Development of the Integrated Approach on the impact of the Climate Adaptive Building Shells, on the Performance and Energy Efficiency of Building

Liiia Isyk

To cite this version:

HAL Id: hal-03220304
https://hal.science/hal-03220304
Submitted on 11 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Development of the Integrated Approach on the impact of the Climate Adaptive Building Shells on the Performance and Energy Efficiency of Building

Liliia ISYK

Abstract. The consolidation of environment, and technology represents an ample conjunction of developed and innovative elements to serve the landscape. Construction performance depends not only on the operation of individual elements in the building but also on how they behave as integrated approach to satisfy the user demands. In architecture, projects are contained of different phases of architecture process, and several factors need to be considered among this cycle, such as climate, building shape, comfort levels, materials and systems, occupant health and security. Climate Adaptive Building Shells are important, as they are starting point of energy efficiency measures, the main determinant of the amount of energy required for heating, cooling and ventilation.

Keywords. Climate Adaptive Building Shells, Energy Efficiency, Building and Environment, Sustainable Architecture, Facade Design

Objectives

The objective of our research is to generate an integrated approach on the performance and energy efficiency of buildings. Discovering potential of CABS, by establishing the connection between optimization techniques and adaptive, rather than static building shells. The focus is not on the eccentricities of individual cases, but the problem is approached from a general perspective.

In our investigation we use the following definition:

A climate adaptive building shell has the ability to repeatedly and reversibly change some of its functions, features or behavior over time in response to changing performance requirements and variable boundary conditions, and does this with the aim of improving overall building performance.

Research project will contain of the investigation of the changing of CABS in the performance and variable boundary conditions. To do this, we will create a research model and after, we will develop a strategy to proceed with making a simulation, in according to the certain criteria. All the simulations will be focused mainly to measure the density, surface absorptance, thermal capacity, thermal conductivity, window to wall ratio, in the two positions of the research model: long-term adaptation and short-term adaptation. After the simulations all the data will be collected, organized and structured into the tables, and diagrams to be able to analyze the new knowledge on the performance and energy efficiency of buildings. Based on the results and outcomes of our investigation, we will determine and create an integrated approach.

1. Ph.D. student, and young researcher, Lusofona University of Humanities and Technologies, Lisbon, Portugal, lisyk.lilia@gmail.com
State of Art

Improvements in design and construction of building shells plays an important role in recent efforts that aim to connect the gap from current practice towards meeting our future energy saving targets. Notwithstanding the fact that good progress has been made, these attempts usually do not get around the status quo that building shells are typically designed as static elements in a dynamic environmental context. By being static or fixed, the conventional building shell has no means of responding to the changes in weather conditions throughout the day and throughout the year, and the variable nature of occupants’ preferences. In contrast, climate adaptive building shells (CABS) do offer the ability of actively moderating the exchange of energy across a building’s enclosure over time. By doing this in a sensible way, in response to prevailing meteorological conditions and comfort needs, it introduces good energy saving opportunities. A growing interest in CABS therefore speculates on an added value on top of passive design solutions, and considers the concept as one of possible ways to accomplish the shift towards net zero energy buildings. The concept of CABS is referred to by a multitude of ambiguous terms, including: active, intelligent, dynamic, interactive, smart etc.

Current progress in the field of CABS is characterized by fragmented developments; either driven by specific advances in material science (e.g. switchable glazing, adaptable thermal mass and variable insulation), or originating from creative processes in design teams. Literature on CABS in relation to building performance simulation (BPS) shows the same degree of fragmentation, as it mainly deals with performance evaluations of specific case-studies such as: dynamic thermal insulation, and smart windows. Despite these efforts, it remains unclear what type of building envelope behavior, actually results in the best building performance.

Within research settings, it has been demonstrated recurrently that the application of optimization techniques as a design aid, can move building performance beyond the level of “trial-and-error” designs. Initially, these developments led to the specification of generic design rules, derived on the basis of simplified building models. The advent of more efficient optimization algorithms, and the continuing trend of increasing computational power, now also enables optimization studies to be performed at a higher level of detail.

First results of the Research Project

Figure 1 shows the results of the whole-year simulation. In this graph, each dot represents a single building shell design. A solution is said to be Pareto optimal if, and only if it is not dominated in one or two directions by any other solution, in the decision variable space (Wang et al., 2005). In Figure 1 these Pareto designs are indicated in red.

From Figure 1, we observe a rather sparse cloud, and thus a relatively quick convergence towards optimal solutions. In addition, the plot shows a smooth trade-off curve. This means that many compromise points are feasible, and that it is up to the design team to make a rational decision, by taking their preferences into account.
Whereas the scatter plot provides a clear overview of performance aspects, it gives no insights in terms of the design space. Figure 2 shows results for the same optimization run, but this time in a plot with parallel coordinates. In this figure, each line represents a single building design. The five left-most axes in the graph show the design parameters under evaluation. The two right-most axes show the performance that is associated with each of these input sets. By using the technique of ‘brushing’ (Martin and Ward, 1995), a sub-selection of the multi-dimensional space can be visualized. This type of analysis proved to be useful in facilitating more insights in the mapping from input parameters to performance space.
By contrasting the results with lowest energy demand to those with lowest number of overheating hours, Figure 3 and Figure 4 respectively, show that the designs with high levels of comfort tend not to coincide with those that result in low energy consumption. This result indicates the existence of conflicting goals, and the inability to meet them simultaneously. Likewise, complementary analysis also revealed that there exists a disparity between designs with low heating and low cooling energy demand. Decision-makers looking for well-balanced annual trade-offs will likely find their solution of preference located in the knee-point area of the Pareto set. This outcome indicates that performance of static building shells is at best only a good compromise for the whole year. In turn, it gives rise to the hypothesis that even the best static building shells can be outperformed by CABS.

Observations

Based on the optimization study for the best performing static building shell design, the following observations can be made: The results of optimization tend to end up in the limits of the option space. Careful specification of possible parameter ranges is thus of primary importance.

The best performing building shell needs to make compromises in order to satisfy performance requirements throughout the whole year. This signals clear opportunities for the use of CABS. In the next section, the performance of the best static building shells will be compared to the performance of a CABS that is able to adjust its behavior at relatively long time-scales.
References


Martin AR, Ward MO (1995) High dimensional brushing for interactive exploration of


