
u2 − (u)2

2k
+

P

6Dk
, Lk = −D

(
u2 − (u)2

2k
− P

6Dk

)
.

Hence the wave action equation (30) is :(
u2 − (u)2

2k
+

P

6Dk

)
t

+

(
D

(
u2 − (u)2

2k
− P

6Dk

))
x

= 0. (31)

The equation (31) can also be obtained as a consequence of the equations (23),
(24), (25) [33].
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4 Solitary limit

The solitary limit is a singular limit of the modulation equations when the wave
length L→∞ (or k → 0, or m→ 1). In this limit, one has

u2 → u2, P (u)→ P (u) = 0.

Thus, the equations (23)–(24) have the same limit :

ut + uux = 0.

We need thus to find the limit form of (31). The simplest way to compute the
limit, is to use the Wolfram Mathematica because the hand calculations are
feasible but a bit painful. One obtains the following a little bit ugly equation :(

a3/2(2a+ 5u)√
a+ 3u

)
t

+

(
a3/2(4a+ 15u)

√
a+ 3u

9

)
x

= 0.

The final conservative system for the solitary limit of the BBM equation is thus

ut +

(
(u)2

2

)
x

= 0,

F (a, u)t +G(a, u)x = 0,

(32)

where

F (a, u) =
a3/2(2a+ 5u)√

a+ 3u
, G(a, u) =

a3/2(4a+ 15u)
√
a+ 3u

9
.

The quasilinear form of (32) is :

ut + u ux = 0, at +D ax +
a

3

14a2 + 75au+ 90u2

8a2 + 40au+ 45u2
ux = 0, D = u+

a

3
. (33)

The characteristics of this hyperbolic system are u and D. We will construct
now closed form non-stationary solutions of (33).

5 Interaction of the solitary waves with a step

Consider the Cauchy problem for (32):

(u, a) (0, x) =

{
(u−, a−), x < 0,
(u+, a+), x > 0.

We are looking for self-similar continuous solutions of (32) (or (33)) for the
corresponding Riemann problem in the case 0 < u− < u+ (the case of “positive”
rarefaction waves). In particular, the simple wave solution of this system can be
interpreted as the interaction of an incident solitary wave of amplitude a− with

9



u
-

u
+

a
-

a
+

x

u(x)

Figure 1: A sketch of the interaction of solitary wave of amplitude a− with a
step. The solitary wave of amplitude a+ can exist only for a− greater than some
critical value.

a step function. As a result of such an interaction, an outgoing solitary wave
of amplitude a+ is formed (see Figure 1). Such a problem was, in particular,
studied numerically in [8]. We obtain here its analytical solution.

The Hopf equation implies : u = s = x/t, u− < s < u+. For the function
a(s) = a(u) one obtains the following ODE :

da

du
= −Gu − uFu

Ga − uFa
= −14a2 + 75au+ 90u2

8a2 + 40au+ 45u2
. (34)

It admits the group transformation a → ba, u → bu, b = const. For the
corresponding invariant z = a/u one obtains the equation

u
dz

du
= −f(z), f(z) =

14z2 + 75z + 90

8z2 + 40z + 45
+ z.

It allows us to obtain the relation between the incoming a− and outgoing a+

solitary wave amplitudes :∫ z−

z+

dz

f(z)
= ln

u+

u−
, z± =

a±

u±
. (35)

The relation (35) can be written as

p(z−)− p(z+) = ln

(
u+

u−

)
, z± =

a±

u±
, (36)

with

p(z) =
1

24

(
−2
√

15 Arctan

(
15 + 8z√

15

)
− 6 ln(3 + z) + 15 ln(15 + 15z + 4z2)

)
.

(37)
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The condition for the solitary wave trapping is z+ = 0. To have a solitary wave
which is capable to pass the initial step function, we have to take z− larger than
the minimal value z−min which is a unique root of the equation

p(z−min)− p(0)− ln

(
u+

u−

)
= 0. (38)

The relation (36) between incoming-outgoing amplitudes a± is shown in Figure 2
for particular values of u±, u− < u+. In Figure 3 we show the comparison of
the theoretical curve and numerical results for the exact BBM equation (“dots”)
for different values of the incoming amplitude a+. The maximum of the initial
solitary wave was placed at x0 = −400, the initial discontinuity was replaced
by the hyperbolic tangent :

u(0, x) = u+ + (u+ − u−) tanh

(
x− x0
l

)
, (39)

with l = 100. The numerical results do not depend on the choice of x0 and l,
if x0 � l � 1. A very good agreement between the theoretical and numerical
results can be observed. In Figure 4 a solitary wave having the incoming am-
plitude a− ≈ 2.24813 is taken. For u− = 1/3 and u+ = 1 the amplitude a+

of the outgoing wave fits perfectly the theoretical value a+ = 1. In the case of
several solitary waves having the same amplitude a− one obtains the solitary
wave train of the same amplitude a+.

One can also remark that the equations (32) can be rewritten in terms of
the Riemann invariants :

ut + u ux = 0, rt +D rx = 0, D = u+
a

3
, (40)

with
r = ln(u) + p

(a
u

)
,

where p(z) is given by (37). Thus, the condition (36) is the conservation of the
Riemann invariant r.

6 Generalized Riemann problem for dispersive
equations

We call a generalized Riemann problem (GRP) the Cauchy problem

u(0, x) =

{
uL(x), x < 0,
uR(x), x > 0,

(41)

where uL,R(x), are different periodic travelling wave solutions of the correspond-
ing dispersive equations (in particular, of the BBM equation). Such a problem
was studied in [14] for the SGN equations and Boussinesq equations with linear
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1.4 1.6 1.8 2.0 2.2

0.0

0.2

0.4

0.6

0.8

1.0

a
+ as a function of a-

Figure 2: The case u− = 1/3 and u+ = 1 is illustrated. The amplitude a+ ∈
[0, 1] of the outgoing solitary wave as a function of the incoming wave amplitude
a− is shown. In particular, the condition (38) for the wave trapping (a+ = 0)
gives us a− ≈ 1.283212944. To have a+ = 1 we need to take a− ≈ 2.24813144
(for this, one needs to solve (36)).

Figure 3: The case u− = 1/3 and u+ = 1 is illustrated. The theoretical rela-
tion (36)-(37) (continuous line) is compared with the corresponding numerical
computations for the exact BBM equation (shown by “dots”). A very good
agreement is observed.
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Figure 4: The incoming solitary wave of amplitude a− ≈ 2.24813 produces the
outgoing solitary wave of amplitude a+ = 1 (for u− = 1/3 and u+ = 1).

dispersion, and in [38] for the fifth order KdV equation. In particular, in the
first reference new stable shock-like travelling wave solutions were found linking
a constant solution with a periodic wave train. The shock-like transition zone
between the constant state and the wave train was well described by the half
of solitary wave having the wave crest at the maximum of the nearest periodic
wave. Let us consider the BBM equation in the form

ut + uux − ε2utxx = 0,

where ε is a small dispersion parameter characterizing the transition zone scale.
When ε → 0 the half of solitary wave becomes a singular shock on which the
RH conditions are satisfied [14]. Such a configuration was stable under certain
conditions. The aim of this section is to describe in details the analogous solu-
tions for the BBM equations and propose an explicit criterion for the existence
of such stable solutions.

For numerical purposes, we restrict our attention to a modified version
of (41) in the form

u(0, x) =

{
u(x), x0 < x < x1,
u, if x is outside of (x0, x1).

(42)

Here (x0, x1) is the interval which contains a quite large number of entire periods
(see Figure 5). Indeed, since the BBM equation has a “hyperbolic” structure
(the waves propagate with a finite speed), it is much easier to apply the nu-
merical method developed for the BBM equation when the solution tends to a
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u3

u2

uu

u*
x

u(x)

Figure 5: Skecth of the initial configuration (42) consisting of a periodic wave
train having the property D ≥ u and bounded on the left and on the right by
the constant state u. If, initially, instead of u, one puts on the left the state
u−? connected with the wave train by the half-solitary wave (red curve), the left
boundary of the wave train remains invariable in time.

constant value at infinity (see a short description of the method in Appendix B).
The solution of such a Cauchy problem will show on the left of the periodic wave
train of a stable configuration consisting of a “cold” (constant) state which is
linked with the “hot” state (the periodic wave train).

6.1 Generalized RH conditions for the BBM equation and
shock conditions for the Whitham system

Travelling wave solution u(x) for the BBM equation is a smooth extremal curve
of the functional

a[u] =

∫
L(u, u′)dx, L(u, u′) =

Du′2

2
+
P (u)

6
, (43)

where the third order polynomial P (u) is given by (10), and the integral is taken
over the basic period of u(x). The variation of a can be written as :

δa =

∫ (
δL
δu
δu+

d

dx

(
∂L

∂u′
δu

))
dx,

δL
δu

=
∂L
∂u
− d

dx

(
∂L
∂u′

)
. (44)

In the case of non-smooth (“broken”) extremal curves, the Weierstarss-Erdmann

condition should be satisfied at the “broken” point [16] :
∂L
∂u′

= Du′ is contin-

uous. In particular, if a piecewise C2-solution u(x) is constant on some interval
of x, but is not constant on a neighboring interval, this last should have a zero
slope at the “broken” point. Thus, the classical Rankine-Hugoniot condition
based on the conservation laws should be supplemented by this additional con-
dition. Such weak solutions describing shock-like transition fronts have been
constructed for the SGN equations [14].

14



For the BBM equation, we also look for a possibility to link a generic constant
state ( “cold” state) u? with a generic periodic wave train (“hot” state) by the
Rankine-Hugoniot conditions through the shock front having the same velocity
as the phase velocity D of the wave train (see Figure 5).

For the conservation law (2), the generalized Rankine–Hugoniot (GRH) con-
dition on the travelling wave solutions connecting the constant state u? and
travelling wave train is :

−D(u3 − u′′|u=u3
− u?) +

(
u23
2
− u2?

2

)
= 0. (45)

The numerical study shows that in the case of positive u, the state u? is linked
with the maximum of the travelling wave, i.e., u3, and not with the minimum,
i.e., u2. The equation for u? is a second order algebraic equation which has
two real roots, u±? , 0 ≤ u1 < u−? < u2 < u < u+? < u3. Replacing the second
derivative at u = u3, the GRH condition can be written also as

−D
(
u3 +

(u3 − u1)(u3 − u2)

2(u1 + u2 + u3)
− u?

)
+

(
u23
2
− u2?

2

)
= 0. (46)

The reason to choose the conservation law (2), and not (3) or (4), is justified as
follows.

Proposition The solutions u? obtained from both, the RH condition coming
from the Whitham system

−D(u− u?) +

(
u2

2
− u2?

2

)
= 0, (47)

and the GRH condition given by (45) (or (46)) coincide.
Proof Subtracting (47) from (46), one obtains :

−D (u3 − u) +

(
u23
2
− u2

2

)
=

(u3 − u1)(u3 − u2)

6
.

It is sufficient to prove that this is an identity. To show this, one can use the
inverse formulas (19) for u1, u2, u3 and (26b) for u2 to express them in terms
of u, a and m. Then the proof is direct.

As we have already mentioned, there are two roots u±? describing “cold”
states and given by (46) (or (47)). The state u+? does not correspond to a stable
solution, only the state u−? appears in the numerical solution of the correspond-
ing Cauchy problem. This is why we will further use the notation u? as a shorter
notation for u−? . When the Cauchy problem (42) is solved, the “cold” state u?
is rapidly formed on the left of the periodic wave train. If the wave train length
would be infinite, it would be a weak solution to the BBM equation defined on
the whole real axis. The only question is the stability of such a configuration.
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Figure 6: The relation between the characteristics of the homogeneous states
u? and u and the shock front having the velocity D.

6.2 Stable shock-like transition fronts

The numerical experiments show that the condition for the formation of such
a stable configuration is D ≥ u, i.e., the phase velocity is not less than the
characteristic velocity u of the wave train considered as a homogeneous state u
(see Figure 7). In this case the constant state u? rapidly forms, and the wave
train is not at all perturbed on the left : such a configuration is stable. As
in [14], one can numerically show show that if, initially, we take on the left of
the wave train the state u−? instead of u and smooth the transition zone by the
half of solitary wave (see Figure 5) this structure remains invariable in time.
If, at the beginning, such smoothing is not performed, after a non-stationary
transient process, such a half-soliton structure is quickly established.

The limit case D = u can be seen as the analogue of the Chapman-Jouget
condition in the detonation theory. This equality can be expressed as m = mc ≈
0.961149 (see (22)). The inequality D ≥ u is equivalent to m ≥ mc. Physically,
this means that the periodic waves should be “almost” solitary waves. Indeed,
for the solitary waves their phase velocity is given by the formula D = u + a

3 ,
i.e., D > u is equivalent to a > 0. The mathematical reason for the stability
is probably the following. Since the shock velocity coincides with the phase
velocity, i.e., it is given a priori, it is sufficient to have just one characteristic
entering the shock, so no need to satisfy the Lax condition. If m is outside
the interval [mc, 1) (i.e. D < u), such a stationary shock-like configuration on
the left does not exist (see Figure 8). The “cold” state appears separating the
classical dispersive shock (on the left) and wave train, but the wave train is
destroyed by the rarefaction waves coming from the left and from the right of
the wave train.

Finally, for such a stable configuration, we are also able to determine the
amplitude of the leading right solitary wave which is emitted on the right by
the periodic wave train of finite length. The answer is surprisingly simple. Even
if we cannot rigorously explain the mathematical reason of this, we can give
an analytical expression for the amplitude of the leading solitary wave. Recall
again that if the periodic wave train has the property 1 > m ≥ mc (or, what is
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Figure 7: Initially, we consider a periodic wave train with m ∈ [mc, 1), with the
constant states u on the left and on the right. We have chosen u1 = 0, u3 = 1
and u2 = u3(1 − m), with parameter m ∈ [mc, 1). Then, on the left, a cold
state u? < u2 is formed connecting by the generalized RH condition (45) with
the periodic wave train. Here the lower (upper) dashed line corresponds to the
value u−? (u+? ). Such a configuration linking the “star” state with the wave train
is stable.
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Figure 8: A periodic wave train with u1 = 0, u3 = 1, u2 = u3(1 − m) and
m = 0.85 < mc is taken, bounded by the constant states u on the left and on
the right. The “cold” state is formed but the periodic wave train represents
only a transient structure : it is destroyed by the rarefaction waves.

equivalent, its travelling velocity is not less than u), there exist a “cold” state
u?, u1 < u? < u2 < u < u3 such that the wave train is connected with the
“cold” state on the left by the half of a solitary wave having the amplitude
a−s = u3 − u?. Now, we claim that to define the amplitude of the solitary wave
a+s on the right, it is sufficient to solve the equation (36) :

p(z−)− p(z+)− ln

(
u+

u−

)
= 0, (48)

with

z− =
a−s
u−

, u− = u?, a−s = u3 − u?, z+ =
a+s
u+

, u+ = u.

expressing the condition r = const. In other words, if one takes the incident
solitary wave of amplitude u3−u? (and not as u3−u2), one obtains the leading
solitary wave emitted by the wave train of amplitude a+ defined by (48). This
rather unexpected result is in very good agreement with the numerical results
obtained by solving the corresponding Cauchy problem for the BBM equation
(see Figure 9). In particular, for u1 = 0, u3 = 1 and u2 = (1 − m) one has
the following approximate values : for m = 0.9999 one obtains u ≈ 0.166946,
u? ≈ 0.00005, a− = 1 − u?, and finally a+ ≈ 0.699956, D ≈ 0.400265; for
m = mc ≈ 0.961149, one has u ≈ 0.346284, u? ≈ 0.019233, a− = 1 − u?, and
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Figure 9: The amplitude and phase velocity of the right leading solitary wave
emitted by L-periodic wave train (u(0, x) = u(0, x+L) ) of finite length bounded
by the constant states u on the left and on the right. The dots are numerical
solutions of the Cauchy problem (42) for the BBM equation corresponding to
u1 = 0, u3 = 1 , u2 = (1 −m), for m = mc ≈ 0.961149, 0.97, 0.98, 0.99 and
0.9999.

finally a+ ≈ 0.37728, D ≈ 0.4720. We find good agreement between analytical
results and numerical solutions (see Figure 9).

7 Conclusion

The existence of stable shock–like transition fronts linking a constant state with
a periodic wave train was discovered in [14] for the SGN equations. Here we
have established the analogous result for the BBM equation which shares with
the SGN equations the same property of finite phase and group velocity for
the corresponding linearized equations. The front represents the half of solitary
wave linking the constant state with the periodic wave train. We formulate the
condition for existence of such a shock–like structure : the phase velocity of the
periodic wave train should be not less than its average value.

The solitary limit of the Whitham modulation equations was derived. The
equations of the solitary limit are hyperbolic and admit the Riemann invariants
in explicit form. This allowed us, in particular, to test the numerical method
for the BBM equation on asymptotically exact solutions. For a special Cauchy
problem (42), the amplitude of the right leading solitary wave has been explicitly
determined by (48) which is the Riemann invariant of the hyperbolic system (40)
describing the solitary limit.
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A Useful expressions

The expressions of Ai[m] and P2[m] can also be given in terms of the complete
elliptic integrals K[m] and E[m] :

A1(m) =
E(m)− (1−m)K(m)

mK(m)
, (49a)

A2(m) =
(−2 + 4m)E(m) + (2− 3m)(1−m)K(m)

3m2K(m)
, (49b)

A3(m) =
(8 + 23m(m− 1))E(m) + (−8 +m(19− 15m))(1−m)K(m)

15m3K(m)
, (49c)

P2(m) =
2(1 +m(m− 1))E(m) + (−2 +m)(1−m)K(m)

15m2K(m)
. (49d)

The formulas are useful to compute approximate theoretical values of the phase
velocity D, u, and so on, by using Wolfram Mathematica, for example.

B Numerical method

To find approximate solutions to the BBM equation, we use the hyperbolic-
elliptic splitting approach developed previously in [28, 14]. This algorithm con-
sists of two steps. In the first step, the hyperbolic step, we employ the state-of-
the-art method for hyperbolic conservation laws for the numerical resolution of
the equation

Kt +

(
u2

2

)
x

= 0, with K = u− uxx,

over a time step ∆t. In the second step, the elliptic step, using the approximate
solution K computed during the hyperbolic step, we invert numerically the
elliptic operator:

u− uxx = K

with prescribed boundary conditions based on a fourth-order compact scheme [26].
More precisely, in the hyperbolic step, we use the semi-discrete finite volume

method written in a wave-propagation form as before [14], but employ a different
solution reconstruction technique, the BVD (boundary variation diminishing)
principle, which is more robust than the classical one for the interpolated states
(K for the BBM equation) at cell boundaries (cf. [9] and the references cited
therein). These reconstructed variables form the basis for the initial data of
the Riemann problems, where the solutions of the Riemann problems (obtained
from the local Lax-Friedrichs approximate solver [27] for the BBM equation) are
then used to construct the fluctuations in the spatial discretization that gives
the right-hand side of the system of ODEs (cf. [24, 25]). To integrate the ODE
system in time, the strong stability-preserving (SSP) multistage Runge-Kutta
scheme [22, 37] is used. In particular, for the numerical results presented in
this paper, the third–order SSP scheme was employed together with the pair of
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third– and fifth–order WENO (weighted essentially non-oscillatory) scheme in
the BVD reconstruction process.
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