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ABSTRACT 

Owing to their evolutionary potential, plant pathogens are able to rapidly adapt to 

genetically-controlled plant resistance, often resulting in resistance breakdown and major 

epidemics in agricultural crops. Various deployment strategies have been proposed to 

improve resistance management. Globally, these rely on careful selection of resistance 

sources and their combination at various spatio-temporal scales (e.g. via gene pyramiding, 

crop rotations and mixtures, landscape mosaics). However, testing and optimising these 

strategies using controlled experiments at large spatio-temporal scales is logistically 

challenging. Mathematical models provide an alternative investigative tool, and many have 

been developed to explore resistance deployment strategies under various contexts. This 

review analyses 67 modelling studies in light of specific model structures (e.g. demographic 

or demo-genetic, spatial or not), underlying assumptions (e.g. whether pre-adapted 

pathogens are present before resistance deployment) and evaluation criteria (e.g. resistance 

durability, disease control, cost-effectiveness). It highlights major research findings and 

discusses challenges for future modelling efforts. 

Key words: adaptation, durability, evolution, host-microbe interaction, immunity, simulation.  
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Introduction: Why we need to manage resistance deployment 

and how models can help 

Deployment of plant resistance is a relatively low input, cost-effective way to protect 

agricultural crops from plant pathogens (67, 125). Plant resistance has been used in plant 

breeding programs to control diseases of various crops (e.g. (4, 6, 58)). However, pathogens 

have frequently evolved to quickly break down resistance following field deployment (37, 51, 

106), sometimes resulting in catastrophic epidemics and massive use of pesticides. High 

pathogen evolutionary potential, coupled with the standardisation and intensification of 

modern agriculture across large cultivated areas has generally led to recurrent cycles of 

resistance deployment followed by rapid pathogen adaptation, often described as boom and 

bust cycles (78). When the resistance of a cultivar becomes ineffective, economic losses can 

be considerable because of the direct impact of epidemics and the cost of alternative control 

methods. Moreover, breeding for resistance is costly, time consuming and often constrained 

by the limited availability of genetic resistance sources (40, 147). Resistance genes should 

therefore be considered as an exhaustible resource deserving careful stewardship. 

The design and implementation of strategies that improve resistance durability would 

therefore be of great benefit to agricultural productivity, sustainability and profitability. 

However, a key point is that resistance durability and epidemiological control are not 

necessarily correlated (13, 52). Thus, any strategy designed to control the emergence of 

resistance-adapted pathogens in agro-ecosystems has the potential to conflict with epidemic 

control both in the short-term (from standing pathogenic variants) and the long-term, should 

resistance break down.  

Pathogen spread and adaptation is favoured by the low host genetic diversity that is 

representative of intensive agricultural systems (124). Therefore, many proposed strategies 

rely on the selection of diverse resistance sources and their spatio-temporal deployment to 

engineer biodiverse cropping systems (9, 13, 77, 84, 125). The goal is to confront pathogens 

with eco-evolutionary challenges and thus avoid or delay their adaptation to plant resistance, 

while maintaining effective epidemiological protection (15, 147). Particularly for airborne 

plant pathogens, deployment strategies are more likely to be effective if implemented across 

landscapes at large spatial scales (40). However, experimental tests of landscape-based 

strategies are rarely feasible for obvious practical reasons (but see (26, 57, 150)). 

To overcome the difficulties of experimentation with plant resistance deployment at 

large spatio-temporal scales, numerous mathematical models have been developed (see 

sidebar: “Complementarity between models, experiments and observations”). However, 

models are typically faced with the challenge of combining several aspects of resistance 

deployment (e.g. type of plant-pathogen interaction; spatio-temporal scale of deployment; 

section 1), incorporating realistic parameters and assumptions with respect to 

epidemiological and evolutionary processes (section 2), and generating usable outputs 

(section 3). In this review, we identified 67 studies that used models to assess or optimise 
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deployment strategies (Table 1 & details in Supplemental Table S1). Our aim is to provide a 

comprehensive overview of these modelling approaches, noting that the diversity of model 

structures, assumptions and outputs make direct comparisons difficult. Regardless, we 

examine their main features from both epidemiological and evolutionary perspectives and 

highlight major findings of relevance to resistance durability and epidemiological control.   

1. Modelling resistance deployment from gene to landscape 

scales 

The main strategies considered in plant resistance deployment act across scales from 

genes to landscapes. They rely on the appropriate choice of resistance sources, which can be 

combined in the same cultivar (gene pyramiding), alternated within rotations, mixed within 

fields, or segregated across a mosaic of fields (Figure 1). Since these have been extensively 

described in previous reviews (9, 13, 84, 125, 147), we focus on mathematical models 

developed to assess, compare and improve these strategies (Table 1 & Supplemental Table 

S1). We note that the evolutionary processes underlying pathogen and pest adaptation to 

plant resistance are analogous to those associated with the emergence of resistance to 

chemicals. Therefore, the deployment strategies we consider have counterparts for the 

management of resistance to pesticides in crops, drugs used for the treatment of animals and 

humans, as well as vaccines (for reviews see (109, 110, 128, 136)). 

 Choosing appropriate resistance sources 

The smallest scale that impacts deployment lies in the choice of resistance sources to 

be deployed. Plant resistance has often been classified as either qualitative complete or 

quantitative partial, although considerable empirical evidence suggests that this dichotomy 

should be revised (see sidebar: “Should the traditional dichotomy of plant resistance be 

reconsidered?”). 

Modelling qualitative and quantitative resistance 

Qualitative resistance usually refers to ‘major resistance genes’, which code for specific 

host proteins able to recognise a specific pathogen molecular pattern or effector. Such ‘gene-

for-gene’ interactions are traditionally modelled using a 2-by-2 matrix describing the 

occurrence of disease as an outcome of the interaction between host genotype (with or 

without the resistance gene) and pathogen genotype (non-adapted or adapted) (34) (Figure 

2d). Only resistance-adapted pathogens can infect resistant hosts. Depending on whether or 

not they are present in the initial pathogen population, they may have to appear (e.g. via 

immigration from distant areas, mutation or recombination, section 2B). In this context, 

pathogen adaptation leads to resistance breakdown, i.e. complete restoration of pathogen 

infectivity on resistant hosts. However, adaptation is often penalised by a fitness cost on 

susceptible hosts (59, 67, 139), resulting in decreased ability of resistance-adapted 

pathogens to infect susceptible hosts compared to non-adapted genotypes (130). Inclusion 

of a fitness cost parameter makes the plant-pathogen interaction matrix (Figure 2b) relevant 
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for both the ‘gene-for-gene’ (Figure 2d) and ‘matching allele’ (Figure 2e) concepts (1, 116, 

129). Indeed, the classic matching allele concept states that pathogen adaptation to a new 

host makes infection of the other host impossible (i.e. the fitness cost is maximal). 

Quantitative resistance traditionally refers to the additive effects of multiple ‘minor 

resistance genes’, resulting in a continuous distribution of pathogen adaptation (20, 90, 123). 

From the plant perspective, pathogen adaptation corresponds to an erosion phenomenon (9, 

78, 105) (Figure 2ac). Quantitative resistance is classically considered to be partially efficient, 

i.e. resistant hosts can be infected by maladapted pathogens, although disease development 

is reduced. Models with compartmental architecture (section 2A) can disentangle the effect 

of partial resistance on different pathogenicity traits: plant infection rate by pathogen 

propagules (e.g. fungal or bacterial spores, insect vectors carrying viral particles), latent and 

infectious periods, and propagule production rate (Figure 3a). According to the few modelling 

studies which have compared the performance of quantitative resistance against different 

pathogenicity traits, from a disease management perspective, the most promising target trait 

for quantitative resistance is latent period, followed by infection rate and propagule 

production rate (72, 113). 

However, qualitative resistance is not always complete, and quantitative resistance is 

not necessarily partial (see the sidebar titled “Should the traditional dichotomy of plant 

resistance be reconsidered?”). For example, many qualitative resistance genes actually allow 

some infection, whether they may be partially broken down, environmentally sensitive, 

developmentally-regulated, or simply weak (19, 91, 123). In models, inclusion of a resistance 

efficiency parameter in the plant-pathogen interaction matrix (Figure 2b) allows the 

representation of partially efficient qualitative resistance.  

Deployed resistance sources must be inherently hard to break down 

One of the few models accounting for the molecular mechanisms of pathogen 

adaptation to resistance highlighted the effect of the number, nature (transition or 

transversion) and rate of the required mutations and associated fitness costs on the 

durability of major resistance genes (31). The impact of mutation rate and fitness cost has 

also been demonstrated in models focusing on phenotypic aspects of qualitative resistance 

((32, 33, 111); see also section 2B). Similarly, for quantitative resistance, models indicate that 

strong fitness costs of pathogen adaptation slow down resistance erosion (72, 101, 103). 

However, resistance erosion is sensitive to pathogen mutational processes (i.e. the number 

of mutations required to completely erode quantitative resistance) (8). Collectively, these 

results support the importance of identifying and deploying resistance sources that are 

inherently hard to break down. These findings have been confirmed experimentally for plant 

viruses (49, 78, 108). 

High resistance efficiency (i.e. the targeted pathogenicity trait is drastically reduced for 

maladapted pathogens) reduces pathogen epidemiological impact (104, 113, 118). However, 

the effect of this parameter on resistance durability is less well documented, probably 
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because it is generally associated with quantitative resistance, for which defining durability 

is still a challenge (section 3B). A study on pesticide resistance showed that high application 

doses slow the appearance of adapted pathogens, but hasten their invasion once present 

(45). These conclusions agree with results obtained for partially efficient major genes when 

resistance-adapted pathogens are initially present (21, 107). 

 Spatio-temporal strategies for deploying different resistance sources 

Resistance genes can be combined at plant scale 

Multiple resistance sources can be stacked into a single plant genotype, as a “pyramid” 

(29, 35, 82). Although different resistance types can be combined, published models have 

mostly focused on pyramids of major resistance genes (Figure 3b). In line with theoretical 

predictions (9, 67, 84) and results obtained with single genes (section 1A), models have shown 

that the durability of this strategy increases with the number of mutations required to break 

down all the genes composing the pyramid, and the strength of associated fitness costs (28, 

31, 111, 113). However, durability of pyramids can be compromised if pyramid gene 

components are simultaneously deployed individually (73, 117) or if pathogens adapted to 

one or more of these components are already present in the population (73) (see also section 

2B). Pyramid cultivars must therefore be deployed carefully, especially because their 

breakdown results in the emergence of multi-adapted pathogens. 

Extensive empirical evidence has demonstrated the efficacy of combining qualitative 

and quantitative resistance in a pyramid (11, 85, 98, 108) but few models have investigated 

these scenarios. These models have shown that the breakdown of a major resistance gene 

can be delayed when pyramided with the appropriate quantitative resistance. Promising 

target traits include latent period (113) and pathogen effective population size (i.e. the size 

of an idealized population showing the same degree of randomness in allele frequencies as 

the real population, noting that small effective sizes amplify genetic drift; section 2B) (114). 

Several sources of quantitative resistance may also be pyramided (60, 123). The only model 

investigating this scenario highlighted the potential of targeting pathogenicity traits whose 

evolution is constrained by trade-offs (i.e. evolution to improve one trait penalises another 

trait) (8).  

Resistance genes can be segregated at field and landscape scales 

At field scale, varieties carrying different resistance sources (or resistant and susceptible 

varieties) can be cultivated in the same patch, simultaneously in mixtures or alternating within 

rotations. Crop varieties can also be segregated into a mosaic of fields within a broader 

regional strategy (78, 84). Furthermore, varying the different components of mixtures, 

rotations and mosaics, their relative proportions and their spatial (for mixtures and mosaics) 

or temporal (for rotations and mosaics) organisation offer a multitude of deployment options 

(Figure 4). 
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The value of combining cultivars in mixtures or mosaics is likely to increase with the 

number and heterogeneity of components. Given fitness costs of pathogen adaptation to 

different hosts, heterogeneous host populations are expected to favour diversifying selection, 

i.e. to select for higher pathogen specialization (5). This should result in reduced disease 

spread owing to (i) a dilution effect (i.e. reduced colonization rate of a specialized pathogen 

in host cultivars to which it is adapted due to increased distance among these hosts, with the 

remainder of the host population acting as a propagule sink), (ii) a barrier effect (i.e. hosts of 

a given genotype acting as physical barriers to pathogen spread owing to their architecture); 

and (iii) a competition effect (i.e. different pathogen genotypes competing for the same host 

individual) (14, 54, 143). In accordance with empirical results (38, 48), models confirm the 

potential for dilution effects by showing that the amount of disease in mixtures is often 

smaller than the arithmetic mean of the amount of disease obtained from these components 

in pure stands (50, 53, 65, 66, 118). Assuming fitness costs of adaptation to different 

components, models have also demonstrated that higher numbers of mixture components 

amplify dilution effects (28, 80) and delay the emergence of multi-adapted pathogens 

through competition with more specialised pathogens (44, 61, 65). In addition to dilution, 

barrier and competition effects, mixtures and to a lesser extent mosaics may facilitate plant 

immune system activation via various mechanisms including induced resistance (149). 

Induced resistance (for any kind of pathogen) or cross protection (for viruses) can occur when 

a cultivar becomes resistant to a resistance-adapted pathogen when previously challenged 

by a non-adapted pathogen coming from another cultivar (148). The only model we are 

aware of that has investigated induced resistance in mixtures highlighted the impact of the 

size of the area protected by induced resistance, and of the duration and level of protection 

on disease reduction (64). 

In practice, the spatial organisation of a mixture is often linked to the degree of 

heterogeneity of its components. Multiline cultivars differing in only a few genes (10), non-

fixed populations showing high genetic diversity (e.g. landraces), and mixtures of different 

cultivars from the same species (143) may be sown after mixing seeds, resulting in completely 

random mixtures. Conversely, intercropping different species (7), as well as some cultivar 

mixtures, often require planting in blocks or rows to facilitate crop segregation at harvest (83, 

150). Accordingly, mixtures are qualitatively similar to mosaics (hence the term “field mosaic” 

sometimes used), the main difference being the average distance between components (the 

size of a genetic unit), noting that this distance must match the scale of pathogen dispersal 

for effective disease management (41, 119). In fact, results obtained from studies of mixtures 

and mosaics are likely to be highly correlated (86). This is especially true for non-spatial 

models where the scale of host population structure could be interchangeably represented 

as a field or a landscape (Table 1). 

Models have found that when resistance-adapted pathogens are initially absent, high 

proportions of resistant hosts in a field or broader region with low aggregation of cultivars (or 

weak connectivity between hosts of a given cultivar) favour good disease control (39, 47, 72, 



8 
 

96, 99, 103, 104, 111, 118, 122, 127, 138, 146). However, intermediate proportions of 

resistant cultivars are often preferable when adapted pathogens are initially present, with 

the precise proportion that maximises disease control being sensitive to their initial frequency 

(32, 94). This U-shape effect is in line with the effect of the proportion of resistance on its 

durability (17, 103, 111, 135). The U shape is attributable to the fact that high proportions of 

resistance considerably reduce pathogen population size (resulting in a low probability of 

appearance of adapted mutants), while small proportions minimise selection pressure and 

reduce the probability that an adapted pathogen successfully disperses to a resistant field. 

With respect to spatial aggregation, in contrast to its effect on disease control, well-mixed 

landscapes (i.e. low aggregation) tend to have a higher probability of resistance breakdown, 

as this increases the interface between resistant and susceptible components, and thus the 

exposure of resistant hosts to potential adapted pathogens emerging from susceptible 

cultivars (17, 103, 111).  

The effect of cultivar rotations on resistance durability is less well documented than 

the effect of mixtures and mosaics, especially in models. Nevertheless, one expectation is that 

for each rotation cycle, the number of components, their degree of heterogeneity and 

temporal sequence all affect pathogen survival (equivalent to dispersal in time; (12)) in a 

conceptually analogous way to pathogen spatial dispersal in mixtures and mosaics. 

Accordingly, models predict that resistance will be more durable when used in small 

proportion (92) and with a rapid turnover (111) within the temporal sequence. Furthermore, 

while most landscape-scale studies use a static landscape (i.e. crop allocation to fields is 

fixed), some models have demonstrated that resistance deployment can be improved by 

temporal variation in the proportion of resistance in the landscape (28, 33, 70). This finding 

emphasises the potential of dynamic mosaics where the number and spatial location of 

resistant fields vary in time (Figure 4). 

In addition to the strategies discussed above, resistance deployment can benefit from 

complementary control methods (83). Any control method which reduces the effective or 

census size of the pathogen population (e.g. chemical applications, biological control, removal 

of infected crop residues and other agronomic practices) should increase resistance 

durability, provided that the pathogen does not adapt to this additional control method (16).  

The diversity of resistance types, spatio-temporal scales of deployment and 

complementary control methods result in an extensive range of possibilities whose 

combinations merit further investigation. Based on the few results from modelling studies, 

some combinations are expected to maximize both epidemiological control and resistance 

durability, like rotations and mosaics (28, 33, 111) or rotations and mixtures (145). Other 

combinations are yet to be explored, like those involving different types of resistance (e.g. 

complete and partial, qualitative and quantitative) at different spatio-temporal scales via 

pyramids (Figure 3), mosaics, mixtures and rotations (Figure 4). Models are powerful tools to 
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assess and compare deployment options. Nevertheless, a clear understanding of their 

structure and assumptions is essential to make appropriate interpretations and comparisons. 

2. Model structure and assumptions 

Following the long-standing tradition of compartmental models in theoretical 

epidemiology (55), diverse models have been developed to investigate resistance 

deployment. They are mainly distinguished by how the genetic and spatio-temporal 

structures of host and pathogen populations are modelled and how epidemiology and 

evolution are accounted for.  

 Modelling epidemics 

The basic ‘SIR model’ consists of a set of coupled non-linear ordinary differential 

equations (ODE) representing the temporal dynamics of S(t), I(t) and R(t), respectively the 

numbers of ‘susceptible’ (i.e. healthy in this context), ‘infected’ and ‘removed’ (i.e. 

epidemiologically inactive) individuals in the host population (75). For pathogens such as 

viruses that trigger systemic infection, host individuals are often entire plants. For other 

pathogens such as fungi that trigger localised clonal lesions, individuals may be considered as 

plant tissue units such as a leaf or part thereof (Supplemental Table S1). If the basic SIR model 

considers a population of genetically identical hosts, compartmental models can handle 

several host genotypes by including dedicated compartments for each plant cultivar. Such 

models remain purely demographic from the pathogen perspective, as a single pathogen 

strain characterised by a unique set of pathogenicity traits (e.g. transmission rate, infection 

rate; see section 1A) is considered (Table 1a). ODE naturally apply to tropical crops with 

continuous planting and harvest throughout the year. Nevertheless, seasonality of temperate 

climates (as well as cultivar rotations, section 1B) can be represented in semi-discrete models. 

They undergo continuous ODE dynamics, and experience discrete dynamics at given time 

points, typically at pathogen overwintering ((76); see also Supplemental Table S1). Regardless 

of their structures, ODE rely on a deterministic framework where a set of given inputs 

invariably yields the same outputs. However, epidemic dynamics as well as pathogen 

demography are impacted by uncertainty affecting individual life events (demographic 

stochasticity) or imposed by the environment (environmental stochasticity) (67). 

Demographic stochasticity is typically important during the initial phase of an epidemic. Using 

stochastic SIR models is then a way to account for the probability of epidemic extinction when 

the number of infected hosts is small. 

 Accounting for pathogen evolution 

Addressing questions about resistance durability requires modelling of pathogen 

evolution. Historically, theoretical studies of pathogen evolution mainly relied on the 

framework of adaptive dynamics (25). Assuming that a single pathogen strain is present at its 

endemic steady state, the method determines under what conditions a second mutant strain, 

introduced at low frequency, will invade the population. Adaptive dynamics supposes that 
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epidemiological and evolutionary processes do not interfere with each other or act at 

different time-scales. It essentially focuses on long-term predictions for endemic diseases and 

has been used to study pathogen evolution in response to resistance deployment (Table 1b). 

For example, the effect of resistance genes targeting different pathogenicity traits on the 

evolution of virus multiplication rates has been investigated (134, 137). Through computation 

of stable evolutionary equilibria, it is possible to resolve evolutionary trade-offs like those 

between virulence (in this context, virulence refers to host damage caused by pathogen 

infection) and transmission (36, 131), survival and transmission (131), generalism and 

specialisation (102). However, in agro-ecosystems, interest is generally focused on short-term 

epidemics, which impacts both pathogen population size and composition. Day and Proulx 

(24) and Day and Gandon (23) introduced a framework to simultaneously model the dynamics 

of epidemics and evolution for any pathogenicity trait. This approach, termed evolutionary 

epidemiology, is inspired by quantitative genetics and is well suited to model the evolution of 

quantitative traits. To date, it has been applied to study the erosion of quantitative resistance 

targeting different pathogenicity traits (27, 72). 

As for plant cultivars, multiple pathogen strains are considered in multi-strain 

compartmental models. By doing so, models explicitly switch from demographic to demo-

genetic representations of the pathogen population (Table 1c). Many models solely consider 

the effect of selection, and assume that all pathogen genotypes are initially present, with 

adapted genotypes initially present at low frequencies. These assumptions ignore the time 

required for the appearance and establishment of adaptive mutations in pathogen 

populations (135). While this may be an acceptable assumption for pathogens with large 

population sizes, it can considerably overestimate the speed of adaptation of pathogens with 

smaller effective population sizes, especially for strategies involving gene pyramids (section 

1B). 

A further step is to explicitly model the effects of mutation or migration on the 

establishment of resistance-adapted pathogens that are initially absent. Taking into account 

the classical genetic mutation rate (number of genetic mutations/generation/nucleotide) is 

difficult as it requires correct identification of the genetic architecture (number, type, location 

and phenotypic effects of genetic mutations) underlying phenotypic trait variation. Presently, 

this knowledge is only considered for virus adaption to major resistance genes using the 

concept of mutation-selection balance (28, 32, 33). For most pathogens, the links between 

genotype and phenotype are ignored. Most models instead consider a phenotypic mutation 

rate representing a displacement into the pathogen phenotypic space (e.g. (8, 72, 73, 96, 

113)). Empirically largely unknown, this rate theoretically integrates the phenotypic effects of 

genetic mutations into the multi-dimensional space of pathogenicity traits as well as 

potential correlations within and between host genotypes. Immigration of pathogen strains 

from external sources has also been considered as an alternative source of new genetic 

variants (71, 135). While the rate of appearance of new genetic variants via mutation depends 
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on the size of the pathogen population, with immigration this rate is generally constant and 

independent of the epidemiological status of the system.  

Besides mutation, genetic recombination (occurring during virus replication, bacterial 

conjugation, transformation and transduction, or fungal sexual cycle), also generates new 

variants. For example, recombination can accelerate pathogen adaptation via the re-

assortment of adaptive mutations controlled by independent loci. This enables the 

emergence of multi-adapted pathogens and thus favours the breakdown of resistance 

pyramids. Thus, ignoring its role can result in severe bias (2). Only few models (70, 117, 144) 

included recombination to study the emergence of multi-adapted genotypes of a pathogen 

having one sexual phase at the beginning of each cropping season (Table 1). 

Demographic stochasticity shapes the effect of these evolutionary processes and can 

be dealt with stochastic models. This is of particular importance when (i) events are 

inherently rare (e.g. due to low mutation rates), and (ii) pathogen population size is low (e.g. 

just after a mutant strain appears). Therefore, depending on subtle interactions between 

effective population size (Ne), selection coefficient (s) and mutation rate (), the evolutionary 

dynamics of a population can be mainly deterministic or stochastic (115). For example, if 

𝑁𝑒 × µ ≪ 1, the waiting time of mutations conferring adaptation could be substantial and is 

thus subjected to large random fluctuations that can hardly be ignored if adapted pathogens 

are initially absent. If 𝑁𝑒 × 𝑠 ≪ 1, genetic drift generates random fluctuations in pathogen 

genetic diversity, with the potential to purge variants regardless of their selective value. Most 

models reviewed here ignore the effect of genetic drift (Table 1). Dealing with such 

evolutionary force requires specific consideration of Ne and its variation, especially 

bottlenecks from which only some individuals will be randomly sampled and survive to 

reproduce (18). Lo Iacono, et al. (71) used the size of the infected host population as an 

indirect proxy of such variation, whereas other authors have explicitly modelled bottlenecks 

occurring at crop harvest and during the off-season (73, 103, 113, 144, 145), during intra-

plant movement in viral infection (114) and during viral transmission by insect vectors (31). 

 Representing the spatial structure of host populations.  

In non-spatial models (Table 1), each infected individual is equally likely to establish an 

infectious contact with any other healthy individual, regardless of its geographic location. 

Accounting for space is critical for accurate assessment of deployment strategies relying on 

the spatial segregation of different cultivars (e.g. mixtures and rotations, section 1B), 

especially when the pathogen disperses primarily at short distances compared to field size.  

New compartments leading to more realistic contact structures between individuals can 

be introduced in spatially-implicit models. A metapopulation of well-mixed host patches 

where pathogen spread rates differ within and between patches provides a typical example 

(42). Addressing this question more deeply requires spatially-explicit approaches, where 

pathogen dispersal is represented using reaction-diffusion equations (RDE; (46)) or via 

dedicated kernels (89) within integro-differential equations (IDE). Notably, dispersal kernels 
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allow explicit representation of long-distance infection events (79). In any case, variables of 

interest depend on a vector of spatial coordinates x in addition to time t (e.g. S(t,x), I(t,x)), 

providing a straightforward way to investigate the effect of habitat geometry (e.g. spatial 

aggregation, section 1B). Stochastic models are often used to randomly segregate pathogen 

propagules across different landscape elements. They are also used to explicitly consider 

environmental stochasticity associated with random fluctuations of cultivar allocations (73, 

145), or pesticide treatments (71, 96) year after year in different parts of the landscape. 

3. Model outputs: criteria to assess deployment strategies 

As described for fungicide application (136), assessment of resistance deployment 

strategies depends strongly on evaluation criteria. Importantly, the objectives of different 

stakeholders (e.g. growers, breeders) are not always compatible. Indeed, minimising 

epidemiological impacts, maximising resistance durability, and minimising costs of disease 

management are all sensible targets that may lead to different optimal strategies (103, 111, 

135). This section considers potential key variables used in models (Table 1 & Supplemental 

Table S1) for assessing resistance deployment strategies from epidemiological, evolutionary 

and socio-economic perspectives.  

 Epidemiological outputs 

Epidemiological outputs characterise the ability of deployment strategies to reduce 

disease impact in a given region over a given time period (15). In the field, disease impact is 

classically evaluated using the proportion of infected hosts (disease prevalence; (75)) or a 

quantitative assessment of symptoms on infected hosts (disease severity; (75)). In models, 

disease impact is usually measured by the proportion of infected individuals (i.e. infection 

units, Section 2A), equating to prevalence when an individual is a single plant, or severity 

when an individual is an infection site. Thus, prevalence and severity can only be distinguished 

when plant architecture is explicitly modelled in terms of number of infection sites per plant 

(e.g. (39, 144-146)). Because prevalence and severity change in time, the challenge is to 

summarize them using representative point estimates to compare different deployment 

options. One approach focuses on epidemiological status at the end of a given period (118, 

122, 127) or at stable evolutionary equilibrium (80, 94, 134, 137). Another approach relies on 

the integration of prevalence or severity over time into an area under disease progress curve 

(AUDPC; (28, 32, 33, 111, 113)). 

Alternatively, the number of infected hosts can be deduced from the number of healthy 

hosts (94, 100, 134, 137). Similar to the computation of AUDPC, the dynamic of healthy hosts 

may be integrated over time into a variable representing the cumulative amount of 

photosynthetic tissue, assumed to be proportional to crop growth and yield (141). Modelling 

studies variously refer to this as healthy area duration (HAD; (103)), healthy surface (72, 99, 

104), green leaf area (113) or green area canopy duration (107). Depending on the study 

objectives, AUDPCs and HAD-like variables may be computed for the whole host population 
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or individually for each cultivar (e.g. (107)), and for the whole simulation run or for specific 

periods (e.g. before and after resistance breakdown; (103, 111)). It may be expressed in 

absolute value, or relative to a reference context, for example to assess, compared to a fully 

susceptible landscape, the additional number of healthy hosts resulting from resistance 

deployment (71, 72, 135) or the intensity of epidemics (28, 32, 33). 

Finally, the dynamic of infected hosts in a region can be summarized by other metrics 

like the speed of the epidemic expansion front (121, 133, 138), the total distance travelled 

(104), or the final area covered by epidemics (122, 127).  

 Evolutionary outputs 

Evolutionary outputs mainly assess the ability of deployment strategies to prevent or 

slow down pathogen adaptation and are often summarized by resistance durability. In 

models where pathogen genotypes are classified as non-adapted or adapted (section 1A), 

resistance durability has been calculated using criteria such as the point in time when 

resistant hosts become as severely affected as susceptible hosts (107), when adapted 

pathogens first appear (31), or when their prevalence (56, 111, 113) or frequency in the 

pathogen population (16, 73, 74, 96, 107, 135) exceed an arbitrary threshold. The value of 

this threshold determines which of the three characteristic phases of resistance breakdown 

is targeted. These phases, analogous to an ecological invasion process of the cropping 

landscape by adapted pathogens, consist of: i) introduction via immigration or appearance 

(via mutation, recombination, horizontal gene transfer or sexual reproduction), ii) 

establishment, when extinction becomes unlikely despite potential competition with non-

adapted pathogens, and iii) spread (or propagation) within the formerly resistant host 

population, potentially causing severe yield losses. Thus, model results can be significantly 

impacted by the chosen threshold above which resistance is considered to have been broken 

down (74), but also by model assumptions (e.g. whether or not adapted pathogens are 

initially present; (73); see also section 2B). When several resistance genes are deployed, and 

in particular for pyramid cultivars, resistance durability can also be assessed based on the 

dynamics of the multi-adapted pathogen (21, 44, 65, 66, 111).  

Measuring pathogen adaptation to resistance when it is continuously distributed is still 

a challenge. The few approaches that have been proposed rely on the speed of pathogen 

evolution (102) or of resistance erosion (113), and on the time point when the proportion of 

healthy hosts drops below an arbitrary threshold (16, 101, 103).  

  Socio-economic outputs 

Despite the importance of identifying deployment strategies that are not only efficient 

and durable but also cost-effective and feasible for growers, socio-economic factors are rarely 

accounted for in resistance deployment models. Although planting density, growth rate and 

contribution to crop yield are often assumed to be uniform, this is rarely the case in practice. 

For potato late blight in the Netherlands (96) and blackleg of winter oilseed rape (69, 70), crop 

yield was computed as a function of crop cultivar, disease severity and climatic variables. 
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Accounting for yield enables the resolution of trade-offs between the reduction of damage 

resulting from the use of resistant cultivars and associated costs, like reduced growth (96) or 

smaller yield (140) of resistant varieties. However, yield data are generally not available and 

can be challenging to estimate (or predict), particularly the yield of a cultivar carrying a broken 

down resistance. 

Organisational and social aspects (e.g. feasibility criteria accounting for farming 

practices) of resistance deployment have rarely been considered. Yet, these factors drive 

farmers’ decisions and have considerable impact on the adoption of a deployment strategy, 

as illustrated for potato late blight (95). Milne, et al. (81) predict that adoption of a resistant 

maize cultivar producing a Bacillus-thuringiensis toxin (Bt, offering better protection against 

European corn borers but potentially more expensive to grow) by farmers depends on their 

communication network and sensitivity to risk. In this context, the use of visual interfaces and 

model-based scenarios can help communicate results to the farmer community and stimulate 

stakeholder discussions in workshops on plant resistance management (e.g. (97)). 

General conclusions 

Models of resistance deployment can be used to deliver insights into the 

epidemiological, evolutionary and economic performance of deployment strategies (e.g. gene 

pyramiding, crop rotations, cultivar mixtures, landscape mosaics), at spatio-temporal scales 

beyond the scope of empirical experimentation. However, it is important to note that the 

models reviewed here are not designed to precisely predict resistance durability or the level 

of epidemiological control in real-world systems. Rather their purpose is to identify key 

parameters, provide mechanistic insight into the consequences of different deployment 

strategies and allow decision makers to understand their relative merits (43).    

Given this focus, is it possible to use the models to collectively identify a single ‘best’ 

strategy for resistance deployment? The diversity of assumptions underlying the different 

modelling approaches, of scenarios considered and of evaluation criteria used makes it almost 

impossible to rank strategies. Based on the very few studies that allow such a comparison “all 

other things being equal”, pyramiding seems the most epidemiologically-efficient and 

evolutionarily-durable strategy to deploy complete resistance in the absence of pre-adapted 

pathogen genotypes (73, 111) (Figure 5). However, pyramiding can suffer important 

limitations as (i) it is challenging to effectively identify the existence of pre-adapted genotypes 

that could be maintained at very low frequencies; (ii) other cultivars or wild relatives can 

represent evolutionary steps facilitating the adaptation of the pathogen population; and (iii) 

several precious genetic resources are lost at the same time when a pyramid is overcome. 

Mosaics and rotations are alternative solutions to cope with these limitations and are 

predicted to be more efficient (28, 111) and durable (73) when resistance-adapted genotypes 

are present prior to resistance deployment. In addition, by increasing the overall diversity of 

the crop, these strategies confer a portfolio effect, i.e. increased resilience to other biotic and 

abiotic constraints. These conclusions should not be overgeneralized to any crop production 



15 
 

situation and pathosystem as they have mostly been obtained in specific contexts. This brings 

us face-to-face with the modeler’s dilemma – it is not possible to maximize generality, realism 

and precision in the same model (68).  

To conclude, we argue that there is no universal strategy. The optimal deployment 

approach depends on the desired objective, the epidemiological and evolutionary context, 

and the pathosystem considered, among others. This is in line with what Mundt wrote in a 

recent review (85): “There are multiple approaches to increasing durability of resistance […], 

none of which should be considered inherently superior to the other, and all of which likely 

benefit from being combined”. We hope this review paves the way for future modelling 

investigations towards more efficient, sustainable, cost-effective and feasible deployment of 

plant resistance. 

Summary points 

 During the last twenty years there has been a paradigm shift from the idea of "durable 

resistance" to "durable management of resistance". This implies that durability is no 

longer considered as an intrinsic property of a resistance gene but rather the result of a 

clever combination of effects operating at different scales. Accordingly, plant resistance 

against pathogens must be carefully designed (by breeders) and organised in space and 

time (by farmers) to be both efficient and durable in spite of pathogen evolutionary 

potential.  

 The multiplicity of deployment strategies, resulting from the huge diversity of choices 

made from gene to landscape scales (Figure 1), impedes their comparison with empirical 

experimentation. In this context, models provide powerful tools to explore possible 

deployment options (Figures 2, 3, 4) and can help identify promising strategies (Figure 5) 

which, in turn, may be amenable to experimental verification.  

 The profusion of modelling approaches offers a wide range of possibilities to model 

epidemics while accounting for pathogen evolution and spatiotemporal organisation of 

host plants (Table 1 and Supplemental Table S1). Their epidemiological, evolutionary and 

socio-economic outputs allow the evaluation of deployment options with respect to 

multiple criteria.  

 There is no ‘silver bullet’ deployment strategy: optimal deployment approaches will vary 

depending on the desired objective, the epidemiological and evolutionary context, and 

the pathosystem considered. Any deployment option will have its own advantages and 

drawbacks, thus there is likely to be benefit from hybrid strategies.  

Future challenges 

 Future models should encompass the diversity of plant immunity mechanisms (including 

tolerance, which reduces pathogen-induced host damage without affecting pathogen 

development) and consider the full range of pathogen adaptation mechanisms. 
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 Recognizing that predictions about real world systems often require relatively complex 

models, we must take advantage of computers current capacity to model complex 

resistance deployment scenarios that combine different deployment options and 

complementary control measures at multiple spatio-temporal scales. Such scenarios 

should also include adaptive strategies that are continuously updated based on real-time 

data. 

 A unified modelling framework will help compare deployment strategies “all other things 

being equal”, and understand the impact of ecological, epidemiological, evolutionary and 

genetic factors for a diversity of pathosystems. This is one of the objectives of the model 

landsepi, freely accessible through an R package (112).  

 More efforts should be made to collect and share epidemiological datasets to help 

calibrate and validate models with empirical data.  

 Models must account for socio-economic and organisational constraints of real farming 

systems in order to identify solutions that are both feasible and likely to be adopted by 

breeders and growers. 

 Results and recommendations need to be communicated to relevant stakeholders in a 

way that information is accessible and likely to be acted upon. The use of dedicated 

pedagogical interfaces facilitates such interactions ((97), see also an interface for landsepi 

in Related Resources). 
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Terms and definitions 

 Resistance-adapted pathogen: a pathogen variant adapted to a plant resistance gene. 

Also referred to as “infective”, “virulent” and “resistance-breaking” in other 

contexts.  

 Complete resistance: a resistance which completely blocks the infectious cycle of non-

adapted pathogens (e.g. by preventing infection or the production of propagules). 

 Demographic stochasticity: refers to the intrinsic uncertainty associated with the life 

events of each individual in a population (reproduction, dispersal, mutation, 

death).  

 Deterministic: a framework where a set of given inputs invariably yields the same 

outputs. Deterministic models inform on mean output tendencies.   

 Stochastic: a framework where random events are accounted for. Stochastic models 

inform on mean tendencies and variability of the outputs.  

 Environmental stochasticity: refers to random perturbations imposed to a population 

by its environment. 

 Epidemiological control: reduction in disease impact on the host in a given region and 

during a given period. 

 Fitness: ability to transmit genes to the next generation. Here, pathogen fitness is mostly 

the relative adaptation to different host genotypes. 

 Genotype: here, plant genotype refers to the set of susceptibility/resistance genes, and 

pathogen genotype refers to the set of pathogenicity genes. 

 Maladapted pathogen: a pathogen variant not fully adapted to plant resistance, i.e. 

infection is possible although the resulting disease is reduced. 

 Multi-adapted pathogen: a pathogen variant adapted to several resistance genes. Also 

referred to as “multi-virulent” and “superpathogen” in other contexts.  

 Non-adapted pathogen: a pathogen variant not adapted to plant resistance. Also referred 

to as “avirulent” or “wild-type” in other contexts. 

 Partial resistance: a resistance for which infection by maladapted pathogens is not 

blocked but reduced, resulting in the attenuation of pathogenicity traits. 

 Pathogenicity trait: a measure of pathogen ability to develop and spread (e.g. infection, 

reproduction and survival rates, latent and infectious periods) (62). 

 Phenotype: here it refers to the occurrence (and amount) of disease, and is mostly 

determined by the plant-pathogen-environment interaction.  

 Qualitative: distributed in discrete classes (by homology with statistics). 

 Quantitative: continuously distributed (by homology with statistics). 

 Resistance breakdown: loss of effectiveness (complete or partial, sudden or gradual) of 

plant resistance as a consequence of pathogen adaptation. 

 Resistance durability: Initially defined as “the time during which a given resistance 

remains effective in spite of an environment favourable to disease” (51, 52); the 

term has since gained a wide range of accepted usages (section 3B).  
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Sidebars 

Sidebar 1: Complementarity between models, experiments and observations. 

Numerical experiments performed using computer models represent an alternative way of 

generating results while circumventing logistical, financial, legal and ethical constraints 

associated with traditional experiments in laboratory of field conditions (30). Models are 

powerful tools to predict epidemics and guide disease management. With respect to the use 

of plant resistance, a huge number of deployment strategies can now be tested via such 

models thanks to the growing capacity of modern computers, even if the number of possible 

calculations will always be limited by the “computational cost” (i.e. the time required to 

perform the calculations). However, we are now confronted with the difficulty of 

manipulating, analysing and synthesising results obtained from high dimension systems. And 

more fundamentally, modelling is insufficient on its own. Modellers need empirical 

knowledge and data acquired from experimental and observational approaches in the 

laboratory or the field, to develop their model, calibrate its parameters and validate or test 

its predictions.  

Sidebar 2: Should the traditional dichotomy of plant resistance be reconsidered? 

Plant resistance is traditionally classified into two distinct categories. On one hand, 

qualitative resistance is described as monogenic (conferred by a single ‘major’ resistance 

gene typically coding for an NLR [nucleotide-binding domain leucine-rich repeat containing] 

protein), complete, race-specific (i.e. effective only for some strains of a pathogen species) 

and often considered as non-durable. On the other hand, quantitative resistance is described 

as polygenic (conferred by the additive action of several ‘minor’ resistance genes), partial, 

race non-specific and often hypothesised as durable. However, over-simplification sometimes 

leads to erroneous assumptions, and several excellent reviews have pointed out exceptions 

to this long-standing dichotomy (90, 91, 123), such as the wheat gene Lr34 against rusts and 

the barley gene mlo against powdery mildew (these genes do not belong to the NLR family, 

and confer almost complete, race non-specific and durable resistances). Consequently, we 

think it is important to disentangle the phenotype (complete vs partial), specificity, genetic 

inheritance (monogenic vs polygenic), molecular mechanism and durability of a resistance. 

Furthermore, we argue that pathogen genotypes can be structured qualitatively (i.e. in 

discrete classes: either adapted or not to the resistance) or quantitatively (i.e. continuously: 

more or less adapted). Corresponding modelling approaches are illustrated in Figure 2.   
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Figure legends 

[**Note to Annual Reviews: Figure 1 was originally drawn by the first author of this article 

and was re-designed by GRAPHIC Business at our request. We entirely created figures 2 to 5 

for this article. All figures are not based on any previously published image.**] 

 
Figure 1. Nested scales of plant resistance deployment. A global deployment strategy is the 

combination of: 1) the appropriate selection of effective genetic resistance sources (e.g. 

qualitative or quantitative, complete or partial) and 2) their spatio-temporal deployment at 
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plant, field and landscape scales with the aim of mitigating pathogen spread and evolution. 

Such deployment may be complemented by agronomic practices, biological control and 

chemical treatments. Possible options available at each scale are indicated. 

 
Figure 2. Modelling the phenotype of plant-pathogen interactions for resistance 

deployment. The quantitative description of plant-pathogen interactions provides a general 

framework (a). Parameters of interest in plant resistance deployment are indicated in bold 

blue text. In this depiction, the degree of pathogen adaptation to the resistance source is 

distributed continuously in the population. Gradual pathogen adaptation via continuous 

mutation or n discrete adaptive steps (each step involving one or more genetic mutations) 

results in resistance erosion, with a potential fitness cost (θ) paid on susceptible hosts. When 

the pathogen population is split into two genotypic classes (adapted or non-adapted to the 

resistance), resistance is broken down in a single step (i.e. n=1), resulting in a simple matrix 

which describes a gene-for-gene interaction (b). Independent of the distribution of pathogen 

genotypes, resistance can be partial (i.e. infection is possible with reduced efficiency ρ<1; a 

and b) or complete (i.e. it provides total immunity, ρ=1; c to e). Numbers refer to adaptive 
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dynamic (italic) and demo-genetic (bold) models listed in Table 1 that have used these 

formalisations. Symbol ‘*’ indicates models where resistance-adapted pathogens suffer the 

fitness cost on both susceptible and resistant hosts (21, 72, 92, 93, 107, 117).  
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Figure 3. Modelling resistance deployment options at plant scale. Different resistance types 

have varying phenotypic effects on plants when challenged by a pathogen: lower infection 

and propagule production rates (IR and PR respectively), shorter infectious period (IP), or 

longer latent period (LP). Potentially, all these pathogenicity traits could be completely or 

partially impeded by plant resistance, but in published models complete resistance has 

mostly been associated with infection rate. Different sources of resistance can be stacked into 

the genome of a single plant as a pyramid. Numbers refer to demographic (normal font), 

adaptive dynamic (italic) and demo-genetic (bold) SEIR models listed in Table 1 and 

representing a wide range of pathosystems. 
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Figure 4. Modelling resistance deployment options at field and landscape scales. Field-scale 

strategies mostly include mixtures and rotations, which can vary with regard to the relative 

proportion of each component and their degree of aggregation in space (mixtures) or time 

(rotations). These may be complemented with other control methods (e.g. pesticide 

treatments). Landscape-scale strategies refer to mosaics of fields where resistance is 

deployed in controlled proportions and degree of spatio-temporal aggregation. Numbers 

refer to demographic (normal font), adaptive dynamic (italic) and demo-genetic (bold) models 

listed in Table 1 that have explored these different options. 
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Figure 5. What models tell us about optimal landscape organisations and deployment 

strategies to manage plant resistance with respect to epidemiological and evolutionary 

disease control. Conclusions considerably differ depending on the existence or absence of 

resistance-adapted genotypes in the pathogen population prior to resistance deployment. 

Illustrations are examples of optimal landscape organisations. PY: gene pyramiding; TO: 

turnover of cultivars; RO: cultivar rotation; MI: cultivar mixture; MO: landscape mosaic; 

dynMO: dynamic mosaic; ‘+’ stands for combination. Numbers refer to demographic (normal 

font) and demo-genetic (bold) models listed in Table 1 and representing different 

pathosystems.  
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Table 1. List of mathematical models used to test, optimise or compare plant resistance deployment strategies against pathogens (a & c) or predict 1 

their evolutionary consequences (b). A detailed version is in Supplemental Table S1. 2 
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(a) Purely demographic models 

MI Non-host  DE  no SE no x   (63) 

MI* Non-host  DE  no SE no x   (53, 86-88) 

MI Non-host  IDE  no SE no x   (121) 

MI Non-host  ODE  no SE no x   (127) 

MI Non-host  other  no  no x    (138) 

MO+RO Non-host  other  no SE yes x   (70) 

MI Non-host  RDE+STOCH  no SE no x   (119) 

MO Non-host  STOCH  no SE no x   (99) 

MI Non-host or Partial  DE+STOCH  no SE no x   (39) 

RO Non-host or Partial  ODE  no  no x   (22) 

MO Non-host or Partial  STOCH  no SE no x   (104) 

MO or MO+MI Non-host or Partial  IDE+STOCH  no SE no x   (122) 

MI Partial  ODE  no  no x   (50) 

TO or MI Partial  ODE  no  yes x  
 (56) 

MI* Partial  ODE+STOCH  no  no   x (140) 

MO Partial  ODE+STOCH  no  no x  x (120) 

MO Partial  other  no SE yes x   (47) 

(b) Demo-genetic models of adaptive dynamics 

RO Non-host Continuous ODE S-M no  yes  x  (131) 

Pure stand or MO Non-host or Partial Continuous ODE S-M no  no  x  (36) 

MO Partial Continuous DE S-M no SE no  x  (102) 

MI* Partial Continuous ODE S-M no  no  x  (132) 

Pure stand Partial Continuous ODE S-M no  no x x  (134, 137) 
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(c) Demo-genetic models 

MO Non-host or Complete Classes ODE S-M no SE yes x x x (95, 96) 

MO or MO+PY Non-host or Complete Classes ODE S-M no SE yes x  x (97) 

TO or MO or PY or 

MO+PY 
Complete Classes IDE+STOCH S-M-D yes/no SE yes  x  (73) 

MI* or MI*+PY Complete Classes ODE S yes  no x   (94) 

MO Complete Classes ODE S yes SI yes x   (32) 

MO or dynMO Complete Classes ODE S yes SI yes x x  (33) 

MI* Complete Classes ODE S-I-M yes/no  no x x  (135) 

MO or dynMO or 

PY or dynMO+PY 
Complete Classes ODE S-M yes SI yes x   (28) 

RO Complete Classes ODE S-M yes  yes x   (92, 93) 

MO+PY Complete Classes 
ODE (within plant) 

STOCH (between plant) 
S-M-D no  no  x  (31) 

MO or MI Complete Classes ODE+STOCH S-I-M-D yes  no x    (71) 

MI Complete Classes other S yes  no   x  (44) 

TO or MO or PY or 

MO+PY 
Complete Classes other S yes SI yes   x  (74) 

MI* Complete Classes other S-M yes  no  x  (126) 

MI or MI+PY Complete Classes RDE S-R only single mutants SE yes x x  (117) 

MO Complete Classes STOCH S-M no SE no  x  (142) 

MO or MI or RO or 

PY 
Complete Classes STOCH S-M-D no SE yes x x  (111) 

MO Complete Continuous STOCH S-M-D no SE yes x x  (103) 

MI Complete+Induced R Classes DE  yes SE no x   (64) 

MI Complete or Partial Classes ODE S yes  no x x  (80) 

MI Complete or Partial Classes STOCH S-M no SI no x x  (17) 

MO or MI Complete or Partial Classes or Continuous IDE S-M no  no x   (72) 

MI or MI+PY 
Complete or 

Complete+Partial 

Classes or 

Classes+Continuous 
DE S yes  no  x  (61) 

MI* or MI*+PY 
Complete or 

Complete+Partial 
Classes STOCH S-M-D yes  no x   (114) 

MO or MO+PY 
Complete or Partial or 

Complete+Partial 

Classes or Continuous 

or Classes+Continuous 
STOCH S-M-D no SE yes x x  (113) 
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MI Non-host or Partial Classes STOCH S yes/no SE no x   (146) 

RO Non-host or Partial Continuous ODE S-M no  yes x x x (3) 

MI Partial Classes DE S yes SE yes x x  (65, 66) 

MI* Partial Classes ODE S yes  yes x x  (107) 

PY+Fungicides Partial Classes ODE S-M no  yes  x  (16) 

MI Partial Classes other S yes/no  no x  x (133) 

MI Partial Classes RDE S yes SE no x   (118) 

Pure stand or RO 

or RO+PY 
Partial Classes STOCH S-R yes  yes x x  (21) 

MI or MI+RO Partial Classes STOCH S-D yes SE yes x   (145) 

PY+MI Partial Classes STOCH S-R-D only single mutants SE yes  x  (144) 

Pure stand Partial Continuous IDE S-M no  no  x  (27) 

Pure stand or PY Partial Continuous STOCH S-M no  no x x  (8) 

MO Partial Continuous STOCH S-M-D no SE yes  x  (101) 
a TO: turnover, MO: mosaic, dynMO: dynamic mosaic, MI: mixture, RO: rotation, PY: pyramiding. Symbol ‘+’ stands for combination, and symbol ‘*’ indicates models 3 

where mosaics and mixtures cannot be distinguished. 4 
b Resistance may be completely or partially efficient. ‘non-host’ is indicated when a cultivar is completely resistant to a pathogen without evolution (i.e. the pathogen 5 

can never adapt and infect such host). Symbol ‘+’ stands for combination. 6 
c A distribution in classes refers to qualitative resistance (to which a pathogen adapts via a sudden breakdown), a continuous distribution refers to quantitative 7 

resistance (to which a pathogen gradually adapts via erosion). Symbol ‘+’ stands for combination.  8 
d DE: difference equations, ODE: ordinary differential equations, IDE: integro-differential equations, RDE: reaction-diffusion equations, STOCH: stochastic equations 9 

(accounting for demographic stochasticity). Symbol ‘+’ stands for combination. 10 
e S: selection, I: immigration, M: mutation, D: genetic drift, R: recombination 11 
f SE: spatially-explicit, SI: spatially-implicit, blank for non spatial models. 12 
g seasonality refers to a periodic host dynamic imposing a recurrent reduction in pathogen population size (but not necessarily with genetic drift).  13 
h Epidemiological, evolutionary and socio-economical outputs used in modelling studies, relative to plant health and pathogen population size, pathogen population 14 

genetic composition, and crop yield or economic profit, respectively.15 
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SUPPORTING INFORMATION 16 

Table S1. List of mathematical models used to test, optimise or compare plant resistance 17 

deployment strategies against pathogens of cultivated crops, or predict their evolutionary 18 

consequences. Table S1 is a comprehensive version of Table 1 including additional details, 19 

for every modelling study, on: 20 

- the pathosystem considered; 21 

- the deployment strategy (e.g. scale of host population and infection unit, numbers of 22 

host and pathogen genotypes, number of resistance sources) 23 

- model structure (e.g. continuous or discrete-time, sources of demographic and 24 

environmental stochasticity, state variables, fitness cost of pathogen adaptation and 25 

of plant resistance); 26 

- model outputs. 27 


