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Abstract

Jump functions are the most-studied non-unimodal benchmark in
the theory of randomized search heuristics, in particular, evolutionary
algorithms (EAs). They have significantly improved our understand-
ing of how EAs escape from local optima. However, their particular
structure – to leave the local optimum one can only jump directly to
the global optimum – raises the question of how representative such
results are.

For this reason, we propose an extended class Jumpk,δ of jump
functions that contain a valley of low fitness of width δ starting at
distance k from the global optimum. We prove that several previ-

ous results extend to this more general class: for all k ≤ n1/3

lnn and

δ < k, the optimal mutation rate for the (1 + 1) EA is δ
n , and the

fast (1 + 1) EA runs faster than the classical (1 + 1) EA by a factor
super-exponential in δ. However, we also observe that some known
results do not generalize: the randomized local search algorithm with
stagnation detection, which is faster than the fast (1 + 1) EA by a
factor polynomial in k on Jumpk, is slower by a factor polynomial in
n on some Jumpk,δ instances.

Computationally, the new class allows experiments with wider fit-
ness valleys, especially when they lie further away from the global
optimum.
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�Laboratoire d’Informatique (LIX), CNRS, École Polytechnique, Institut Polytechnique
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1 Introduction

The theory of randomized search heuristics, which is predominantly the the-
ory of evolutionary algorithms, has made tremendous progress in the last
thirty years. Starting with innocent-looking questions like how the (1 + 1)
evolutionary algorithm ((1 + 1) EA) optimizes the OneMax function (that
associates to any bitstring in {0, 1}n the number of ones it contains), we
are now able to analyze the performance of population-based algorithms,
ant colony optimizers, and estimation-of-distribution algorithms on various
combinatorial optimization problems, and this also in the presence of noisy,
stochastic, or dynamically changing problem data.

This progress was made possible by the performance analysis on simple
benchmark problems such as OneMax, linear functions, monotonic func-
tions, LeadingOnes, long paths functions, and jump functions, which al-
lowed to rigorously and in isolation study how EAs cope with certain diffi-
culties. It is safe to say that these benchmark problems are a cornerstone of
the theory of EAs.

Regarding the theory of EAs so far (and we refer to Section ?? for a short
account of the most relevant previous works), we note that our understanding
of how unimodal functions are optimized is much more profound than our
understanding of how EAs cope with local optima. This is unfortunate since
it is known that getting stuck in local optima is one of the key problems
in the use of EAs. This discrepancy is also visible from the set of classic
benchmark problems, which contains many unimodal problems or problem
classes, but much fewer multimodal ones. In fact, the vast majority of the
mathematical runtime analyses of EAs on multimodal benchmark problems
regard only the jump function class.

Jump functions are multimodal, but have quite a particular structure.
The set of easy-to-reach local optima consists of all search points in Hamming
distance k from the global optimum. All search points closer to the optimum
(but different from it) have a significantly worse fitness. Consequently, the
only way to improve over the local optimum is to directly move to the global
optimum. This particularity raises the question to what extent the existing
results on jump functions generalize to other problems with local optima.

The particular structure of jump functions is also problematic from the
view-point of experimental studies. Since many classic EAs need time at least
nk to optimize a jump function with jump size k, experiments are possible
only for moderate problem sizes n and very small jump sizes k, e.g., n ≤ 160
and k = 4 in the recent work [?]. This makes it difficult to paint a general
picture, and in particular, to estimate the influence of the jump size k on the
performance.
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To overcome these two shortcomings, we propose a natural extension of
the jump function class. It has a second parameter δ allowing the valley of low
fitness to have any width lower than k (and not necessarily exactly k). Hence
the function Jumpk,δ agrees with the OneMax function except that the
fitness is very low for all search points in Hamming distance k−δ+1, . . . , k−1
from the optimum, creating a gap of size δ (hence Jumpk,k is the classic jump
function Jumpk).

Since we cannot discuss how all previous works on jump functions ex-
tend to this new benchmark, we concentrate on the performance of the
(1 + 1) EA with fixed mutation rate and two recently proposed variations,
the (1 + 1) FEAβ and the random local search with robust stagnation de-
tection algorithm [?]. Both were developed using insights from the classic
Jump benchmark.

Particular results: For all k ≤ n1/3

lnn
and all δ ∈ [2..k], we give a precise

estimate (including the leading constant) of the runtime of the (1 + 1) EA
for a broad range of fixed mutation rates p, see Lemma ??. With some more
arguments, this allows us to show that the unique asymptotically optimal
mutation rate is δ/n, and that already a small constant-factor deviation
from this value (in either direction) leads to a runtime increase by a factor
of exp(Ω(δ)), see Theorem ??. The runtime obtained with this optimal
mutation rate is lower than the one stemming from the standard mutation
rate p = 1/n by a factor of Ω((δ/e)δ). These runtime estimates also allow to
prove that the fast (1 + 1) EA with power-law exponent β yields the same
runtime as the (1 + 1) EA with the optimal fixed mutation rate apart from
an O(δβ−0.5) factor (Theorem ??), which appears small compared to the gain
over the standard mutation rate. These results perfectly extend the previous
knowledge on classic jump functions.

We also conduct a runtime analysis of the random local search with ro-
bust stagnation detection algorithm (SD-RLS∗). We determine its runtime
precisely apart from lower order terms for all δ > 2 and k ≤ n − ω(

√
n)

(Theorem ??). In particular, we show that the SD-RLS∗, which is faster
than the fast (1 + 1) EA by a factor polynomial in k on Jumpk, is slower by
a factor polynomial in n on some Jumpk,δ instances. All runtime results are
summarized in Table ??.

Our experimental work in Section ?? shows that these asymptotic runtime
differences are visible already for moderate problem sizes.

Overall, we believe that these results demonstrate that the larger class
of jump functions proposed in this work has the potential to give new and
relevant insights on how EAs cope with local optima.
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Algorithm Jumpk Jumpk,δ with k ≤ n1/3

lnn

(1 + 1) EA with optimal MR Θ(( k
n
)−k( n

n−k )n−k) [?] (1 + o(1))( en
δ

)δ
(
k
δ

)−1
[Theorem ??]

(1 + 1) FEAβ O(Cβ
n/2k

β−0.5( k
n
)−k( n

n−k )n−k) [?] O(Cβ
n/2δ

β−0.5( en
δ

)δ
(
k
δ

)−1
) [Theorem ??]

SD-RLS∗
(
n
k

)
(1 +O( k2

n−2k
ln(n))) [?] (1 + o(1))

(
ln(R)

∑δ−1
i=1

∑i
j=0

(
n
j

)
+
(
n
δ

)(
k
δ

)−1)
[Theorem ??]

Table 1: Summary of the runtimes of the algorithms studied in this paper
on classic and our jump functions

2 State of the Art

To put our work into context, we now briefly describe the state of the art
and the most relevant previous works. Started more than thirty years ago,
the theory of evolutionary computation, in particular, the field of runtime
analysis, has first strongly focused on unimodal problems. Regarding such
easy problems is natural when starting a new field and despite the sup-
posed ease of the problems, many deep and useful results have been obtained
and many powerful analysis methods were developed. We refer to the text-
books [?, ?, ?, ?] for more details.

While the field has not exclusively regarded unimodal problems, it cannot
be overlooked that only a small minority of the results discuss problems with
(non-trivial) local optima. Consequently, not too many multimodal bench-
mark problems have been proposed. Besides sporadic results on cliff, hurdle,
trap, and valley functions or the TwoMax and DeceivingLeadingBlocks prob-
lems (see, e.g., [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]) or custom-tailored example
functions designed to demonstrate a particular effect, the only widely used
multimodal benchmark is the class of jump functions.

Jump functions were introduced in the seminal work [?]. The jump func-
tion with jump parameter (jump size) k is the pseudo-Boolean function that
agrees with the OneMax function except that the fitness of all search points
in Hamming distance 1 to k−1 from the optimum is low and deceiving, that
is, increasing with increasing distance from the optimum. Consequently, it
comes as no surprise that simple elitist mutation-based EAs suffer from this
valley of low fitness. They easily reach the local optimum (consisting of all
search points in Hamming distance exactly k from the optimum), but then
have no other way to make progress than by directly generating the global
optimum. When using standard bit mutation with the classic mutation rate,
this takes an expected time of nk(1 − 1/n)−(n−k) ≥ nk. Consequently, as
proven in [?], the expected runtime of the (1 + 1) EA is Θ(nk) when k ≥ 2
(for k = 1, the jump function equals OneMax and thus is unimodal). For
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reasonable ranges of the parameters, this bound can easily be extended to the
(µ+ λ) EA [?]. Interestingly, as also shown in [?], comma selection does not
help here: for large ranges of the parameters, the runtime of the (µ, λ) EA is
the same (apart from lower order terms) as the one of the (µ+ λ) EA. This
result improves over the much earlier exp(Ω(k)) lower bound of [?, Theo-
rem 5].

For the (1 + 1) EA, larger mutation rates can give a significant speed-
up, which is by a factor of order (1 − o(1))(k/e)k for k = o(

√
n) and the

asymptotically optimal mutation rate p = k/n. A heavy-tailed mutation op-
erator using a random mutation rate sampled from a power-law distribution
with exponent β > 1 (see [?, ?] for earlier uses of random mutation rates)
obtains a slightly smaller speed-up of Ω(k−β+0.5(k/e)k), but does so with-
out having to know the jump size k [?]. In [?, ?, ?], stagnation-detection
mechanisms were developed which obtain a speed-up of O((k/e)k), hence
saving the k−β+0.5 factor loss of [?], also without having to know the jump
size k. These works are good examples showing how a mathematical run-
time analysis can help to improve existing algorithms. We note that the
idea to choose parameters randomly from a heavy-tailed distribution has
found a decent number of applications in discrete evolutionary optimization,
e.g., [?, ?, ?, ?, ?, ?, ?, ?, ?, ?].

Jump functions are also the first example where the usefulness of crossover
could be proven, much earlier than for combinatorial problems [?, ?, ?, ?, ?]
or the OneMax benchmark [?, ?, ?, ?, ?]. The first such work [?], among
other results, showed that a simple (µ + 1) genetic algorithm using uniform
crossover with rate pc = O( 1

kn
) has an O(µn2k3 + 22kp−1

c ) runtime when
the population size is at least µ = Ω(k log n). A shortcoming of this result,
noted by the authors already, is that it only applies to uncommonly small
crossover rates. Exploiting also a positive effect of the mutation operation
applied to the crossover result, a runtime of O(nk−1 log n) was shown for
natural algorithm parameters by Dang et al. [?, Theorem 2]. For k ≥ 3,
the logarithmic factor in the runtime can be removed by using a higher
mutation rate. With additional diversity mechanisms, the runtime can be
further lowered to O(n log n+ 4k), see [?]. The (1 + (λ, λ)) GA with optimal
parameters optimizes Jumpk in time O(n(k+1)/2k−Ω(k)) [?], similar runtimes
result from heavy-tailed parameter choices [?, ?].

With a three-parent majority vote crossover, among other results, a run-
time of O(n log n) could be obtained via a suitable island model for all
k = O(n1/2−ε) [?]. A different voting algorithm also giving an O(n log n)
runtime was proposed in [?]. Via a hybrid genetic algorithm using as varia-
tion operators only local search and a deterministic voting crossover, an O(n)
runtime was shown in [?].
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Outside the regime of classic evolutionary algorithms, the compact ge-
netic algorithm, a simple estimation-of-distribution algorithm, has a runtime
of O(n log n + 2O(k)) [?, ?]. The 2-MMASib ant colony optimizer was re-
cently shown to also have a runtime of O(n log n) when k ≤ C ln(n) for a
sufficiently small constant C [?]. Runtimes of O

(
n
(
n
k

))
and O

(
k log(n)

(
n
k

))
were given for the (1 + 1) IAhyp and the (1 + 1) Fast-IA artificial immune
systems, respectively [?, ?]. In [?], the runtime of a hyper-heuristic switch-
ing between elitist and non-elitist selection was studied. The lower bound
of order Ω(n log n) + exp(Ω(k)) and the upper bound of order O(n2k−1/k),
however, are too far apart to indicate an advantage or a disadvantage over
most classic algorithms. In that work, it is further stated that the Metropolis
algorithm (using the 1-bit neighborhood) has an exp(Ω(n)) runtime on jump
functions.

Finally, we note that two variants of jump functions have been proposed,
namely one where the global optimum can be any point x∗ with ‖x‖1 >
n− k [?] and a multi-objective variant [?].

3 Preliminaries

3.1 Definition of the Jumpk,δ Function

The Jumpk function, introduced by Droste, Jansen and Wegener in [?], is
defined as

Jumpk(x) =

{
‖x‖1 if ‖x‖1 ∈ [0..n− k] ∪ {n},
−‖x‖1 otherwise,

where ‖x‖1 =
∑n

i=1 xi is the number of 1-bits in x ∈ {0, 1}n. See the graph
in Figure ?? for an example. We note that the original definition in [?] uses
different fitness values, but the same relative ranking of the search points.
Consequently, all algorithms ignoring absolute fitness values (in particular,
all algorithms discussed in this work) behave exactly identical on the two
variants. Our definition has the small additional beauty that the jump func-
tions agree with the OneMax function on the easy parts of the search space.

The Jumpk function presents several local optima (all points of fitness
n− k). Therefore, the Jumpk function allows one to analyze the ability of a
given algorithm to leave a local optimum.

However, when stuck in a local optimum, the only way to leave it is to
flip all the bad bits at once, in a very unlikely perfect jump that lands exactly
on the global optimum. We speculate that this does not represent real-life
problems on which evolutionary algorithms are to be applied. Indeed, in such
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Figure 1: Profile of the Jump6 function.

problems local optima may exist, but usually they do not require perfection
to be left.

To remedy this flaw, we propose a generalization of Jumpk, by defining
for δ ∈ [1..k] the Jumpk,δ function via

Jumpk,δ(x) =

{
‖x‖1 if ‖x‖1 ∈ [0..n− k] ∪ [n− k + δ..n],

−‖x‖1 otherwise

for all x ∈ {0, 1}n.
The local optimum is still at Hamming distance k from the global op-

timum, but the gap now has an arbitrary width δ ≤ k. In particular, we
observe the specific cases Jumpk,k = Jumpk and Jump1,1 = OneMax. We
also introduce the parameter ` := k− δ. This way, n− ` is the fitness of the
closest individual to the local optimum that has better fitness. We note that
in the classification of the block structure of a function of unitation from [?],
the function Jumpk,δ consists of a linear block of length n − k + 1, a block
that for elitist algorithms starting below it is equivalent to a gap block of
length δ, and another linear block of length k − δ.

The main difference with Jumpk is that with Jumpk,δ, there are sig-
nificantly more ways to jump over the valley from the local optima. This
necessarily has consequences for the performance of evolutionary algorithms,
as the most time-consuming phase of the optimization (jumping over the fit-
ness valley) is now significantly easier. More precisely, from a local optimum
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Figure 2: Profile of the Jump16,6 function.

the closest improving fitness layer contains not only 1, but
(
k
δ

)
points with

better fitness. Therefore, we intuitively expect evolutionary algorithms to
be faster on Jumpk,δ by a factor of

(
k
δ

)
. In the following sections, we will

consider evolutionary algorithms whose performance of Jumpk is known, and
study their runtime on Jumpk,δ, to see if they do benefit from this intuitive
speedup. We note, however, that also often points above the fitness valley
can be used to cross the valley, which hindered us from conducting a precise
analysis for all parameter values.

3.2 Stochastic Domination

As we will see later on, the proposed generalization of the Jump functions
significantly complexifies the calculations. To ease reading, whenever possi-
ble, we will rely on the notion of stochastic domination to avoid unnecessar-
ily complicated proofs. This concept, introduced in probability theory, has
proven very useful in the study of evolutionary algorithms [?]. We gather in
this subsection some useful results that will simplify the upcoming proofs.

Definition 1. Let X and Y be two real random variables (not necessarily de-
fined on the same probability space). We say that Y stochastically dominates
X, denoted as X � Y , if for all λ ∈ R, Pr[X ≥ λ] ≤ Pr[Y ≥ λ].

An elementary property of stochastic domination is the following.
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Lemma 2. The following two conditions are equivalent.

(i) X � Y .

(ii) For all monotonically non-decreasing function f : R → R, we have
E[f(X)] ≤ E[f(Y )].

Stochastic domination allows to phrase and formulate the following use-
ful version of the statement that better parent individuals have better off-
spring [?, Lemma 6.13].

Lemma 3. Let x, x′ ∈ {0, 1}n such that ‖x′‖1 < ‖x‖1, and p ∈ [0, 1
2
]. Let y

(resp. y′) be the random point in {0, 1}n obtained by flipping each bit of x
(resp. x′) with probability p. Then, ‖y′‖1 � ‖y‖1.

4 The (1 + 1) EA with Fixed Mutation Rate

The so-called (1 + 1) EA is one of the simplest evolutionary algorithms. We
recall its pseudocode in Algorithm ??. The algorithm starts with a random
individual x ∈ {0, 1}n, and generates an offspring x′ from x by flipping each
bit with probability p. The parameter p is called the mutation rate, and
is fixed by the operator. If the offspring is not worse, i.e., f(x′) ≥ f(x),
the parent is replaced. If not, the offspring is discarded. The operation is
repeated as long as desired.

Algorithm 1: (1 + 1) EA with static mutation rate p maximizing
a fitness function f : {0, 1}n → R
1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 Optimization;
4 repeat
5 Sample y ∈ {0, 1}n by flipping each bit in x with probability p;
6 if f(y) ≥ f(x) then
7 x← y

8 until Stopping condition;

A natural question when studying the (1 + 1) EA on a given fitness
function is the determination of the optimal mutation rate. The asymp-
totically optimal mutation for the (1 + 1) EA on OneMax was shown to
be 1

n
[?]. This result was extended to all pseudo-Boolean linear functions
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in [?] and to the (1 + λ) EA with λ ≤ lnn [?]. The optimal mutation rate
of the (1 + 1) EA optimizing LeadingOnes is approximately 1.59

n
[?], hence

slightly larger than the often recommended choice 1
n
. In contrast to these

results for unimodal functions, the optimal mutation rate for Jumpk was
shown to be p = k

n
(apart from lower-order terms); further, any deviation

from this value results in an exponential (in k) increase of the runtime [?].
It is not immediately obvious whether this generalizes to Jumpk,δ; in this
section we prove that it does under reasonable assumptions on k, δ, n.

4.1 General Upper and Lower Bounds on the Expected
Runtime

We denote by Tp(k, δ, n) the expected number of iterations of the algorithm
until it evaluates the optimum. We first obtain general bounds on this ex-
pected value. In the Jumpk,δ problem, as in the particular Jumpk problem,
the key difficulty is to leave the local optimum. To do so, the algorithm has
to cross the fitness valley in one mutation step by flipping at least δ bits.
The probability of this event will be crucial in our study.

Definition 4. Let i, j ∈ [0..n]. We define Fi,j(p) as the probability that,
considering an individual x satisfying ‖x‖1 = i, its offspring x′ derived by
standard bit mutation with mutation rate p satisfies ‖x′‖1 ≥ j.

For all k, δ, n ∈ N such that 0 < δ ≤ k ≤ n, we will let F (p) denote
Fn−k,n−k+δ(p) to ease the reading.

The following is well-known and has been used numerous times in the the-
ory of evolutionary algorithms. For reasons of completeness, we still decided
to state the result and its proof.

Lemma 5. For all k, δ, n ∈ N such that 0 < δ ≤ k ≤ n, and denoting
` = k − δ, we have

F (p) =
∑̀
j=0

n−k∑
i=0

(
k

δ + i+ j

)(
n− k
i

)
pδ+2i+j(1− p)n−δ−2i−j.

Moreover, if p ≤ 1
2
, then for any i ≤ n− k, Fi,n−`(p) ≤ F (p).

Proof. Let Ai := {x ∈ {0, 1}n : ‖x‖1 = i} for all i in [0..n]. Consider an
iteration starting with x ∈ An−k. Let y ∈ {0, 1}n be the offspring generated
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from x. For all j ∈ [0..k − δ], we compute

Pr[y ∈ An−`+j] =
n−k∑
i=0

Pr[we flipped i 1 bits and δ + i+ j 0 bits of x]

=
n−k∑
i=0

(
k

δ + i+ j

)
pδ+i+j(1− p)k−δ−i−j

(
n− k
i

)
pi(1− p)n−k−i.

Since the sets (Ai)i∈[n−`..n] are disjoint, we have

F (p) = Pr[y ∈ An−` ∪ ... ∪ An]

=
∑̀
j=0

Pr[y ∈ An−`+j]

=
∑̀
j=0

n−k∑
i=0

(
k

δ + i+ j

)(
n− k
i

)
pδ+2i+j(1− p)n−δ−2i−j.

This proves the first part of the lemma. To prove the second part, we rely
on Lemma ??. Let x′ be a point of fitness i for some i ≤ n − k. Let y′ be
the offspring generated from x′. Since ‖x′‖1 < ‖x‖1, the lemma states that
‖y‖1 stochastically dominates ‖y′‖1. Therefore, by definition,

Fi,n−k+δ(p) = Pr[‖y′‖1 ≥ n− k + δ] ≤ Pr[‖y‖1 ≥ n− k + δ] = F (p),

which proves our claim.

We now estimate the expected number of iterations needed by the
(1 + 1) EA to optimize the Jumpk,δ function. The following result implies
that, roughly speaking, the expected runtime is 1

F (p)
, that is, the expected

time to leave the local optimum to a better solution. This will be made more
precise in Section ??, where also estimates for F (p) will be derived.

Theorem 6. For all k, δ, n ∈ N such that 0 < δ ≤ k ≤ n and all p ≤ 1
2
, the

expected optimization time of the (1 + 1) EA with fixed mutation rate p on
the Jumpk,δ problem satisfies

1

2n

n−k∑
i=0

(
n

i

)
1

F (p)
≤ Tp(k, δ, n) ≤ 1

F (p)
+ 2

ln(n) + 1

p(1− p)n−1
.

Proof. Let Ai := {x ∈ {0, 1}n : ‖x‖1 = i} for all i in [0..n]. We call these
subsets fitness levels, but note that they are not indexed in order of increasing
fitness here. Let us start by proving the lower bound. With probability
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1
2n

∑n−k
i=0

(
n
i

)
, the initial individual of the (1 + 1) EA is in A0 ∪ ... ∪ An−k.

In this case, in each iteration until a fitness level of fitness not less than
n − k + δ is reached, the algorithm has a positive probability of jumping
over the valley. According to Lemma ??, this probability is at most F (p)
in each iteration. Therefore, the waiting time WJ before reaching a fitness
level of fitness greater than n − k + δ stochastically dominates a geometric
distribution with success rate F (p). Consequently, E[WJ ] ≥ 1

F (p)
, and thus

1

2n

n−k∑
i=0

(
n

i

)
1

F (p)
≤ Tp(k, δ, n).

In order to prove the upper bound, we rely on the fitness level theorem
introduced by Wegener [?]. For i ∈ [0..n− 1], let

si :=


(n− i)p(1− p)n−1 if i ∈ [0..n− k − 1] ∪ [n− k + δ..n− 1],

F (p) if i = n− k,
ip(1− p)n−1 if i ∈ [n− k + 1..n− k + δ − 1].

Then si is a lower bound for the probability that an iteration starting in a
point x ∈ Ai ends with a point of strictly higher fitness. Thus, the fitness
level theorem implies

Tp(k, δ, n) ≤
n−1∑
i=0

1

si

=
1

F (p)
+

n−k−1∑
i=0

1

(n− i)p(1− p)n−1

+
n−k+δ−1∑
i=n−k+1

1

ip(1− p)n−1
+

n−1∑
i=n−k+δ

1

(n− i)p(1− p)n−1

≤ 1

F (p)
+

2

p(1− p)n−1

(
n∑
i=1

1

i

)
,

where we used that
∑n−k−1

i=0
1

(n−i) +
∑n−k+δ−1

i=n−k+1
1
i
+
∑n−1

i=n−k+δ
1

(n−i) ≤ 2
∑n

i=1
1
i
.

With the estimate
∑n

i=1
1
i
≤ ln(n) + 1, we obtain the upper bound

Tp(k, δ, n) ≤ 1

F (p)
+ 2

ln(n) + 1

p(1− p)n−1
.

We note that our lower bound only takes into account the time to cross
the fitness valley. Using a fitness level theorem for lower bounds [?, ?],
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one could also reflect the time spent in the easy parts of the jump function
and improve the lower bound by a term similar to the Θ( logn

p(1−p)n−1 ) term in
the upper bound. Since the jump functions are interesting as a benchmark
mostly because the crossing the fitness valley is difficult, that is, the runtime
is the time to cross the valley plus lower order terms, we omit the details.
We also note that only initial individuals below the gap region contribute
to the lower bound. This still gives asymptotically tight bounds as long as
k ≤ 1

2
n− ω(

√
n), which is fully sufficient for our purposes. Nevertheless, we

remark that the methods of Section 6 of the arXiv version of [?] would allow
to show a (1− o(1)) 1

F (p)
lower bound for larger ranges of parameters.

4.2 Optimal Mutation Rate in the Standard Regime

The estimates above show that the efficiency of the (1 + 1) EA on the
Jumpk,δ function is strongly connected to the value 1

F (p)
. With the two pa-

rameters k and δ possibly depending on n, an asymptotically precise analysis
of F (p) for the full parameter space appears difficult. For this reason, in most

of the paper we limit ourselves to the case where k ≤ n1/3

lnn
and δ ≤ k is arbi-

trary. We call this the standard regime. For classic EAs on Jumpk, constant
values of k are already challenging and logarithmic values already lead to
super-polynomial runtimes, so this regime is reasonable. Note that in the
standard regime we have k = o(n1/3). This weaker condition will be suffi-

cient in most proofs; the stronger constraint k ≤ n1/3

lnn
will only be needed in

the proof of Lemma ??.

Lemma 7. In the standard regime, if furthermore p = o
(

1√
n`

)
with ` = k−δ

(or p = o
(

1√
n

)
in the specific case ` = 0) we have

F (p) = (1 + o(1))

(
k

δ

)
pδ(1− p)n−δ.

Proof. For i ∈ [0..n− k] and j ∈ [0..`], let

εi,j :=

(
k

δ + i+ j

)(
n− k
i

)
pδ+2i+j(1− p)n−δ−2i−j.

Note that this describes the probability of gaining j+ δ good bits by flipping
i good bits and i + j + δ bad bits in a string with exactly n − k good
bits. Recall that, by Lemma ??, F (p) =

∑`
j=0

∑n−k
i=0 εi,j. We observe that

εi,j = 0 for i + j > `. By reorganizing the terms in F (p), noting that

εi,j = ε0,i+j

(
n−k
i

) (
p

1−p

)i
, and using the binomial theorem, we compute

13



F (p) =
∑̀
j=0

n−k∑
i=0

εi,j =
∑̀
s=0

s∑
i=0

ε0,s

(
n− k
i

)(
p

1− p

)i

≤
∑̀
s=0

ε0,s

s∑
i=0

(
s

i

)
(n− k)i

(
p

1− p

)i
=
∑̀
s=0

ε0,s

(
1 + (n− k)

p

1− p

)s
,

where we used that
(
n−k
i

)
≤ (n−k)i

i!
≤
(
s
i

)
(n − k)i. With ε0,s

ε0,0
=
(

p
1−p

)s ( k
δ+s)
(kδ)

and
( k
δ+s)
(kδ)

=
(`s)

(δ+ss )
≤
(
`
s

)
, we further estimate

F (p)

ε0,0

≤
∑̀
s=0

(
p

1− p

)s ( k
δ+s

)(
k
δ

) (1 + (n− k)
p

1− p

)s
≤
∑̀
s=0

(
`

s

)(
p

1− p
+ (n− k)

p2

(1− p)2

)s
=

(
1 +

p

1− p
+ (n− k)

p2

(1− p)2

)`
.

Together with the trivial lower bound ε0,0 ≤ F (p), we thus have

ε0,0 ≤ F (p) ≤ ε0,0

(
1 +

p

1− p
+ (n− k)

p2

(1− p)2

)`
.

In the standard regime, and supposing p = o
(

1√
n`

)
, the right hand side

is ε0,0(1 + o(1)), proving our claim.

Lemma 8. In the standard regime, if furthermore δ ≥ 2 and p = o
(

1√
n`

)
(or p = o

(
1√
n

)
in the specific case ` = 0), we have

Tp(k, δ, n) = (1± o(1))
1(

k
δ

)
pδ(1− p)n−δ

.

Proof. We recall from the previous section that

1

2n

n−k∑
i=0

(
n

i

)
1

F (p)
≤ Tp(k, δ, n) ≤ 1

F (p)
+ 2

ln(n) + 1

p(1− p)n−1
.
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We first compare the two terms of the upper bound. Using Lemma ??, their
ratio is 2F (p) ln(n)+1

p(1−p)n−1 = (1 + o(1))2
(
k
δ

)
pδ−1(1− p)1−δ(ln(n) + 1). If k = δ, we

can already see that this is smaller than O(n−δ/2+1/2 ln(n)) = o(1). In the
remainder we suppose k > δ. Using

(
k
δ

)
≤ kδ as well as the assumptions that

p = o
(

1√
n`

)
≤ 1√

n
and k ≤ n1/3

ln(n)
, we estimate

F (p)p−1(1− p)1−n = (1 + o(1))

(
k

δ

)(
p

1− p

)δ−1

≤ (1 + o(1))kδpδ−1

= o

(
nδ/3n−δ/2+1/2

(lnn)δ

)
.

For δ ≥ 3, this implies

F (p)
ln(n) + 1

p(1− p)n−1
= o

(
(lnn)1−δ

nδ/2−δ/3−1/2

)
= o(1),

as δ/2− δ/3− 1/2 ≥ 0 and δ ≥ 2. It only remains to study the special case
where δ = 2. Since k > δ, in this specific case, we have ` = k − δ ≥ 1

3
k.

Hence p = o
(

1√
nk

)
. This stronger constraint yields

F (p)p−1(1− p)1−n = (1 + o(1))

(
k

δ

)(
p

1− p

)δ−1

= O(k2p)

= o

(
k3/2

√
n

)
≤ o

(
1

(lnn)3/2

)
.

So again F (p) ln(n)+1
p(1−p)n−1 = o(1). Hence in both cases, we have Tp(k, δ, n) ≤

1+o(1)
F (p)

.

For the lower bound, k = o(n) implies 1
2n

∑n−k
i=0

(
n
i

)
= 1 − o(1) and thus

Tp(k, δ, n) ≥ 1−o(1)
F (p)

. Consequently,

Tp(k, δ, n) = (1± o(1))
1

F (p)
= (1± o(1))

1(
k
δ

)
pδ(1− p)n−δ

.

We will now use the lemma above to obtain the best mutation rate in
the standard regime. For this, we shall need the following two elementary
mathematical results. The first is again known and was already used in [?].
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Lemma 9. Let m ∈ [0, n] The function p ∈ [0, 1] 7→ pm(1−p)n−m is unimodal
and has a unique maximum in m

n
.

Proof. The considered function is differentiable, its derivative is

p 7→ (pm−1(1− p)n−m−1)(m(1− p)−(n−m)p).

This derivative only vanishes on p0 = m
n

, is positive for smaller values of p,
and negative for larger ones. Consequently, p0 is the unique maximum.

Corollary 10. F (p) is decreasing in [k+`
n
, 1], where ` = k − δ.

Proof. Recall from Lemma ?? that we have F (p) =
∑

i,j εi,j for

εi,j =

(
k

δ + i+ j

)(
n− k
i

)
pδ+2i+j(1− p)n−δ−2i−j.

Applying the previous lemma, εi,j is maximal for p = δ+2i+j
n

and decreasing
for larger p. Since εi,j = 0 if i+j > `, all εi,j are constantly zero or decreasing
in [k+`

n
, 1]. Hence F (p) =

∑
i,j εi,j is decreasing in this interval as well.

We now state the main result of this section. It directly extends the
corresponding result from [?] for classic jump functions. It shows in particular
that the natural idea of choosing the mutation rate in such a way that the
average number of bits that are flipped equals the number of bits that need
to be flipped to leave the local optimum, is indeed correct.

Theorem 11. In the standard regime, the choice of p ∈ [0, 1
2
] that asymptot-

ically minimizes the expected runtime of the (1 + 1) EA on Jumpk,δ is p = δ
n

.
For δ ≥ 2, it gives the runtime

Tδ/n(k, δ, n) = (1± o(1))

(
k

δ

)−1 (en
δ

)δ
,

and any deviation from the optimal rate by a constant factor (1±ε), ε ∈ (0, 1),
leads to an increase of the runtime by a factor exponential in δ.

Proof. If δ = 1, the objective function is the OneMax function, for which
p = 1

n
is known to be the asymptotically optimal mutation rate [?]. So let us

assume δ ≥ 2 in the remainder. We first notice that, in the standard regime,

if k > δ,
√
n` δ

n
=
√
`δ√
n
≤ k3/2

n1/2 . Since k = o(n1/3), this is o(1), so δ
n

= o
(

1√
n`

)
.

If k = δ, it is obvious that δ
n

= o
(

1√
n

)
. In both cases Lemma ?? can be

applied and yields

Tδ/n(k, δ, n) = (1± o(1))

(
k

δ

)−1 (n
δ

)δ (
1− δ

n

)δ−n
.
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Furthermore,
(
1− δ

n

)n
δ
−1 ≥ e−1 and

(
1− δ

n

)n−δ ≤ exp
(
δ − δ2

n

)
=

(1−o(1))eδ since δ = o(n
1
2 ), thus

(
1− δ

n

)δ−n
= (1−o(1))eδ, which proves

our claim about Tδ/n(k, δ, n).
We now prove that this runtime is optimal among all mutation rates.

Note that, in the standard regime, k+`
n

= o
(

1√
n`

)
(and k

n
= o

(
1√
n

)
in the

specific case ` = 0). Thus, for p ≤ k+`
n

Lemma ?? can be applied and gives
Tp(k, δ, n) = (1+o(1)) 1

(kδ)pδ(1−p)n−δ
. By Lemma ??, pδ(1−p)n−δ is maximized

for p = δ
n
. Therefore, Tδ/n(k, δ, n) ≤ (1 + o(1))Tp(k, δ, n).

It only remains to regard the case p ≥ k+`
n

. We saw in Lemma ?? that
F (p) is decreasing in [k+`

n
, 1]. Therefore, using the lower bound from Theo-

rem ??, and applying results from the last paragraph to k+`
n

, we obtain

Tp(k, δ, n) ≥ (1−o(1))
1

F (p)

≥ (1−o(1))
1

F (k+`
n

)

≥ (1−o(1))T(k+`)/n(k, δ, n)

≥ (1−o(1))Tδ/n(k, δ, n).

This shows that the mutation rate δ
n

is asymptotically optimal among all
mutation rates in [0, 1

2
].

Finally, let ε ∈ (0, 1). By Lemma ?? we have

T δ
n

(1±ε)(k, δ, n)

T δ
n
(k, δ, n)

=
(1 + o(1))

(
k
δ

)−1
( δ
n
(1± ε))−δ(1− δ

n
(1± ε))δ−n

(1 + o(1))
(
k
δ

)−1
( δ
n
)−δ(1− δ

n
)δ−n

= (1 + o(1))(1± ε)−δ
(
n− δ(1± ε)

n− δ

)δ−n
= (1 + o(1))(1± ε)−δ

(
1∓ εδ

n− δ

)δ−n
= (1 + o(1)) exp

(
−δ ln(1± ε) + (δ − n) ln

(
1∓ εδ

n− δ

))
≥ (1 + o(1)) exp (−δ ln(1± ε)± εδ) ,

where we used that ln (1± x) ≤ ±x. Now ln(1−ε) ≤ −ε− ε2

2
and ln(1+ε) ≤

ε− ε2

2
+ ε3

3
. Hence

T δ
n

(1−ε)(k, δ, n) ≥ (1 + o(1)) exp

(
δ
ε2

2

)
T δ
n
(k, δ, n)
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and

T δ
n

(1+ε)(k, δ, n) ≥ (1 + o(1)) exp

(
δ

(
ε2

2
− ε3

3

))
T δ
n
(k, δ, n).

So, any deviation from the optimal mutation rate by a small constant factor
leads to an increase in the runtime by a factor exponential in δ.

5 Heavy-tailed Mutation

In this section we analyze the fast (1 + 1) EA, or (1 + 1) FEAβ, which was
introduced in [?]. Instead of fixing one mutation rate for the entire run, here
the mutation rate is chosen randomly at every iteration, using the power-law
distribution Dβ

n/2 for some β > 1. We recall the definition from [?].

Definition 12. Let β > 1 be a constant. Then the discrete power-law distri-
bution Dβ

n/2 on [1..n/2] is defined as follows. If a random variable X follows

the distribution Dβ
n/2, then Pr[X = α] = (Cβ

n/2)−1α−β for all α ∈ [1..n/2],

where the normalization constant is Cβ
n/2 :=

∑bn/2c
i=1 i−β.

Algorithm 2: The (1 + 1) FEAβ maximizing f : {0, 1}n → R.

1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 Optimization;
4 repeat

5 Sample α randomly in [1..n/2] according to Dβ
n/2;

6 Sample y ∈ {0, 1}n by flipping each bit in x with probability α
n
;

7 if f(y) ≥ f(x) then
8 x← y

9 until Stopping condition;

Doerr et al. [?] proved that for the Jumpk function, the expected runtime
of the (1 + 1) FEAβ was only a small polynomial (in k) factor above the
runtime with the optimal fixed mutation rate.

Theorem 13 ([?]). Let n ∈ N and β > 1. For all k ∈ [2..n/2] with k > β−1,
the expected optimization time Tβ(k, n) of the (1+1) FEAβ on Jumpk satisfies

Tβ(k, n) = O
(
Cβ
n/2k

β−0.5Topt(k, n)
)
,

where Topt(k, n) is the expected runtime of the (1 + 1) EA with the optimal
fixed mutation rate p = k

n
.
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We now show that this result extends to the Jumpk,δ,n problem. To do
so, we rely on Lemma 3 (i) and (ii) of [?], restated in the following lemma.

Lemma 14 ([?]). There is a constant K > 0 such that the following is true.
Let n ∈ N and β > 1. Let x ∈ {0, 1}n an individual and y the offspring
generated from x in an iteration of the (1 + 1) FEAβ. For all i ∈ [1..n/2]
such that i > β − 1, we have

P β
i := Pr[H(x, y) = i] ≥ (Cβ

n/2)−1Ki−β.

Moreover, with the same notations,

P β
1 ≥ K ′(Cβ

n/2)−1,

for another constant K ′ independent of β and n.

We note that explicit lower bounds for P β
i for i ≤

√
n were given in the

arXiv version of [?]. We derive from the lemma above the following estimate.

Corollary 15. There is a constant κ > 0 such that the following is true.
For all n, k, β − 1 < δ ≤ n

2
,(

n

δ

)(
k

δ

)−1 (
P β
δ

)−1

≤ κCβ
n/2δ

β−0.5 nn

δδ(n− δ)(n−δ)

√
n

n− δ

(
k

δ

)−1

.

Proof. Using the Stirling approximation

√
2πnn+0.5e−n ≤ n! ≤ enn+0.5e−n,

we compute (
n

δ

)
≤ enn+0.5e−n√

2πδδ+0.5e−δ
√

2π(n− δ)n−δ+0.5e−n+δ

≤ e

2πδ0.5

√
n

n− δ
nn

δδ(n− δ)(n−δ) .

Combining this and Lemma ?? gives the claimed result.

Theorem 16. Let n ∈ N and β > 1. For δ ≤ k ≤ n1/3

lnn
with 2 ≤ δ > β − 1,

the expected optimization time Tβ(k, δ, n) of the (1 + 1) FEAβ satisfies

Tβ(k, δ, n) = O
(
Cβ
n/2δ

β−0.5Tδ/n(k, δ, n)
)
.
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Proof. We use the same notation as in the proof of Theorem ?? and
Lemma ??. For i ∈ [0..n− 1], let

si :=


n−i
n
P β

1 if i ∈ [0..n− k − 1] ∪ [n− k + δ..n− 1],(
k
δ

)(
n
δ

)−1
P β
δ if i = n− k,

i
n
P β

1 if i ∈ [n− k + 1..n− k + δ − 1].

Then si is a lower bound for the probability that an iteration starting in a
point x ∈ Ai ends with a point of strictly higher fitness. Thus, the fitness
level theorem [?] implies

Tp(k, δ, n) ≤
n−1∑
i=0

1

si

≤
(
n

δ

)(
k

δ

)−1 (
P β
δ

)−1

+
n−k−1∑
i=0

n

(n− i)P β
1

+
n−k+δ−1∑
i=n−k+1

n

iP β
1

+
n−1∑

i=n−k+δ

n

(n− i)P β
1

.

Recalling that nn

δδ(n−δ)(n−δ)
√

n
n−δ

(
k
δ

)−1
= (1+o(1))Tδ/n(k, δ, n) in the standard

regime, Corollary ?? and Lemma ?? allow us to estimate the first term as
O(Cβ

n/2δ
β−0.5Tδ/n(k, δ, n)). Using the second part of Lemma ??, and similar

bounds as in the proof of Theorem ??, we deduce that the three other terms
add up to O(Cβ

n/2n ln(n)) which is o(Tδ/n(k, δ, n)) by Theorem ??.

We note without proof that the upper bound given in the theorem above
is asymptotically tight.

6 Stagnation Detection

In this section, we study the algorithm Stagnation Detection Randomized Lo-
cal Search, or SD-RLS, proposed by Rajabi and Witt [?] as an improvement
of their Stagnation Detection (1 + 1) EA [?] (we note that the most recent
variant [?] of this method was developed in parallel to this work and there-
fore could not be reflected here; however, to the best of our understanding,
this latest variant was optimized to deal with multiple local optima and thus
does not promise to be superior to the SD-RLS algorithm on generalized jump
functions. We note further that in [?] also generalized jump functions were
defined. As only result for these, an upper bound of O(

(
n
δ

)
) in our notation
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was shown under certain conditions – consequently, similar to our analysis
of SD-RLS below, this result also does not profit from the fact that

(
k
δ

)
im-

proving solutions are available). The algorithm builds on two ideas that have
not been discussed in this work yet: stagnation detection and randomized
local search. Randomized local search is an alternative scheme to standard
bit mutation. To produce an offspring from a given individual, instead of
flipping each bit independently with a given probability, s bits are chosen
uniformly at random and flipped. Therefore the offspring is necessarily at
Hamming distance s from its parent. The parameter s is usually referred
to as the strength of the mutation. Stagnation detection is a heuristic in-
troduced by Rajabi and Witt [?] that can be added to many evolutionary
algorithms. When the algorithm has spent a given number of steps without
fitness improvement, it increases its mutation strength, as a way to leave the
local optimum it might be stuck in. The number of unsuccessful steps in
a row needed to increase the strength can depend on the current strength.
Its value should be thoughtfully designed, ideally so that the probability of
missing an improvement at Hamming distance s is small. In SD-RLS, this
value was chosen to be

(
n
s

)
ln(R), where s is the current strength and R is a

control parameter, fixed for the entire run by the user. [?] typically use R to
be a small polynomial in n. We call step s the

(
n
s

)
ln(R) iterations in which

strength s is used.
The main flaw of SD-RLS is that infinite runs are possible: for every point

in the search space, there is only a finite number of strengths for which a
fitness improvement is possible. If these improvements are unluckily missed
by the algorithm at all the corresponding steps, SD-RLS would keep increas-
ing the strength forever and never terminate. To avoid such a situation, the
same article introduces Randomized Local Search with Robust Stagnation
Detection, or SD-RLS∗. When step s terminates without having found an
improvement, instead of increasing the mutation strength to s + 1 immedi-
ately, the algorithm goes back to all previous strengths, in decreasing order,
before moving to step s + 1. This mildly impacts the runtime, but ensures
termination in expected finite time. Let phase s denote the succession of
steps s, ..., 1 where step s is the first interval in which strength s is used.
A run of the algorithm can now be seen as a succession of distinct phases
with increasing s value. The pseudocode of both algorithms is recalled in
Algorithms ?? and ??.

In this section, we shall focus on SD-RLS∗, as it ensures termination and
was studied more profoundly in [?]. We first collect some central properties of
the algorithm, before studying its performances on Jumpk,δ. For x ∈ {0, 1}n,
let gap(x) := min{H(x, y) | y ∈ {0, 1}n : f(y) > f(x)} be the distance of x
to the closest strictly fitter point.
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Algorithm 3: SD-RLS maximizing f : {0, 1}n → R with parame-
ter R.
1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 s1 ← 1; u← 0;
4 Optimization;
5 for t← 1, 2, ... do
6 Create y by flipping st bits in a copy of x uniformly;
7 u← u+ 1;
8 if f(y) > f(x) then
9 x← y; st+1 ← 1; u← 0;

10 else if f(y) = f(x) and st = 1 then
11 x← y;

12 if u >
(
n
st

)
lnR then

13 st+1 ← min{st + 1, n}; u← 0;
14 else
15 st+1 ← st;

The following lemma from [?] demonstrates that even if an improvement
at Hamming distance m is not found during phase m, the loop structure of
the SD-RLS∗ ensures that some improvement will still be found in reasonable
time.

Lemma 17. Let x ∈ {0, 1}n, with m := gap(x) < n/2, be the current
search point of the SD-RLS∗ optimizing a pseudo-Boolean function f , with
R ≥ n1+ε| Im(f)| for some constant ε > 0. Let Wx be the waiting time until
a strict improvement is found. Let Em be the event that a strict improve-
ment is not found during phase m (all previous phases cannot create a strict
improvement). Then,

E [Wx | Em] = o

(
R

| Im(f)|

(
n

m

))
.

This result also allows one to bound the runtime needed to leave a given
search point if the number of neighbors with higher fitness is known. The
following result was not explicitly stated in [?], but it is a rather direct
corollary.

Lemma 18. Let x ∈ {0, 1}n, with m := gap(x) < n/2, be the current
search point of the SD-RLS∗ optimizing a pseudo-Boolean function f , with
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Algorithm 4: SD-RLS∗ maximizing f : {0, 1}n → R with param-
eter R. The counters st, ut, r keep track of the current strength,
the number of iterations spent in the current step, and the current
phase.

1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 r1 ← 1; s1 ← 1; u← 0;
4 Optimization;
5 for t← 1, 2, ... do
6 Create y by flipping st bits in a copy of x uniformly;
7 u← u+ 1;
8 if f(y) > f(x) then
9 x← y; st+1 ← 1; rt+1 ← 1; u← 0;

10 else if f(y) = f(x) and rt = 1 then
11 x← y;

12 if u >
(
n
st

)
lnR then

13 if st = 1 then
14 if rt < n/2 then
15 rt+1 ← rt + 1;
16 else
17 rt+1 ← n;

18 st+1 ← rt+1;

19 else
20 rt+1 ← rt; st+1 ← st − 1;

21 u← 0;

22 else
23 st+1 ← st; rt+1 ← rt;
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R ≥ n1+ε| Im(f)| for some constant ε > 0, just after a fitness improvement
was found. We assume that all points of fitness f(x) have the same gap
m. Let Wx be the waiting time until a strict improvement is found. We
further suppose that for any point of fitness f(x), there are exactly N points
at Hamming distance m of x that have strictly higher fitness. Then

E[Wx] ≤ ln(R)
m−1∑
i=1

i∑
j=1

(
n

j

)
+ (1 + o(1))

(
n
m

)
N

.

Proof. If gap(x) = m, the first m− 1 phases of the algorithm cannot lead to
any fitness improvement. Their accumulated length is ln(R)

∑m−1
i=1

∑i
j=1

(
n
j

)
.

We therefore regard now W ′
x = Wx − ln(R)

∑m−1
i=1

∑i
j=1

(
n
j

)
, which is the

waiting time once strength m is reached.
When the algorithm reaches phase m, strength m is used for ln(R)

(
n
m

)
iterations. The probability of finding an improvement in one such iteration
is N/

(
n
m

)
. Therefore, the probability of the event Em (that is, missing all

those tries) is at most

Pr[Em] ≤

(
1−N

(
n

m

)−1
)ln(R)(nm)

≤ 1

RN
= o(1).

To conclude, we use the law of total expectancy

E[W ′
x] = Pr[Em]E [W ′

x | Em] + Pr[Em]E[W ′
x | Em].

Lemma ?? implies that E [W ′
x | Em] ≤ E [Wx | Em] = o

(
R

| Im(f)|

(
n
m

))
. Us-

ing the aforementioned bounding of Pr[Em], we estimate the first term as

o

(
(nm)

RN−1| Im(f)|

)
.

Conditional on Em, W ′
x is distributed following a geometric law of pa-

rameter N/
(
n
m

)
conditional on being at most ln(R)

(
n
m

)
. Such a distribution

is dominated by the standard geometric law of same parameter. Therefore,

E[W ′
x | Em] ≤ (nm)

N
and the second term is at most

(nm)
N

. This clearly domi-

nates o

(
(nm)

RN−1| Im(f)|

)
, which yields

E[W ′
x] ≤ (1 + o(1))

(
n
m

)
N

.

This bound on the runtime allows for an intuitive understanding of the
performance of SD-RLS∗ on jump functions. When on a local optimum of
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gap m, with N possible improvements at distance m, the first m−1 steps are
inefficient, which wastes ln(R)

∑m−1
i=1

∑i
j=1

(
n
j

)
iterations. But once strength

m is reached, the success probability of one iteration is N/
(
n
m

)
, which is better

than standard bit mutation with rate m
n

, which only has success probability
N( en

m
)−m. If the length of the inefficient steps is dominated by

(
n
m

)
/N , this is

an advantageous trade, and the algorithm is very efficient. This is the case on
Jumpk: the SD-RLS∗ turns out to be faster than all the algorithms we have

studied until now. More precisely, it gives a speed-up of order ( en
k

)k
(
n
k

)−1
.

This theorem is one of the main results of [?].

Theorem 19. Let n ∈ N. Let TSD−RLS∗(k, n) be the expected runtime of the
SD-RLS∗ on Jumpk. For all k ≥ 2, if R ≥ n2+ε for some constant ε > 0,
then

TSD−RLS∗(k, n) =

{(
n
k

)
(1 +O( k2

n−2k
ln(n) )) if k < n/2,

O(2nn ln(n)) if k ≥ n/2.

But this trade is not always advantageous, especially for large values
of N . Indeed in this case

(
n
m

)
/N is small, and the ln(R)

∑m−1
i=1

∑i
j=1

(
n
j

)
term

(corresponding to the length of the wasted steps) dominates the other one.
This term does not benefit from any speed-up when N increases, and that
is likely to slow down SD-RLS∗ in comparison to other algorithms. This is
visible on Jumpk,δ, where N =

(
k
δ

)
: while other algorithms benefit from a

factor N runtime speedup, the SD-RLS∗ algorithm does not, and becomes
consequently slower in comparison. In the following theorem, we obtain a
precise asymptotic value for the runtime of SD-RLS∗ on Jumpk,δ.

Theorem 20. Let τ = TSD−RLS∗(k, δ, n) be the runtime of the SD-RLS∗ on
Jumpk,δ. Suppose that there exists a constant ε > 0 such that the control
parameter is R ≥ n2+ε. Then for all k < n

2
and δ ≥ 2, we have

τ ≥

(
1− 1

2n

k−1∑
i=0

(
n

i

))[
ln(R)

δ−1∑
i=1

i∑
j=1

(
n

j

)
+

(
n

δ

)(
k

δ

)−1
]
,

τ ≤ ln(R)
δ−1∑
i=1

i∑
j=1

(
n

j

)
+ (1 + o(1))

[(
n

δ

)(
k

δ

)−1

+ n ln(n) + n

]
.

If furthermore δ ≥ 3 and k ≤ n− ω(
√
n), these bounds are tight and thus

τ = (1 + o(1))

[
ln(R)

δ−1∑
i=1

i∑
j=1

(
n

j

)
+

(
n

δ

)(
k

δ

)−1
]
.
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Proof. For the lower bound, we recall that with probability 1
2n

∑n−k
i=0

(
n
i

)
=

1 − 2−n
∑k−1

i=0

(
n
i

)
, the initial search point is sampled before the valley. Re-

gardless of the initial search point (as long as it is below the fitness valley),
for the global optimum to be sampled, two tasks have to be completed, in
order. First, the strength needs to increase to at least δ (condition (i)). Once
strength δ is reached, a point above the valley has to be generated from a
point below it (condition (ii)). τ is necessarily larger than the sum of the
times needed to complete both conditions.

By definition of the algorithm, condition (i) takes at least
ln(R)

∑δ−1
i=1

∑i
j=1

(
n
j

)
iterations to be completed. For condition (ii), consider

the first step where strength δ is reached. It is used for ln(R)
(
n
δ

)
iterations.

Consider one of these iterations: the fitness of the parent is some i ∈ [0..n−k].
The probability of jumping above the valley is 0 if i < n−k, and

(
k
δ

)
/
(
n
δ

)
oth-

erwise. So the probability of jumping at any iteration of the step is at most(
k
δ

)
/
(
n
δ

)
. Thus, the expected time needed to complete condition (ii) is bigger

than E[Y ] with Y := min{κ,X}, where κ = dln(R)
(
n
δ

)
e and X is a vari-

able following a geometric distribution with success rate p :=
(
k
δ

)
/
(
n
δ

)
. Using

the elementary fact that E[Y ] =
∑∞

i=1 Pr[Y ≥ i] for all random variables Y
taking values in the non-negative integers, we estimate

E[Y ] =
∞∑
i=1

Pr[Y ≥ i] =
κ∑
i=1

Pr[Y ≥ i]

=
κ∑
i=1

Pr[X ≥ i] =
κ∑
i=1

(1− p)i−1

=
1− (1− p)κ

1− (1− p)
= 1

p
(1− (1− p)κ)

= (1− o(1))1
p

= (1− o(1))

(
n
δ

)(
k
δ

) ,
where we estimated (1− p)κ ≤ exp(−pκ) ≤ exp

(
− ln(R)

(
k
δ

))
= o(1).

This proves

τ ≥

(
1

2n

n−k∑
i=0

(
n

i

))[
ln(R)

δ−1∑
i=1

i∑
j=1

(
n

j

)
+ (1 + o(1))

(
n

δ

)(
k

δ

)−1
]
.

For the upper bound, we consider the sequence of layers visited by the
SD-RLS∗. At most one of them has gap δ, the layer of the local optima.
Any point in this layer has

(
k
δ

)
improving neighbors at distance δ. Accord-

ing to Lemma ??, the time needed to leave this layer is therefore at most
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ln(R)
∑δ−1

i=1

∑i
j=1

(
n
j

)
+(1+o(1))

(nδ)
(kδ)

. All other visited layers have gap 1. More

precisely, any point in the fitness valley, of fitness i ∈ [n−k+1..n−k+δ−1],
has at most i neighbors of higher fitness at distance 1. Any point outside
of the fitness valley with fitness i ∈ [0..n − k − 1] ∪ [n − k + δ..n − 1] has
n− i neighbors of higher fitness at distance 1. Therefore, by Lemma ??, the
accumulated time needed to leave these layers is at most

(1 + o(1))

 n−1∑
i=0

i/∈[n−k..n−k+δ−1]

n

n− i
+

n−k+δ−1∑
i=n−k+1

n

i

 ≤ (1 + o(1))
n−1∑
i=0

n

n− i

≤ (1 + o(1))(n ln(n) + n),

where we used the fact that (since k ≤ n/2) for all i ∈ [n−k+1..n−k+δ−1],
we have 1/(n − i) ≥ 1/i. The last inequality is a classical estimate for the
harmonic sum. This yields

τ ≤ ln(R)
δ−1∑
i=1

i∑
j=1

(
n

j

)
+ (1 + o(1))

[(
n

δ

)(
k

δ

)−1

+ n ln(n) + n

]
.

If δ ≥ 3, the double sum includes the term
(
n
2

)
= ω(n ln(n)). Furthermore,

if k ≤ n − ω(
√
n), then 1

2n

∑n−k
i=0

(
n
i

)
= (1 − o(1)) (this can be computed by

applying Chernoff multiplicative bound to a binomial variable). This implies
that the upper and lower bounds are asymptotically tight.

The following lemma shows that we can find in the standard regime in-
stances on which SD-RLS∗ is slower than the standard (1 + 1) EA by a factor
polynomial in n of arbitrary degree. Note that this is all the more true when
comparing to the optimal (1 + 1) EA or the (1 + 1) FEAβ.

Lemma 21. Consider the instance of Jumpk,δ where δ ≥ 2 is constant and
k = nK/δ for some constant K < δ/3. For n large enough, this instance is
in the standard regime, and satisfies

TSD−RLS∗(k, δ, n)

T 1
n
(k, δ, n)

= Ω(nK−1).

Proof. Since K/δ < 1/3, k = nK/δ is below n1/3

ln(n)
when n is large enough.

Hence this instance is in the standard regime as defined in Section ??.
We recall from Lemma ?? that, in this case, the runtime of the

(1 + 1) EA is (1 + o(1))
(
k
δ

)−1
nδ(1 − 1

n
)δ−n. Since δ is constant, this
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can be simplified to O(k−δnδ). The runtime of SD-RLS∗ is (1 +

o(1))
[
ln(R)

∑δ−1
i=1

∑i
j=1

(
n
j

)
+
(
n
δ

)(
k
δ

)−1
]
, which is larger than the last term

of the double sum,
(
n
δ−1

)
= Ω(nδ−1). This yields

TSD−RLS∗(k, δ, n)

T 1
n
(k, δ, n)

= Ω

(
nδ−1

k−δnδ

)
= Ω

(
nK−1

)
.

7 Experiments

In this final section, we present experimental results that provide a concrete
perspective on our study. Since all our theoretical results are asymptotic, a
natural question is to what extent they can be observed on reasonable prob-
lem instances. To answer this question, we implemented the aforementioned
algorithms and executed them on test instances. We also implemented and
tested another algorithm, the SD-(1 + 1) EA introduced in [?]. This algo-
rithm is similar to SD-RLS, but standard bit mutation with mutation rate s

n

is used instead of s-bits flips.
We tested the algorithms on five different regimes for k and δ. For each

regime, we only used values of n that led to reasonable computation times.
Each point on the following graphs is the average over 1000 runs. Note that,
for better readability, the following graphs do not display variances. They
were computed during the experiments, but they were close to the theoretical
variances of the underlying geometric distributions of the jump phenomenon
(this is coherent with previous experiments on the matter, e.g., [?]).

To achieve reasonable computation times, for all experiments we used
what we call partial simulation. The algorithms are executed until the en-
counter of a local optimum. There, we sampled the number of iterations
needed to jump, using the theoretical distributions determined in this work.
For the (1 + 1) EA with mutation rate p, it is a geometric law with pa-
rameter F (p). For the (1 + 1) FEAβ, it is a geometric law of parameter

Cβ
n/2

∑n/2
i=0 i

−βF (i/n). For the SD-RLS∗, one step with strength s ≥ δ is

equivalent to sampling geometric law of parameter
(
n
s

)−1∑b(s−δ)/2c
i=0

(
k
s−i

)(
n−k
i

)
(the step is failed if the sampled value is greater than ln(R)

(
n
s

)
). A similar

technique is used for the SD-(1 + 1) EA. The fitness level of arrival after the
jump is also sampled using theoretical distributions. The algorithm is then
executed again until the end of the run. Note that the theoretical distri-
butions used are exact, hence our partial simulation approach generates an
exact sample for the true runtime distribution.

The five regimes we chose to display illustrate a progressive spectrum from
the classical jump function to larger instances of generalized jump functions,
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where
(
k
δ

)
becomes considerable. On Figure ??, the problem is the classical

Jump4, as we take δ = k = 4. On Figure ??, δ and k are still constants,
but δ < k. On Figure ??, k = 2 ln(n), and δ = k

2
. Figure ??, k = n0.3,

δ = k
2
, represents the limit of the standard regime. Figure ??, k = n

4
, δ = k

2
,

explores an instance outside of this regime.

Figure 3: Optimization times of different algorithms on the classic jump
function Jumpk = Jumpk,δ with k = δ = 4.

Figure 4: Optimization times on Jumpk,δ with k = 6, δ = 4.

Overall, these experimental results tend to confirm that our results, al-
though asymptotic, are verified in simple instances of the problem as well.
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Figure 5: Optimization times on Jumpk,δ with k = 3 ln(n), δ = k
2
.

Figure 6: Optimization times on Jumpk,δ with k = 4n0.3, δ = k
2
.

The (1 + 1) EA with fixed mutation rate behaves as described by Theo-
rem ??. Out of the three mutation rates, p = 1

n
always gives the slowest

runtime, p = δ
n

has the fastest, and it is more efficient than the sub-optimal
p = δ

2n
, by an exponential factor coherent with the theory. The SD-RLS∗

is the fastest on the classical Jumpk. It beats the (1 + 1) EA with optimal
mutation rate δ/n by a factor of approximately 3 (which is coherent with the
theoretical factor, that is asymptotically e). However, Figure ?? shows that
it loses this advance as soon as δ < k, even though it stays efficient. On the
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Figure 7: Optimization times on Jumpk,δ with k = n
4
, δ = k

2
.

last three regimes, SD-RLS∗ is increasingly slow in comparison to the other
algorithms, as it does not benefit from the speed-up induced by the increase of(
k
δ

)
. On the classical Jumpk, the SD-(1 + 1) EA is equivalent to the optimal

(1 + 1) EA (which is coherent with the theoretical results of [?]). It suffers
on generalized jump functions, but not as consequently as the SD-RLS∗, as
it stays of the same order as the (1 + 1) FEAβ. This is rather surprising: the
change of mutation operator seems to induce a drastic change in behavior on
Jumpk,δ. We believe that studying the reasons for this phenomenon could
be of great interest. Finally, the (1 + 1) FEAβ has a consistent behaviour. It
is slower than the optimal (1 + 1) EA, but the runtime ratio remains stable
throughout all the experiments, as expected theoretically.

8 Conclusion

In this work, we proposed a natural extension of the jump function bench-
mark class, which has a valley of low fitness in an arbitrary interval of Ham-
ming distances from the global optimum. Our rigorous runtime analysis of
different variants of the (1 + 1) EA on this function class showed that some
previous results naturally extend, whereas others do not. The result that
the fast (1 + 1) EA significantly outperforms the classic (1 + 1) EA on jump

functions directly extends to our generalization (when k ≤ n1/3

lnn
) as both

runtimes simply improve by a factor of asymptotically
(
k
δ

)
. The result that

the (1 + 1) EA with stagnation detection and k-bit mutation (SD-RLS∗), the
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currently asymptotically fastest mutation-based algorithm for classic jump
functions, beats the fast (1 + 1) EA by a moderate margin (a polynomial
in k), however, does not extend. Already in the standard regime, for any con-
stant K there are generalized jump functions such that the fast (1 + 1) EA
beats the SD-RLS∗ by a factor of Ω(nK).

From this work, several open problems arise. Since for larger values of k
(and δ small) the (1 + 1) EA can (and, depending on the mutation rate, often
will) jump over the valley not just to the first level above the valley, we could
not determine precisely its asymptotic runtime outside the standard regime
k ≤ n1/3

lnn
. A better understanding of this regime would be highly desirable,

among others, because here crossing a valley of low fitness is significantly
easier, giving the problem a very different characteristic. Note that this
difficulty cannot show up in the analysis of classic jump functions, simply
because there is just a single solution above the valley of low fitness.

In this first work on generalized jump functions, we regarded two top-
ics of recent interest, the fast (1 + 1) EA and the random local search with
stagnation detection. Jump functions have been very helpful also to under-
stand other important topics, among them how crossover can be profitable
or how probabilistic model building algorithms cope with local optima. Ex-
tending any such previous works to generalized jump functions, and with
this confirming or questioning the insights made in these works, is clearly an
interesting direction for future research.

Acknowledgments

This work was supported by a public grant as part of the Investissements
d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH.

References

[ABD20a] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Fast mu-
tation in crossover-based algorithms. In Genetic and Evolution-
ary Computation Conference, GECCO 2020, pages 1268–1276.
ACM, 2020.

[ABD20b] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. First
steps towards a runtime analysis when starting with a good so-
lution. In Parallel Problem Solving From Nature, PPSN 2020,
Part II, pages 560–573. Springer, 2020.

32



[ABD21] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Lazy
parameter tuning and control: choosing all parameters ran-
domly from a power-law distribution. In Genetic and Evolution-
ary Computation Conference, GECCO 2021, pages 1115–1123.
ACM, 2021.

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Random-
ized Search Heuristics. World Scientific Publishing, 2011.

[AD20] Denis Antipov and Benjamin Doerr. Runtime analysis of a
heavy-tailed (1 + (λ, λ)) genetic algorithm on jump functions.
In Parallel Problem Solving From Nature, PPSN 2020, Part II,
pages 545–559. Springer, 2020.

[ADK20] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. The
(1 + (λ, λ)) GA is even faster on multimodal problems. In Ge-
netic and Evolutionary Computation Conference, GECCO 2020,
pages 1259–1267. ACM, 2020.

[BBD21a] Henry Bambury, Antoine Bultel, and Benjamin Doerr. General-
ized jump functions. In Genetic and Evolutionary Computation
Conference, GECCO 2021, pages 1124–1132. ACM, 2021.

[BBD21b] Riade Benbaki, Ziyad Benomar, and Benjamin Doerr. A rigorous
runtime analysis of the 2-MMASib on jump functions: ant colony
optimizers can cope well with local optima. In Genetic and
Evolutionary Computation Conference, GECCO 2021, pages 4–
13. ACM, 2021.
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Markus Wagner. Heavy-tailed mutation operators in single-
objective combinatorial optimization. In Parallel Problem Solv-
ing from Nature, PPSN 2018, Part I, pages 134–145. Springer,
2018.

[FKK+16] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nal-
laperuma, Frank Neumann, and Martin Schirneck. Fast building
block assembly by majority vote crossover. In Genetic and Evo-
lutionary Computation Conference, GECCO 2016, pages 661–
668. ACM, 2016.

[FOSW09] Tobias Friedrich, Pietro S. Oliveto, Dirk Sudholt, and Carsten
Witt. Analysis of diversity-preserving mechanisms for global
exploration. Evolutionary Computation, 17:455–476, 2009.

[FQW18] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. Es-
caping large deceptive basins of attraction with heavy-tailed
mutation operators. In Genetic and Evolutionary Computation
Conference, GECCO 2018, pages 293–300. ACM, 2018.

[FW04] Simon Fischer and Ingo Wegener. The Ising model on the ring:
mutation versus recombination. In Genetic and Evolutionary
Computation, GECCO 2004, pages 1113–1124. Springer, 2004.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary Computation,
7:173–203, 1999.

[GW17] Christian Gießen and Carsten Witt. The interplay of population
size and mutation probability in the (1 + λ) EA on OneMax.
Algorithmica, 78:587–609, 2017.
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holt, and Barbora Trubenová. How to escape local optima in
black box optimisation: when non-elitism outperforms elitism.
Algorithmica, 80:1604–1633, 2018.

[OS20] Edgar Covantes Osuna and Dirk Sudholt. Runtime analysis
of crowding mechanisms for multimodal optimization. IEEE
Transactions on Evolutionary Computation, 24:581–592, 2020.
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