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By using purely analytical techniques, we establish a harmonic mean inequality for the classical exponential integral function.

Introduction

The classical exponential integral function is defined as [1, p. 228]

E(s) = ∞ s e -t t dt = ∞ 1 e -st t dt (1) 
= Γ(0, s)

for s ∈ (0, ∞) where Γ(u, s) is the upper incomplete gamma function defined as Γ(u, s) = ∞ s t u-1 e -t dt.

It satisfies the following properties among others.

E (s) = - e -s s , (2) 
E (s) = e -s s + e -s s 2 = -1 + 1 s E (s). (3) 
For more properties of this special function, one may refer to [START_REF] Abramowitz | Handbook of Mathematical Functions with formulas, Graphic and Mathematical Tables[END_REF], [START_REF] Masina | A review on the Exponential-Integral special function and other strictly related special functions[END_REF] and [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF].

It is often applied in astrophysics, neutron physics, quantum chemistry as well as other applied sciences. Due to its importance, it has been studied in diverse ways. See for instance [START_REF] Bhandari | On some inequalities involving Turan-type inequalities[END_REF], [START_REF] Chiccoli | Recent Results for Generalized Exponential Integrals[END_REF], [START_REF] Nantomah | A Generalization of the Exponential Integral and Some Associated Inequalities[END_REF], [START_REF] Salem | A q-analogue of the exponential integral[END_REF], [START_REF] Sroysang | On the n-th Derivative of the Exponential Integral Functions[END_REF], [START_REF] Sulaiman | Turan Inequalities for the Exponential Integral Functions[END_REF] and [START_REF] Yakubu | A p-analogue of the exponential integral function and some properties[END_REF].

In the present work, we continue the investigation. Specifically, our objective is to establish a harmonic mean inequality for the function. For harmonic mean inequalities involving other special functions, the interested reader may refer to [START_REF] Alzer | A harmonic mean inequality for the digamma function and related results[END_REF], [START_REF] Bouali | A harmonic mean inequality for the q-gamma and q-digamma functions[END_REF], [START_REF] Gautschi | A harmonic mean inequality for the gamma function[END_REF], [START_REF] Matejicka | Proof of a Conjecture On Nielsens β-Function[END_REF], [START_REF] Nantomah | Certain Properties of the Nielsens β-Function[END_REF], [START_REF] Nantomah | Harmonic Mean Inequalities for Hyperbolic Functions[END_REF], [START_REF] Yildirim | Monotonicity Properties on k-Digamma Function and its Related Inequalities[END_REF], [START_REF] Yin | Monotonicity, concavity, and inequalities related to the generalized digamma function[END_REF].

Results

We begin with the following auxiliary results. Lemma 2.1. For s ∈ (0, ∞), the inequality

E(s) + E(1/s) ≥ 2Γ(0, 1) (4) 
is satisfied, with equality when s = 1.

Proof. The case for s = 1 is self-evident. Hence let

K(s) = E(s) + E(1/s) for s ∈ (0, 1) ∪ (1, ∞). Then s K (s) K(s) = sE (s) - 1 s E (1/s) = e -1 s -e -s = h(s).
Then h(s) < 0 if s ∈ (0, 1) and h(s) > 0 if s ∈ (1, ∞). Hence K(s) is decreasing on (0, 1) and increasing on (1, ∞). In either case, we have

K(s) > lim s→1 K(s) = 2Γ(0, 1)
which completes the proof of the lemma. Lemma 2.2. For s ∈ (0, ∞), the inequality

E(s)E(1/s) ≤ Γ 2 (0, 1) (5) 
is satisfied, with equality when s = 1.

Proof. The case for s = 1 is self-evident. Hence let L(s) = E(s)E(1/s) for s ∈ (0, 1) ∪ (1, ∞). Then

se s e 1/s L (s) L(s) = e s E(s) -e 1/s 1 s E(1/s) = v(s).
Now let α(s) = e s E(s). Then by using the fact that E(s) < e -s /s for all positive s (see [START_REF] Jameson | The real exponential integrals[END_REF]), we conclude that

e -s α (s) = E(s) - e -s s < 0.
Hence α(s) is decreasing on (0, ∞). Consequently, v(s) > 0 if s ∈ (0, 1) and v(s) < 0 if s ∈ (1, ∞). Thus, L(s) is increasing on (0, 1) and decreasing on (1, ∞). In either case, we have

L(s) < lim s→1 L(s) = Γ 2 (0, 1)
which completes the proof of the lemma.

We now state the main results of this paper in the following theorem.

Theorem 2.3. For s ∈ (0, ∞), the inequality

2E(s)E(1/s) E(s) + E(1/s) ≤ Γ(0, 1) (6) 
is satisfied, with equality when s = 1.

First Proof. By applying Lemma 2.1 and Lemma 2.2, we obtain 2E(s)E(1/s)

E(s) + E(1/s) ≤ 2E(s)E(1/s) 2Γ(0, 1) ≤ Γ 2 (0, 1) Γ(0, 1) = Γ(0, 1)
which completes the proof.

Second Proof. The case for s = 1 is self-evident. Hence let

M(s) = 2E(s)E(1/s) E(s)+E(1/s) and λ(s) = ln M(s) for s ∈ (0, 1) ∪ (1, ∞). Then λ (s) = E (s) E(s) - 1 s 2 E (1/s) E(1/s) - E (s) -1 s 2 E (1/s) E(s) + E(1/s) which implies that s [E(s) + E(1/s)] λ (s) = s E (s) E(s) E(1/s) - 1 s E (1/s) E(1/s) E(s).
This further implies that

s 1 E(s) + 1 E(1/s) λ (s) = s E (s) E(s) - 1 s E (1/s) E(1/s) := ∆(s).
Now let p(s) = sE (s) E 2 (s) for s ∈ (0, ∞). Then by using ( 2) and (3), we obtain

E 3 (s)p (s) = E(s)E (s) + sE(s)E (s) -2(E (s)) 2 = e -s E(s) + 2e -s E (s).
Furthermore, by using (1), we obtain

E 3 (s) e -s p (s) = E(s) + 2E (s) = ∞ 1 e -st t dt -2 ∞ 1 e -st dt = ∞ 1 1 t -2 e -st dt < 0.
Hence, p (s) < 0 which shows that p(s) is decreasing for all s ∈ (0, ∞). By the decreasing property of p(s), we arrive at the conclusion that ∆(s) > 0 if s ∈ (0, 1) and ∆(s) < 0 if s ∈ (1, ∞). Thus, λ (z) > 0 if s ∈ (0, 1) and λ (s) < 0 if s ∈ (1, ∞). These mean that, M(s) is increasing on (0, 1) and decreasing on (1, ∞). In either case, we have M(s) < lim s→1 M(s) = E(1) = Γ(0, 1) which completes the proof.