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With the development of machine learning models for task automation, watermarking appears to be a suitable solution to protect one's own intellectual property. Indeed, by embedding secret specific markers into the model, the model owner is able to analyze the behavior of any model on these markers, called trigger instances and hence claim its ownership if this is the case. However, in the context of a Machine Learning as a Service (MLaaS) platform where models are available for inference, an attacker could forge such proofs in order to steal the ownership of these watermarked models in order to make a profit out of it. This type of attacks, called watermark forging attacks, is a serious threat against the intellectual property of models owners. Current work provides limited solutions to this problem: They constrain model owners to disclose either their models or their trigger set to a third party. In this paper, we propose counter-measures against watermark forging attacks, in a black-box environment and compatible with privacy-preserving machine learning where both the model weights and the inputs could be kept private. We show that our solution successfully prevents two different types of watermark forging attacks with minimalist assumptions regarding either the access to the model's weight or the content of the trigger set.

Introduction

With the recent developments in the information technologies, companies have adopted deep learning techniques to transform their manual tasks into automated services in order to increase the service quality for their customers [START_REF] Ge | Data mining and analytics in the process industry: The role of machine learning[END_REF]. Although this transformation brings some new business opportunities for technology companies, it comes with the burden of competing in a rapidly changing business arena. In order to make profit from these business opportunities, these companies need to be in good positions in the marketplace, which requires vast amount of resource utilization to train a deep learning model. Therefore, these productionized deep learning models become intellectual properties (IP) for these technology companies and their protection is a challenging issue when they are deployed on publicly accessible platforms [START_REF] Zhang | Protecting intellectual property of deep neural networks with watermarking[END_REF].

Indeed, we consider a scenario whereby companies use a Machine Learning as a Service (MLaaS) platform as a marketplace in order to sell or rent their machine learning models. In such platforms, we believe that the platform administrator should implement some control mechanisms to register models to the platform only if these are legitimate and there is no IP violation. Digital watermarking [START_REF] Kahng | Watermarking techniques for intellectual property protection[END_REF] based techniques can be considered as potential solutions to protect machine learning models in such an environment: model owners who wish to share their models through the platform are looking for some means to protect these against model theft. The idea is therefore to embed a digital watermark into a Deep Neural Network model during the training phase, before the registration of the model to the platform and further use this watermark once the model is actually used and claim the ownership of the model [START_REF] Adi | Turning your weakness into a strength: Watermarking deep neural networks by backdooring[END_REF].

To generate a watermark for a NN model, the model owner defines and uses a trigger set to train the model together with the legitimate data set. This trigger set is created using either some randomly generated data or some mislabeled legitimate inputs to mark the intellectual property of the model owner. Later on, this trigger set is used to verify the model ownership. Since the trigger set is supposed to be secret (only known to the owner of the model) and unique, a high accuracy on the trigger set constitutes a valid proof of the ownership. Recently, several attacks have been developed to circumvent the watermarking process of neural network models [START_REF] Hitaj | Evasion attacks against watermarking techniques found in mlaas systems[END_REF][START_REF] Szyller | Dawn: Dynamic adversarial watermarking of neural networks[END_REF],. Among these, watermark forging consist in generating fake watermarks (fake trigger sets) in order to claim the ownership of a model in an unauthorized manner.

Although solutions are proposed to mitigate this type of attack, they have several limitations, especially regarding the access to the trigger set for ownership verification in a black-box setting. Indeed, we consider a privacy-preserving scenario where weights of the models and inputs are private during the inference, meaning that no entity (except the model owner) should be able to inspect the content of the trigger set.

In this paper, we propose a solution against watermark forging attacks deployed on a MLaaS platform under privacy constraints. We argue that a central authority is able to certify the validity of a trigger set to prevent the models against forging attacks without investigating the content of the trigger set instances. The trigger set is only known to the model owner and its content is not revealed to the platform. The platform solely analyzes the output of the inferences of the deployed models on the trigger set to verify the ownership of the models. We introduce a concept called model similarity in order to compare models based on their behavior on a random set. We show that comparing model similarities to a baseline model, chosen by the platform, is sufficient to prevent two proposed watermark forging attacks, called Registration attack and Label-collision attack. Our main contributions are summarized as follows:

• First, we introduce and re-define basic primitives for a MLaaS platform by considering the context of watermark forging attacks.

• Then, we propose a new watermark forging attack called Registration attack together with the counter-measures against this attack by introducing a verification step called IsValid to assess the validity of a trigger set while relying on the uniform similarity assumption.

• Later, we propose another advanced watermark forging attack, namely the Label-collision attack, which intends to challenge the aforementioned verification step.

• Finally, we present a detailed evaluation to assess the efficiency of our solution by using well-known public data set, namely the MNIST handwritten digit data set (LeCun and Cortes, 2010) and CIFAR-10 tiny color images data set [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. We also prove that IsValid function is successful to prevent watermark forging for a MLaaS platform.

The rest of the paper is organized as follows. Basic primitives and preliminaries are given in Section 2. We present the MLaaS platform in Section 3 and the potential attacks that may arise in Section 4. We propose two different watermark forging attack in Sec-tion 5 and Section 6 alongside counter-measures. Performance evaluation is given in Section 7. We review the related word in Section 8 and conclude the paper in Section 9.

Preliminaries

In this section, we propose several key definitions and notations to be used in the remaining of the paper.

Deep Neural Networks

A Deep Neural Network (DNN) is defined as follows: let M : R m → R n be a function that takes a vector x ∈ R m as input and outputs a vector y ∈ R n . The probability that input x belongs to class i ∈ [1, n] is defined as argmax(y i ). During the training phase, M is trained to fit the ground truth function M : R m → R n which associates any input x to the true output ỹ. We denote the accuracy of the model M on a set of inputs I as acc M (I), corresponding to a percentage between 0% and 100% and |I| denotes the number of elements in a set I.

Watermarking

In this paper, we consider an intellectual property protection technique against DNN model theft called watermarking. In brief, a model owner embeds a hidden behavior into its model, only accessible through a set of specific inputs called the trigger set. This unique behavior (secret and unique) acts as a proof of ownership for the model owner.

Definition 1 (Model watermarking). Let M, D and T be the DNN model to be watermarked, the legitimate training data set on which the model is originally trained, and the trigger set, respectively. The watermarking process of model M using D and T consists of generating a new model M using the Embed function as defined below:

M ← Embed(D, T, M)
We assume that the behavior of T is solely known by the owner of the model and hence the agent can verify the presence of the watermark in a model with the Veri f y function as defined in Definition 2: Definition 2 (Watermark verification). Let M x be a watermarked model whereby the watermark is generated using trigger set T x . Then, the existence of a watermark in a model M y is verified if the following condition holds: acc M y (T x ) ≥ β x,y where β x,y is the minimal accuracy of T x on M y to detect the watermark.

To define β x,y , we need a measure to quantify how similar two DNN models can be. For this purpose, we propose to introduce a similarity measure, denoted γ x,y and defined as follows: Definition 3 (Model similarity). Given two models M x and M y and a set of queries I, we define the similarity γ x,y (I) between models M x and M y on I as follows:

γ x,y (I) = 1 |I| ∑ ∀ i k ∈I 1 M x (i k ) = M y (i k ) 0 otherwise
From the definition above, γ x,y exhibits the following properties:

• 0 ≤ γ x,y (I) ≤ 1, • γ x,y (I) = γ y,x (I)
• γ x,x (I) = 1 for any pair of models (M x , M x ) and for any set I.

Ownership threshold: In order to have a successful watermark verification test for a model M given trigger set T x and hence claim its ownership (i.e., its high similarity with M x ), we quantify the threshold β x as the minimum accuracy of M obtained with T x .

Inspired by the work of [START_REF] Szyller | Dawn: Dynamic adversarial watermarking of neural networks[END_REF], let's define the random variable X ∼ B(n, p) following the binomial distribution with parameters n ∈ N and p ∈ [0,1]. We can define the event X = z when two models M x and M y return the same output z ∈ 0 • • • n. Thus, we can express the probability P(X ≤ z) as the cumulative binomial distribution.

P(X ≤ z) = [z] ∑ i=0 n i p i (1 -p) n-i
In this context, we define

n = |T x |, p = γ x,y (R ), z = [β x,y * |T x |] and P(X ≤ z) = 1 -ε. 1 -ε = [β x,y * |T x |] ∑ i=0 |T x | i γ x,y (R ) i (1 -γ x,y (R )) |T x |-i
(1) Equation 1 indicates that acc M y (T x ) > β x,y implies that M x = M y with a probability of 1ε. In the rest of the paper, for simplicity purposes, we denote γ x,y = γ x,y (R ) and β x = β x,y when the model M y is implicitly defined. Through the similarity measure, we propose a metric called similarity confidence interval.

Definition 4 (Similarity confidence interval). Let's consider a list of k models M 1 , M 2 • • • M k and the set of their mutual similarity Γ = {γ i, j | (i, j) ∈ {1 • • • k}, i < j}. We denote σ as the standard deviation of Γ. We define the similarity confidence interval ∆ σ as follows:

∆ σ = 2σ
In the next sections, we use this similarity confidence interval in the context of a mutual similarity distribution Γ, following a normal law. In this case, ∆ σ is the standard deviation of Γ multiplied by two.

MLaaS platform

We consider a setting where there exists a machine learning as a service (MLaaS) platform that acts as a gateway between a set of agents (model owners), A = {A 1 , A 2 , . . . , A p } and a set of clients C = {C 1 ,C 2 , . . . ,C k } who would like to query these models. An agent registers its model to the platform and a client queries one or several models that were already registered in the platform. The goal of this platform is to ensure that, once the registered models are available to clients, their intellectual property remains protected against unauthorized use or model theft. Hence an agent embeds watermarks to its model before its registration, and the platform performs verifications. The newly proposed framework can be defined through the following three phases, illustrated in Figure 1:

(1) Registration: During this first phase, Agent A i ∈ A with data set D i and trigger set T uses Embed to train the model M both with D and T and obtain the watermarked model M. To register this resulting model to the platform, A sends a registration query Register(M, T ) to the platform. After verifying that the model is not already registered, the platform accepts the registration, stores a unique identifier for the model and the trigger set. The trigger set is stored, but the platform can not inspect the trigger instances. Indeed, the platform can only run inferences on the trigger set and obtain the output results in clear, using tools such as Secure multiparty computation [START_REF] Cramer | Secure multiparty computation[END_REF] or Functional encryption [START_REF] Ryffel | Partially encrypted machine learning using functional encryption[END_REF]. The registered model and trigger set are denoted M t and T t , respectively. In the remaining of the paper, we consider the index t to denote the registration time, i.e. model M t+ j is registered j periods after the registration of model M t (for j ∈ N). (2) Inference: We assume that M t is already registered and is now available on the platform. During this inference phase, client C k can submit inference query q k (or several of them) to the deployed model.

(3) Ownership verification: Let M t be the model registered by agent A i at time t. If A i suspects that its model M t has been used to generate and register a new model M t+i , it can send a verification query Veri f y to the platform. The platform who has received this request, retrieves the trigger set of M t T t and submits these to M t+i to compute the accuracy. If this accuracy is higher than threshold β t,t+i , the platform indeed detects model theft and revokes model M * t+i . Remarks: Any agent A i can only submit ownership verification requests to the platform about models generated after its own model's registration time. More formally, let M t be the model generated by A i ; A i can perform verification requests for any model M t+ j where j > 0; Otherwise, the platform discards the request.

Moreover, the platform considers both the weights of the models and the trigger instances as secret, only considering the inferences results. Hence, the MLaaS platforms is compatible with privacy-preserving neural networks implementing Secure multiparty computation [START_REF] Cramer | Secure multiparty computation[END_REF] or Homomorphic Encryption [START_REF] Gentry | A fully homomorphic encryption scheme[END_REF]. Properties of watermarking: In the rest of the paper, we consider the following two assumptions regarding the watermarked model:

• Secrecy: The content of the trigger set is only known to the model owner. The platform has no access to the content of the trigger set (the trigger set can be encrypted, for example), but can still perform inferences on the trigger and observe the outputs.

• Uniqueness: Given model M t registered with trigger set T t . For all models M * (deployed or not yet deployed on the platform) acc M * (T t ) ≤ β t , where j = t and β t is the ownership threshold for M t .

This description of a MLaaS platform is a general model sharing system and could be implemented in the context of a marketplace, where agents need to pay for inferences. Thus, in order to ensure trust between agents, it has to be resilient against potential attacks.

Attacks on the MLaaS platform

In this section, we investigate potential attacks under the MLaaS platform setting. We show that this platform is subject to two main watermark forging attacks.

Threat Model

We consider a rational adversary A * , playing the role of a new agent submitting model M * t with its associated trigger set T * t during the registration phase. The goal of the adversary is to successfully register a malicious trigger data set to obtain a high accuracy for several future registered models M t+i on T * t and thus, claiming the ownership of these models. We assume that A * has partial access to training data D ∈ D and can send inference requests to other models deployed on the platform.

Watermark forging

A trigger set T is composed of a set of n in- puts {T 1 , T 2 • • • T n } associated with a set of n la- bels {l 1 , l 2 • • • l n }.
Since this association is secret and unique for a watermarked model M, we consider the watermark verification using trigger set T as a "convincing" proof of ownership. The goal of a watermark forging attack is, for a adversary A * and for a watermarked model M, to create a malicious trigger set T * t . Overall, the attack goes as follows:

• Generation of a forged trigger set The platform forbids an adversary to claim a previously registered model, i.e., the malicious trigger set cannot be constructed through inferences on a previously registered model. Furthermore, as mentioned in the previous section, the MLaaS platform is not able to inspect the content of the trigger set, hence the trigger set instances can not be marked by the model owner in order to be verified by the platform.

The challenge for the adversary in watermark forging attacks is to be able to generate a forged trigger set, without the knowledge of future registered models. In the next sections, we present two strategies for the adversary to construct T * t , and we propose counter-measures.

Registration Attack

As mentioned in Section 3, during the registration phase, the platform verifies if model is not already registered before. However, there is no control on the validity of the trigger set in order to verify the basic properties such as secrecy and uniqueness of the watermarked model and this may lead to watermark forging. Such a lack of control can motivate adversaries to launch a registration attack, described in this section.

Overview

We provide a illustration of the attack in Figure 2. We assume that adversary A * wants to successfully register a new model M * t . A * generates T * t from mixture of legitimate data and random data (

T * t = τD + (1 -τ)R where τ ∈ [0, 1]).
We now assume that a legitimate agent A submits (after A * ) a legitimate model M t+ j with the same architecture of M * t . The platform also proceeds with the registration of M t+ j and its trigger set. Since the previously uploaded T * t consists of inputs taken from a legitimate training data set, there is a high chance that this trigger set also outputs good accuracy with legitimate M t+ j . In other words, since T * t ∈ D, then there is a high chance that acc M t+ j (T * t ) > β t,t+ j . In this situation, the adversary A * successfully claimed the ownership of the model M t . We denote this attack as the Registration attack.

Our proposed counter-measure

The previous example shows that the platform needs to control the validity of the trigger set to protect the models against this type of watermark forging attacks, especially to verify if no legitimate data is in the trigger set. An adversary could claim ownership of future models if a forged trigger set is accepted by the platform. Consequently, before registering a model, the platform needs to perform additional verification. To implement such an additional procedure, one should consider the following conditions:

• The platform cannot inspect the trigger set by itself. It can only verify the output of the inference on the trigger set. Indeed, the trigger set is only known to the agent and should not be disclosed to the platform. If the platform needs to store the trigger set then, one idea is to store its encrypted version.

• The counter-measure is required to be computationally efficient: a naive solution could be, for every previously registered model on the platform, to make inference using the trigger set. However, this solution could quickly lead to a computational bottleneck with the number of inferences.

In this section, we propose a counter-measure against the previously described registration attack which basically includes a verification step within the registration phase, to ensure that the trigger set is considered as valid.

We denote the verification step as the function Is-Valid, defined in Algorithm 1. The function takes as inputs the model to be registered M t , the trigger set T t , a baseline model denoted M 0 and a threshold α * . The baseline M 0 is a watermark-free model to be used as a reference. Instead of testing T t on every previously registered model in the platform, IsValid only considers the impact of T t on M 0 to accept or deny the Algorithm 1: IsValid algorithm Data:

Model M t , trigger set T t , baseline model M 0 , threshold α * Result: Boolean b X ← γ 0,t (T t ); r ← γ 0,t (R ); α ← X r ; if α > α * then b ← False; else b ← True; end registration.
In Algorithm 1, we define X ← γ 0,t (T t ) as the similarity between M 0 and M t on the trigger set and r ← γ 0,t (R ) the similarity between M 0 and M t on random inputs R . For example, for r = 0.2, M 0 and M t have the same output 20% of the time.

The goal of IsValid is to determine whether M 0 behaves similarly when on the one hand tha actual trigger set T is tested and when on the other hand a set of randomly generated inputs R is tested. We would therefore examine the ratio α = X/r, where X = γ 0,t (T t ) and r = γ 0,t (R ). In our previous example, if we consider the case of r = 0.2 and X = 0.4, we conclude that the behavior of M 0 on the trigger set T t is significantly less random than on random data (the two models have similar outputs 40% of the time on the trigger set, but only 20% of the time on random data). Thus, the uniqueness property of the trigger set is not satisfied and the platform can deny the registration. IsValid is comparing α to α * and return True (so the registration is accepted) only if α ≤ α * .

Uniform similarity assumption

The main assumption of this potential countermeasure is that, for a given classification task, two models have approximately the same behavior on random data (r is approximately the same for any pair of models). Thus, if we consider r as a constant, comparing M t to every previously registered model is similar to comparing M t to M 0 , solely. Hence, in order to reach a cost-effective verification, instead of doing multiple inferences for each pair of models (M t , M tj) where j ∈ N and increasing the verification time, it would be sufficient that the platform compares M t to M 0 , only. In the rest of the paper, we call this assumption the uniform similarity assumption. Under this assumption, we consider a unique similarity between any two models M x and M y on a set I, called average similarity:

ŷ(I) = y x,y (I) (2) 
However, since the uniform similarity assumption might appear as a strong assumption, we consider a second attack called Label-collision attack.

Label-collision attack

In this section, we consider a setting where the MLaaS platform already implements the verification step introduced in the previous section, in order to prevent potential registration attacks. We then observe that this updated platform is still vulnerable against a new watermark forging attack that we call Label-collision attack, when the uniform similarity assumption does not hold. 

Overview

We provide an illustration of the attack in Figure 3. Let A * be an adversary trying to forge a trigger set T * t to potentially claim a future model M t+i without using legitimate data. Similarly to the Registration attack, the goal of the adversary is to maximize the accuracy of the forged trigger set on M t+i , to satisfy the condition acc M t+i (T * t ) ≥ β t . In this case, the adversary could generate a random trigger set and test the elements of this trigger set against previously submitted legitimate models in order to assign their labels for the newly updated model. In more details:

• Step 1: A * is an agent, owning a model M * called adversary's model. We assume that this model has not been stolen and has been trained through a complete legitimate process.

•

Step 2: Before the registration phase, to construct the trigger set, A * generates a set of random inputs, without labels, which constitutes the basis of his forged trigger data set T * .

• Step 3: A * further selects a previously registered model on the platform, M t-j , called a reference model. For every input T * z in T * , the adversary associates the label M t-j (T * z ), through inference queries. In other words, the non-labelled trigger set T * becomes labeled with M t-j 's outputs. Hence, M t-j and M * become similar with respect to T * . We point out that A * cannot claim the ownership of M t-j with T * t since it is impossible to claim a previously registered model.

• Step 4: A * now sends a Register query to the platform with the pair (M * , T * ), to be compared to M 0 . If the uniform similarity assumption holds, IsValid denies the registration. Indeed, compar-ing M * to M 0 is similar to comparing M * to M t-j and an abnormal behavior would be detected. Nevertheless, if this assumption is no more true than the adversary may succeed to register a malicious trigger set T * t . • If the adversary ends up with a successful registration, the platform stores (M * t , T * t ) and the adversary simply sends multiple Veri f y queries for future registered models M t+1 , M t+2 , etc. and obtain the ownership of at least one of them for some conditions on the similarities, developed in the next paragraph.

For notation purposes, we denote the similarity between the reference model and the claimed model γ t-j,t+i = γ re f , the similarity between the adversary's model and the claimed model γ t,t+i = γ claim and the ownership threshold β t,t+i = β claim .

Condition of success for the adversary

To begin with, we first start with the study of the condition for which a malicious trigger set T * t could be registered for a successful adversary. Specifically on T * t , we have γ t-j,0 = γ 0,t (T * t ) by construction of the attack. A * registered its model, so we necessarily have:

γ 0,t (T * t ) γ 0,t < α * γ t-j,0 γ 0,t < α * γ t-j,0 < α * • γ 0,t (3) 
Hence, if the reference model and the baseline model are too similar (i.e γ t-j,0 close to 1), the adversary cannot be successful (the success is conditionned to the upper bound). In the experiments, we present situations for which the adversary A * is not successful to register (M * t , T * t ), based on the error rate ε. Next, we assume the successful registration of the model. We consider the set of all combinations of models (M t-j , M * t , M t+i ) such that the adversary A * is successful for claiming the ownership. If the claim of ownership is true (i.e M * t and M t+i are considered being the same models), then the following condition holds:

acc M t+i (T * t ) ≥ β claim We subtract γ claim on each side: acc M t+i (T * t ) -γ claim ≥ β claim -γ claim We argue that γ re f (T * t ) = acc M t+i (T * t ) since T * t
is labeled through the reference model. Also, the claimed model M t+i has never been trained on the trigger set, so γ re f (T * t ) = γ claim . We obtain:

γ re f -γ claim ≥ β claim -γ claim ( 
4) Thus, we can split the set of all combinations of models (M t-j , M * t , M t-j ) for A * successful into two parts:

Condition γ γ γ re f ---γ γ γ claim ≤ ≤ ≤ ∆ ∆ ∆ σ σ σ
In this case, we have the necessary condition ∆ σ ≥ β claimγ claim . In the experiments, we show that min(β claimγ claim ) > ∆ σ for several distributions of models, hence the adversary is never successful for this case. Condition γ γ γ re f --γ γ γ claim ≥ ≥ ≥ ∆ ∆ ∆ σ σ σ In this case, if we assume that γ re f and γ claim are sampled from the distribution Γ and we define the probability to obtain such a combination as p s :

p s = P(γ re f > γ + σ) • P(γ claim < γ -σ)
p s = 0.0256 (5) In this case, the probability to obtain such a combination is around 2.5% for a single registration. Consequently, we show that the success rate of the adversary for the two case is negligible, even when the uniform similarity assumption does not hold.

Experiments

In this section, we evaluate the performance of the proposed solution. First, we introduce our experimental setup. Later, we implement the aforementioned attacks on the MLaaS platform and assess the success rate of the adversary.

Experimental setup

Datasets. For the evaluation of the platform, we use DNNs trained on the MNIST (LeCun and Cortes, 2010) and CIFAR-10 datasets [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] since they are the most frequently used datasets in the domain of watermark [START_REF] Adi | Turning your weakness into a strength: Watermarking deep neural networks by backdooring[END_REF][START_REF] Szyller | Dawn: Dynamic adversarial watermarking of neural networks[END_REF]):

• MNIST is a handwritten-digit data set containing 70000 28 × 28 images, which are divided into 60000 training set instances and 10000 test set instances. As the trigger data set, we consider to craft T t from the Fashion-MNIST [START_REF] Xiao | Fashionmnist: a novel image dataset for benchmarking machine learning algorithms[END_REF] data set, consisting of 7000 instances.

• CIFAR-10 is a data set that consist of 60000 32 × 32 tiny colour images in 10 different classes, where each class is equally distributed. The data set is divided into 50000 training images and 10000 test images. Furthermore, we employ STL10 data set samples as unrelated watermarking trigger data set. [START_REF] Coates | An analysis of single-layer networks in unsupervised feature learning[END_REF].

Models and the training phase. Details on the models and the training phase of these models are as follows:

• For MNIST, we consider an architecture composed of 2 convolutional layers with 3 fully connected layers, trained with 10 epochs using the Stochastic Gradient Descent (SGD) [START_REF] Yang | Modified convolutional neural network based on dropout and the stochastic gradient descent optimizer[END_REF] optimizer, with a learning rate of 0.1 and a batch size of 64. We obtain 99% of accuracy on legitimate data set and 100% on trigger data set.

• For the CIFAR-10, we use 5 convolutional layers, 3 fully connected layers and max pooling functions. For the training phase, we use Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] with a learning rate of 0.001 for 10 epochs. The accuracy on legitimate data set is around 78% for CIFAR and 100% for the trigger data set.

Hyper-parameters. During the experiments, we consider the size of the trigger set |T | = 100 similarly to the watermarking method in [START_REF] Adi | Turning your weakness into a strength: Watermarking deep neural networks by backdooring[END_REF]. We empirically choose R = 10000 to have a good precision (1e -3) on the similarity measure. The environment. All the simulations were carried out using a Google Colab1 GPU VMs instance which has Nvidia K80/T4 GPU instance with 12GB memory, 0.82GHz memory clock and the performance of 4.1 TFLOPS. Moreover, the instance has 2 CPU cores, 12 GB RAM and 358GB disk space. 

Training data distributions and β threshold

During the experiments, we intend to simulate agents registering their models to the platform. Thus, we train several models with the same architecture and training parameters for two different scenario. First, we consider a scenario, denoted common dataset situation, where all models have been trained on the same data distribution D. In the second scenario, we consider separate datasets situation, where models have been trained on three different data distribution

{D 1 , D 2 , D 3 }. Each of these D i distribution is highly
unbalanced towards a subset of classes to study the impact of unbalanced training dataset on the overall similarity distribution.

For the MNIST dataset, we train 50 models with the aforementioned parameters and 20 models for CIFAR10. According to Table 1, for the common dataset situation we have an average similarity between models for MNIST γ = 0.18 and γ = 0.34 for CIFAR10. We report the standard deviation σ and the difference between the lowest and the highest similarity ∆. The major difference between MNIST and CI-FAR10 models is related to the difference between accuracy values on the legitimate data (99% for MNIST and 78% for CIFAR10).

Regarding the difference between the common dataset scenario and the separate datasets scenario, we observe several points: first, we observe a negligible difference for σ between the two scenarios. We also notice a higher average similarity and higher ∆ for the separate datasets scenario. We conclude that the average similarity assumption (on which the proposed counter-measures rely on) is more justified in the common dataset scenario than in the separate datasets scenario.

Registration attack

To implement this attack, we watermarked 50 DNNs, with different rate τ of legitimate data in the trigger data set, while computing α for τ. For the certification step, a model M 0 is required in order to be used as a baseline. We trained 4 different models for MNIST (respectively 3 models for CIFAR10) with different accuracy on the legitimate dataset to see the efficiency of the registration process in cases where the baseline model has low accuracy. In Figure 4, we present α depending on τ, while comparing the watermarked models with M 0 for both MNIST and CIFAR10. Condition α α α * = = = 1 1 1 Firstly, we consider a naive condition α * = 1. In Figure 4 (a), we observe that the naive condition to reject the trigger set registration (α > α * = 1) is efficient to detect even a small portion of legitimate data set in T t for the MNIST dataset. Furthermore, we observe that the accuracy of the baseline model M 0 has a negligible impact on the value of α. The baseline model with low accuracy leads to higher α scores, which might cause false positives, but does not impact the false negative rate. This means that the adversary A * cannot leverage baseline models with low accuracy to register a malicious trigger data set. Thus, the platform can compute a threshold parameter α * independently from the accuracy of the baseline model.

In Figure 4 (b), the condition α > α * = 1 is not sufficient to detect legitimate instance in the trigger dataset (for τ = 50, we have α * < 1). Especially, for low accuracy baseline, the computation of α appears to be less precise (for τ ∼ 60, we can obtain α < 1). If we consider only the best baseline M 0 , the adversary can choose τ < 0.7 and still register its model, and can obtain the following accuracy: acc M t+i (T * t ) = 0.7•(0.78)+0.3•(0.34) = 64.8% (6) For ε = 1e -10, we obtain the ownership verification threshold β = 0.65, so the adversary is not able to claim the ownership for ε < 1e -10. Condition α α α * = = = 1 1 10 0 0 • • • β β β For τ close to 0 (hence trigger set containing no legitimate instances), we have α * > 1 for some cases. Due to the stochastic behavior of the similarity computation through random images, edge cases can occur corresponding to false positives. To avoid such cases, α * can be chosen between 1 and β, and we consider α * = 10 • β. For MNIST, an adversary can decide to choose τ = 0.3 (i.e injecting 30 legitimate instances in its trigger set), corresponding to α ∼ 1.5. For ε = 1e -10, we obtain α * = 10 • β = 4.5, so the registration is accepted because α < α * . How- ever, the maximum accuracy achievable by the adversary, for an ownership threshold of β = 45%: acc M t+i (T * t ) = 0.3 • (0.98) + 0.7 • 0.18 = 42% < β Hence, even if the trigger set is composed of 30% of legitimate instance, the adversary is not able to claim the ownership of the model. However, the adversary can choose τ = 0.6 (implying α ∼ 4), register its trigger set and obtain the following accuracy:

acc M t+i (T * t ) = 0.6 • (0.98) + 0.4 • 0.18 = 66% > β
The adversary is successful in this case. In the case where the platform intends to decrease ε (in order to increase β), then the threshold parameter will also increase, so the condition α * = 10 • β is not sufficient to prevent the attack.

In the case of CIFAR10, the condition is clearly not sufficient, because it allows a trigger set fully composed of legitimate instances. Observations To begin with, the platform could consider the condition α * = β/γ. For MNIST, this condition prevent the false negatives, while still preventing the success of the attack.

In the case of CIFAR10, we make two observations: on the one hand, we see in Table 1 that the uniform similarity assumption does not hold for CI-FAR10, in both scenario. Thus, comparing with a baseline model M 0 is not efficient (α * < 1 even for large amount of legitimate data). On the other hand, the accuracy on legitimate data is 78%, so the platform could consider choosing ε such that β > 0.78. Thus, even if the trigger set is fully composed of legitimate data, the adversary could never claim the ownership.

From [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], it is known that during the training phase, models converge to similar representations of the data and thus have similar behaviors on random data. Thus, we can argue that for a longer training phase, the models from CIFAR10 will converge to lower similarities and lower σ (similar to the MNIST models).

We showed that the adversary A * is not successful to implement the Registration attack when the counter-measure is implemented.

Label-collision attack

For the label-collision attack, we leverage the difference between models to create a malicious trigger set. To begin with, we evaluate the condition for which the registration is not successful, i.e: γ t-j,0 ≥ α * • γ 0,t (7) According to the previous section, we set α * = β/γ. We consider the worst-case (but still plausible scenario) for the platform, i.e γ 0,t = γ + 2 • σ. For MNIST, we obtain γ t-j,0 > 0.71 and for CIFAR10 γ t-j,0 > 1.4. In this case, the platform is not able guarantee the failure of the adversary for the registration. Thus, the success of the adversary depends on the ownership verification condition and ∆ σ .

According to Table 1, we have ∆ σ ∈ {0.066, 0.084} for MNIST. We notice for all values of ε and for γ claim ∈ [0.1, 0.9] that min(β claimγ claim ) > ∆ σ , for the two scenarios, so in both scenarios, the adversary cannot be successful for any future model M t+i .

According to Table 1, we have ∆ σ = 0.36 for CI-FAR10. We observe, for ε < 1e -16 that the condition min(β claimγ claim ) > ∆ σ is true for γ claim < 0.62. Hence, the platform is able to guarantee the failure of the adversary in the case of γ claim < 0.62. Hence, the only potential cases where the adversary is successful:

• γ re fγ claim ≥ ∆ σ : We show in Section 6 that the probability for the adversary to obtain a combination is around 2.5% for a single registration.

• γ re fγ claim < ∆ σ and γ claim > 0.62. However, the verification threshold β claim > 0.9 for ε = 1e -10, and the adversary cannot be successful to claim the future model M t+i for the CIFAR10 distribution of models.

Finally, we conclude that the success rate of the adversary is negligible and that our counter-measures are efficient against watermark forging in a MLaaS platform.

Related Work

Backdoor attacks [START_REF] Gu | Badnets: Evaluating backdooring attacks on deep neural networks[END_REF][START_REF] Wang | Neural cleanse: Identifying and mitigating backdoor attacks in neural networks[END_REF][START_REF] Tran | Spectral signatures in backdoor attacks[END_REF] are known as the first use of watermarking techniques in the area of machine learning research. Such attacks target supervised machine learning techniques such as deep learning that requires training prior to use. The idea of backdoor attacks is to poison the training process with a particular input called the trigger data set. Once the training process is over, the resulting model becomes vulnerable since they are forced to give manipulated outputs when the triggers are given as the input for predictions. Because the prediction phase operates as expected except the inputs from the trigger data set, they can only be detected by the adversaries who manipulate the training phase [START_REF] Chen | Detecting backdoor attacks on deep neural networks by activation clustering[END_REF]. For instance, such attacks can be used in a scenario, where the adversary tries to gain unauthorized access by embedding watermarks during the training process of a biometric authentication system [START_REF] Wang | Neural cleanse: Identifying and mitigating backdoor attacks in neural networks[END_REF].

Although the first applications of watermarking were used as the attack mechanism for deep learning techniques, Adi et al. [START_REF] Adi | Turning your weakness into a strength: Watermarking deep neural networks by backdooring[END_REF] adopted this approach to introduce a defense mechanism against the model theft. This time, queries extracted from the trigger data are used by the model owner to verify the ownership of the any publicly available model. However, several attacks have been developed to challenge the robustness of this ownership verification mechanism [START_REF] Jia | Entangled watermarks as a defense against model extraction[END_REF][START_REF] Hitaj | Evasion attacks against watermarking techniques found in mlaas systems[END_REF][START_REF] Szyller | Dawn: Dynamic adversarial watermarking of neural networks[END_REF][START_REF] Tramèr | Stealing machine learning models via prediction apis[END_REF]. A particular attack against watermarked DNN models is the watermark forging attack [START_REF] Li | Persistent and unforgeable watermarks for deep neural networks[END_REF][START_REF] Zhu | Secure neural network watermarking protocol against forging attack[END_REF] , where the adversary intends to forge a false proof of ownership, i.e forging a fake trigger set with the same properties as the original trigger set.

The authors in [START_REF] Li | Persistent and unforgeable watermarks for deep neural networks[END_REF] proposed to generate trigger instances through a combination of the original image and a filter. Two different filters are used: a first marker automatically assign the trigger instance to a single target label and a second filter assign the trigger instance to the original label. In these conditions, during the verification phase, a (trusted) third party authority requires the access to the trigger instances and the filter in order to grant or deny the ownership, as opposed to our current work where the instances of the trigger set are not accessible to the authority.

In [START_REF] Zhu | Secure neural network watermarking protocol against forging attack[END_REF], the trigger instances are generated in such a way that they must form a oneway chain, i.e the i th trigger instance is computed from the i -1 th trigger instance through a hash function. Hence, it becomes impossible for the adversary to construct this chain without prior knowledge of the instances. Even though the proposed techniques is efficient against watermark forging, the obtained "chained trigger instances" are similar to noisy instances (images in the paper). Thus, an adversary is able to distinguish legitimate instances from the trigger instances and can avoid the trigger set verification.

As opposed to previous work, we propose counter-measures to watermark forging with no specific constraints on the trigger set instances and without revealing the content of the trigger set to a third party, which appears to be a necessity when its comes to privacy-preserving machine learning.

Conclusion

In this work, we have considered a particular type of attacks, namely the watermark forging attacks. Such attacks consists of crafting a malicious trigger set with the same properties as the original trigger set. Although there exists several defense mechanisms against these attacks, they have several limitations, especially when models are deployed on MLaaS platforms in a privacy-preserving setting, by imposing constraints on the trigger set generation technique for the model owner or granting access privileges to the central authority to inspect the trigger set. In this paper, we proposed counter-measures for these attacks by introducing a verification step called Is-Valid, which is used to assess the validity of a trigger set. Furthermore, we have analyzed the effects of different attack called Label-collision attack in a detailed evaluation using well-known public data sets, namely the MNIST handwritten digit data set (LeCun and Cortes, 2010) and CIFAR-10 tiny color images data set [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. We show that our counter-measures are efficient to prevent the success of an adversary.

Future work might focus on more advanced implementation issues, such as the storage of watermarked models in MLaaS platforms.
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 2 Figure 2: The Registration attack, inserting legitimate data in the trigger set, with the counter-measure IsValid

Figure 3 :

 3 Figure 3: The Label-collision Attack with the counter-measure IsValid
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 4 Figure 4: The registration score α * depending on the legitimate data rate in T t for (a) MNIST and (b) CIFAR10

  t ) to the MLaaS platform. • Sending ownership verification for future models M t+i , to obtain acc M t+i (T * t ) > β t,t+i and such that the agent C t obtains the ownership of the model M t+i of C t+i .
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Table 1 :

 1 Mutual similarity metrics for MNIST and CIFAR10 models when (i) the models are trained on a common dataset and (ii) when trained on separate datasets

	Data set	Scenario	γ	σ	∆
	MNIST	Common data set 0.181 3.3e-2 0.209 Separate data sets 0.184 4.2e-2 0.296
	CIFAR	Common data set 0.348 1.8e-1 0.698 Separate data sets 0.428 1.8e-1 0.713
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