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Propagation of well-prepared states along Martinet
singular geodesics

Yves Colin de Verdière∗ and Cyril Letrouit†‡

May 7, 2021

Abstract

We prove that for the Martinet wave equation with “flat” metric, which a subel-
liptic wave equation, singularities can propagate at any speed between 0 and 1
along any singular geodesic. This is in strong contrast with the usual propagation
of singularities at speed 1 for wave equations with elliptic Laplacian.

1 Introduction

1.1 Propagation of singularities and singular curves

The celebrated propagation of singularities theorem describes the wave-front set
WF (u) of a distributional solution u to a partial differential equation Pu = f in
terms of the principal symbol p of P : it says that, if p is real, then WF (u)\WF (f) ⊂
p−1(0), and that, if additionally the characteristics are simple (p = 0 ⇒ dp 6= 0
outside the null section), then WF (u)\WF (f) is invariant under the bicharacteristic
flow induced by the Hamiltonian vector field of p.

This result was first proved in [DH72, Theorem 6.1.1] and [Hor71b, Proposition
3.5.1]. However, it leaves open the case where the characteristics of P are not
simple. In a short and impressive paper [Mel86], Melrose sketched the proof of an
analogous propagation of singularities result for the wave operator P = D2

t − A
when A is a self-adjoint non-negative real second-order differential operator which
is only subelliptic. Such operators P are typical examples for which there exist
double characteristic points.

Restated in the language of sub-Riemannian geometry, Melrose’s result asserts
that singularities of subelliptic wave equations propagate only along usual null-
bicharacteristics (at speed 1) and along singular curves (see Definition 1.1). Along
singular curves, Melrose writes in [Mel86] that the speed should be between 0 and
1, but nothing more. It is our purpose here to prove that for the Martinet wave
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equation, which is a subelliptic wave equation, singularities can propagate at any
speed between 0 and 1 along the singular curves of the Martinet distribution. As
explained in Remark 1.9, an analogous result also holds in the so-called quasi-contact
case (the computations are easier in that case).

To state our main result, we consider the Martinet sub-Laplacian

∆ = X2
1 +X2

2

on R3, where
X1 = ∂x, X2 = ∂y + x2∂z.

Hörmander’s theorem implies that ∆ is hypoelliptic since X1, X2 and [X1, [X1, X2]]
span TR3. The Martinet half-wave equation is

i∂tu−
√
−∆u = 0 (1)

on Rt × R3, with initial datum u(t = 0) = u0. The vector fields X1 and X2 span
the horizontal distribution

D = Span(X1, X2) ⊂ TR3.

Let us recall the definition of singular curves. We use the notation D⊥ for the
annihilator of D (thus a subcone of the cotangent bundle T ∗R3), and ω denotes the
restriction to D⊥ of the canonical symplectic form ω on T ∗R3.

Definition 1.1 A characteristic curve for D is an absolutely continuous curve t 7→
λ(t) ∈ D⊥ that never intersects the zero section of D⊥ and that satisfies

λ̇(t) ∈ ker(ω(λ(t)))

for almost every t. The projection of λ(t) onto R3, which is an horizontal curve1

for D, is called a singular curve, and the corresponding characteristic an abnormal
extremal lift of that curve.

We refer the reader to [Mon02] for more material related to sub-Riemannian geom-
etry.

The curve t 7→ γ(t) = (0, t, 0) ∈ R3 is a singular curve of the Martinet distribu-
tion D. Denoting by (ξ, η, ζ) the dual coordinates of (x, y, z), this curve admits both
an abnormal extremal lift, for which ξ(t) = η(t) = 0, and a normal extremal lift, for
which ξ(t) = 0, η(t) = 1, ζ(t) = 0 (meaning that, if τ = 1 is the dual variable of t,
this yields a null-bicharacteristic). Martinet-type distributions attracted a lot of at-
tention since Montgomery showed in [Mon94] that they provide examples of singular
curves which are geodesics of the associated sub-Riemannian structure, but which
are not necessarily projections of bicharacteristics (in contrast with the Riemannian
case, where all geodesics are obtained as projections of bicharacteristics).

In this note, all phenomena and computations are done (microlocally) near the
abnormal extremal lift, and thus away (in the cotangent bundle T ∗R3) from the
normal extremal lift, which plays no role.

1i.e., dπ(λ̇(t)) ∈ Dλ(t) for almost every t, where π : T ∗R3 → R3 denotes the canonical projection.
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1.2 Main result

Let Y ∈ C∞(R,R) be equal to 0 on (−∞, 1) and equal to 1 on (2,∞). Take
φ ∈ C∞0 (R,R) with φ ≥ 0 and φ 6≡ 0. Consider as Cauchy datum for the Martinet
half-wave equation (1) the distribution u0(x, y, z) whose Fourier transform 2 with
respect to (y, z) is

Fy,zu0(x, η, ζ) = Y (ζ)φ(η/ζ1/3)ψη,ζ(x). (2)

Here, ψη,ζ is the ground state of the x−operator

−d2x + (η + x2ζ)2

with ψη,ζ(0) > 0 and ‖ψη,ζ‖L2 = 1, and α1 is the associated eigenvalue. Thanks to
the Fourier inversion formula applied to (2), we note that

√
−∆u0(x, y, z) =

∫∫
R2

Y (ζ)φ(η/ζ1/3)
√
α1(η, ζ)ψη,ζ(x)ei(yη+zζ)dηdζ.

We call u0 a well-prepared Cauchy datum. It yields a solution of (1), namely

(U(t)u0)(x, y, z) =

∫∫
R2

Y (ζ)φ(η/ζ1/3)ψη,ζ(x)e−it
√
α1(η,ζ)ei(yη+zζ)dηdζ.

For µ ∈ R, we set Hµ = −d2x + (µ + x2)2 and we denote by ψµ its normalized
ground state

Hµψµ = λ1(µ)ψµ,

whose properties are described at the beginning of Section 2. We also define

F (µ) =
√
λ1(µ).

We set η = ζ1/3η1 and we note that ψη,ζ(x) = ζ1/6ψη/ζ1/3(ζ1/3x) = ζ1/6ψη1(ζ1/3x)

and
√
α1 = ζ1/3F (η/ζ1/3). Hence,

(U(t)u0)(x, y, z) =

∫∫
R2

Y (ζ)ζ1/2φ(η1)ψη1(ζ1/3x)e−iζ
1/3(tF (η1)−yη1)eizζdη1dζ. (3)

We denote by WF (f) ⊂ T ∗R3 \ 0 the wave-front set of f ∈ D′(R3), whose
projection onto R3 is the singular support Sing Supp(f) (see [Hor07, Definition
8.1.2]). Our main result states that the speed of propagation of the singularities of
u0 is in some window determined by the support of φ.

Theorem 1.2 For any t ∈ R, we have

WF (U(t)u0) = {(0, y, 0; 0, 0, λ) ∈ T ∗R3, λ > 0, y ∈ tF ′(I)} , (4)

where I is the support of φ. In particular,

Sing Supp(U(t)u0) = {(0, y, 0) ∈ R3, y ∈ tF ′(I)}. (5)

2We take the convention Ff(p) = (2π)−d
∫
Rd f(q)e−iqpdq for the Fourier transform in Rd.
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Theorem 1.2 means that

singularities propagate along the singular curve γ

at speeds given by F ′(I).
(6)

Recall that in the Riemannian setting, when one says that singularities propagate
at speed 1, this has to be understood with respect to the Riemannian metric. In the
context of the Martinet distribution D, there is also a metric, called sub-Riemannian
metric, defined by

gq(v) = inf
{
u21 + u22, v = u1X1(q) + u2X2(q)

}
, q ∈ R3, v ∈ TqR3, (7)

which is a Riemannian metric on D. This metric g induces naturally a way to
measure the speed of a point moving along an horizontal curve. Since gq(∂y) = 1
for any q of the form (0, y, 0), the set of speeds F ′(I) in (6) has to be understood
as (gq(F

′(I)∂y))
1/2.

Proposition 1.3 There holds F ′(R) = [a, 1) for some −1 < a < 0.

Together with (6), and choosing I adequately, this implies the following informal
statement.

“Corollary” 1.4 Any value between 0 and 1 can be realized as a speed of propaga-
tion of singularities along the singular curve γ.

The next remarks explain possible adaptations of the statement of Theorem 1.2.

Remark 1.5 Putting in the initial Fourier data (2) an additional phase e−iz0ζ for
some fixed z0 ∈ R, we obtain that the singularities of the corresponding solution
propagate along the curve t 7→ (0, t, z0), which is also a singular curve: for this new
initial datum, we replace in (4) the 0 in the z coordinate by z0.

Remark 1.6 If we consider (u,Dtu)|t=0 = (u0, 0) as initial data of the Martinet
wave equation ∂2t u−∆u = 0, the solution is given by

u(t) =
1

2
(U(t)u0 + U(−t)u0) .

Hence, under the assumption that F ′(I) and −F ′(I) do not intersect, (4) must be
replaced by

WF (u(t)) = {(0, y, 0; 0, 0, λ) ∈ T ∗R3, λ > 0, y ∈ ±tF ′(I)}.

Remark 1.7 If we take ζ < 0 instead of ζ > 0 in the (Fourier) initial data

Y (|ζ|)φ(η/|ζ|1/3)ψη,ζ(x),

then we must replace F ′(I) by −F ′(−I) in the Theorem 1.2. The same if we replace
X2 by ∂y − x2∂z and keep ζ > 0 in the Fourier initial data. This is due to the
“orientation” of the singular curve γ: for Theorem 1.2 to hold without any change,
we have to take (0, 0, ζ)(X2) > 0.
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Remark 1.8 Instead of ψη,ζ , we can use in the Fourier initial datum (2) the k-th
eigenfunction of −d2x + (η + x2ζ)2. This yields a function Fk and the associated
velocity F ′k, instead of F and F ′. Theorem 1.2 also holds for this initial datum with
the same proof, just replacing F ′ by F ′k in the statement.

Remark 1.9 It is possible to establish an analogue of Theorem 1.2 for the half-wave
equation associated to the quasi-contact sub-Laplacian

∆ = ∂2x + ∂2y + (∂z − x∂s)2

on R4. For that, we take Fourier initial data of the form

Fy,z,su0(x, η, ζ, σ) = φ(η/σ1/2, ζ/σ1/2)ψη,ζ,σ(x)

where φ ∈ C∞0 (R2,R), η, ζ, σ denote the dual variables of y, z, s, and ψη,ζ,σ is the
normalized ground state of the x−operator −d2x + η2 + (ζ − xσ)2. The computations
are simpler than in the Martinet case since, instead of quartic oscillators, they
involve usual harmonic oscillators. Note that the (non-flat) quasi-contact case has
also been investigated in [Sav19], with other methods.

1.3 Comments and organization of the paper

The singular curve t 7→ γ(t) = (0, t, 0) ∈ R3 of the Martinet distribution D has
played an important role in the last decades in the development of sub-Riemannian
geometry. This role is due to the fact that γ is a minimizing geodesic for the sub-
Riemannian distance induced by the metric g defined in (7). However, we insist on
the fact that in the present work,

the minimizing character of the singular curve γ plays no role.

For example, as explained in Remark 1.9, our computations can be adapted to the
quasi-contact case, where singular curves are not minimizing.

It follows from Definition 1.1 that the existence of singular curves is a property
of the distribution D, and does not depend on the metric g on D (or on the vector
fields X1, X2 which span D). Besides, it was proved in [Mar70, Section II.6] that
generically, a rank 2 distribution D0 in a 3D manifold M0 is of contact type outside
a surface S , called the Martinet surface, and near any point of S except a finite
number of them, the distribution is isomorphic to D = ker(dz − x2dy), which is
exactly the distribution under study in the present work. Therefore, we expect to
be able to generalize Theorem 1.2 to more generic situations.

To explain further the importance of singular curves, let us provide more context
about sub-Riemannian geometry. A sub-Riemannian manifold is a triple (M,D, g)
where M is a smooth manifold, D is a smooth sub-bundle of TM which is assumed
to satisfy the Hörmander condition Lie(D) = TM , and g is a Riemannian metric
on D (which naturally induces a distance d on M). Sub-Riemannian manifolds are
thus a generalization of Riemannian manifolds (for which D = TM), and they have
been studied in depth since the years 1980, see [Mon02] and [ABB19] for surveys.

As already mentioned, a particular interest has been devoted to the understand-
ing of geodesics, i.e. absolutely continuous horizontal paths for which every suffi-
ciently short subarc realizes the sub-Riemannian distance between its endpoints. It
follows from Pontryagin’s maximum principle (see also [Mon02, Section 5.3.3]) that
any sub-Riemannian geodesic is
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• either normal, meaning that it is the projection of an integral curve of the
normal Hamiltonian vector field 3;

• or singular, meaning that it is the projection of a characteristic curve (see
Definition 1.1).

A sub-Riemannian geodesic can be normal and singular at the same time, and
it is indeed the case of the singular curve t 7→ (x, y, z) = (0, t, 0) in the Martinet
distribution described above. But it was proved in [Mon94] that there also exist sub-
Riemannian manifolds which exhibit geodesics which are singular, but not normal
(they are called strictly singular).

The study of the spectral consequences of the presence of singular minimizers was
initiated in [Mon95], where it was proved that in the situation where strictly singular
minimizers show up as zero loci of two-dimensional magnetic fields, the ground state
of a quantum particle concentrates on this curve as e/h tends to infinity, where e
is the charge and h is the Planck constant. In [CHT-21?], it is proved that, for 3D
compact sub-Riemannian manifolds with Martinet singularities, the support of the
Weyl measure is the 2D Martinet manifold: most eigenfunctions concentrate on it.

The present work gives a new illustration of the intuition that singular curves
play a role “at the quantum level”, this time at the level of propagation for a wave
equation. However, the fact that the propagation speed is not 1, but can take any
value between 0 and 1 was unexpected, since it is in strong contrast with the usual
propagation of singularities at speed 1 for wave equations with elliptic Laplacians.

The paper is organized as follows. In Section 2, we prove some properties of
the eigenfunctions ψµ which play a central role in the next sections. In Section 3,
we compute the wave-front set of the Cauchy datum u0 thanks to stationary phase
arguments; this proves Theorem 1.2 at time t = 0. In Section 4, we complete the
proof of Theorem 1.2 by extending the previous computation to any t ∈ R. We
could have directly done the proof for any t ∈ R (thus avoiding to distinguish the
case t = 0), but we have chosen this presentation to improve readability. In Section
5, to illustrate Theorem 1.2, we prove Proposition 1.3, we provide plots of F and
F ′ and compute their asymptotics.

Acknowledgments. We thank Bernard Helffer and Nicolas Lerner for their
help concerning Lemma 2.1. We also thank Emmanuel Trélat for carefully reading
a preliminary version of this paper.

2 Some properties of the eigenfunctions ψµ

Let us recall that Hµ is the essentially self-adjoint operator Hµ = −d2x + (µ+ x2)2

on L2(R, dx) and ψµ is the ground state eigenfunction with
∫
R ψµ(x)2dx = 1 and

ψµ(0) > 0. We denote by λ1(µ) the associated eigenvalue, λ1(µ) = F (µ)2.

Lemma 2.1 The domain of the essentially self-adjoint operator Hµ is independent
of µ. It is denoted by D(H0). Moreover, the following assertions hold:

3By this, we mean the Hamiltonian vector field of g∗, the semipositive quadratic form on T ∗qM defined
by g∗(q, p) = ‖p|Dq

‖2q, where the norm ‖ · ‖q is the norm on D∗q dual of the norm gq.
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1. The map µ 7→ λ1(µ) is analytic on R, and the map µ 7→ ψµ is analytic from
R to D(H0);

2. The function ψµ is in the Schwartz space S(R) uniformly with respect to µ on
any compact subset of R 4;

3. Any derivative in D(H0) of the map µ 7→ ψµ is in the Schwartz space S(R)
uniformly with respect to µ on any compact subset of R.

Proof. The domain of Hµ is given by

D(Hµ) = {ψ ∈ L2(R),−ψ′′ + x4ψ ∈ L2(R), x2ψ ∈ L2(R)} ,

the last property coming from the finiteness of the associated quadratic form Q(ψ) =∫
R((ψ′)2 + (µ + x2)2ψ2)dx. We have hence D(Hµ) = D(H0). The map µ 7→ Hµ

is analytic from R into L(D(H0), L
2(R)). Moreover, by [BS12, Theorem 3.1], the

eigenvalues of Hµ are non-degenerate (simple). This implies (see [Kat13, Chapter
VII.2] or [CR19, Proposition 5.25]) that the eigenvalues λ1(µ) and eigenfunctions
ψµ are analytic functions of µ, respectively with values in R and in D(H0). This
proves Point 1.

Point 2 follows from Agmon estimates (precisely, [Hel88, Proposition 3.3.4] with
h = h0 = 1), which are uniform with respect to µ on any compact subset of R.

This allows to start to prove Point 3 by induction. Assume that Point 3 is true
for the derivatives of order 0, . . . , k− 1. Then, taking the derivatives with values in
the domain D(H0) with respect to µ in the equation (Hµ − λ1(µ))ψµ = 0, we get

(Hµ − λ1(µ))
dk

dµk
ψµ = vk,µ (8)

and we know, by the induction hypothesis, that vk,µ ∈ S(R) uniformly with respect
to µ on any compact subset of R. We now use the results of [Shu87, Section 25] (see
also [Shu87, Section 23] for the notations, and [HR82] for similar results). We check
that ξ2+x4 is a symbol in the sense of Definition 25.1 of [Shu87], with m = 4, m0 = 2
and ρ = 1/2. Its standard quantization (i.e., τ = 0 in Equation (23.31) of [Shu87])
is Hµ. By [Shu87, Theorem 25.1], Hµ−λ1(µ) admits a parametrix Bµ; in particular,
Bµ(Hµ−λ1(µ)) = Id+Rµ where Rµ is smoothing. Hence, composing on the left by

Bµ in (8), and noting that Bµvk,µ ∈ S(R), we obtain that dk

dµk
ψµ ∈ S(R) uniformly

with respect to µ on any compact subset of R, which concludes the induction and
the proof of Point 3.

3 Wave-front of the Cauchy datum

The goal of this section is to compute the wave-front set of u0. In other words, we
prove Theorem 1.2 for t = 0. Recall that (see (3))

u0(x, y, z) =

∫∫
R2

Y (ζ)ζ1/2φ(η1)ψη1(ζ1/3x)ei(yζ
1/3η1+zζ)dη1dζ. (9)

Lemma 3.1 The function u0 is smooth on R3 \ {(0, 0, 0)}.
4This means that for any compact K ⊂ R, in the definition of S(R), the constants in the semi-norms

can be taken independent of µ ∈ K.
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Proof. We prove successively that u0 is smooth outside x = 0, y = 0 and z = 0.
Any derivative of (9) in x, y, z is of the form∫∫

R2

Y (ζ)ζαψ(γ)
η1 (ζ1/3x)φ(η1)η

β
1 e

i(yζ1/3η1+zζ)dη1dζ (10)

for some α, β, γ ≥ 0. By the dominated convergence theorem, convergence of these
integrals implies smoothness. Recalling that φ has compact support, we see that
the main difficulty for proving smoothness comes from the integration in ζ in (10).

For x 6= 0 it follows from Lemma 2.1 (Point 2) that the integrand in (10) has a
fast decay in ζ. This proves that u0 is smooth outside x = 0.

If y 6= 0, we use the fact that the phase yζ1/3η1 + zζ is non critical with respect
to η1 to get the decay in ζ. More precisely, (10) is equal to∫∫

R2

Y (ζ)ζα(yζ1/3)−NDN
η1(ψ(γ)

η1 (ζ1/3x)φ(η1)η
β
1 )ei(yζ

1/3η1+zζ)dη1dζ

after integration by parts in η1 (where Dη1 = i−1∂η1). Taking N sufficiently large

and using that DN
η1(ψ

(γ)
η1 (ζ1/3x)φ(η1)η

β
1 ) is bounded thanks to Lemma 2.1 (Point 3),

we obtain that this integral converges when y 6= 0. This proves that u0 is smooth
outside y = 0.

Finally, let us study the case z 6= 0. We can also assume that y ≤ 1 due to the
previous point.

Claim. The function

ζ 7→ Y (ζ)ζ1/2φ(η1)ψ
(γ)
η1 (ζ1/3x)eiyζ

1/3η1 (11)

is a symbol (see Definition A.1) uniformly on every compact in (y, η1).

Proof. The functions ζ 7→ ζ1/2φ(η1) and ζ 7→ Y (ζ)eiyζ
1/3η1 are symbols. Besides,

ζ 7→ ψ
(γ)
η1 (ζ1/3x) is also a symbol (of degree 0 with ρ = 1): we notice for example that

the first derivative with respect to ζ writes (1/3)ζ−1(ζ1/3x)ψ
(γ+1)
η1 (ζ1/3x) which is

uniformly O(1/ζ) thanks to Lemma 2.1 (Point 2). Finally, since the space of symbols
is an algebra for the pointwise product, we get the claim.

Integrating (11) in η1 ∈ R and using Lemma A.2 (in the variable ζ), we obtain
that (9) is smooth outside z = 0, which concludes the proof of Lemma 3.1.

The following lemma proves Theorem 1.2 at time t = 0.

Lemma 3.2 There holds WF (u0) = {(0, 0, 0; 0, 0, λ) ∈ T ∗R3, λ > 0}.

Proof. The Fourier transform of u0 is

U0(ξ, η, ζ) = Y (ζ)φ(η/ζ1/3)Ψη/ζ1/3(ξ/ζ1/3) (12)

where Ψµ is the Fourier transform of the eigenfunction ψµ. By Lemma 2.1 (Point
2), for any N ∈ N we get

|U0(ξ, η, ζ)| ≤ CN |φ(η/ζ1/3)|(1 + |ξ/ζ1/3|)−N . (13)

We show that U0 is fastly decaying in any cone C := {|ξ|+ |η| ≥ c|ζ|} for c small.
We split the cone into C = C1∪C2 with C1 = C∩{|ξ| ≤ |η|} and C2 = C∩{|η| ≤ |ξ|}.
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In C1, we have |η/ζ1/3| ≥ c1|η2/3|. This implies that φ(η/ζ1/3) vanishes for η large
enough. Hence, U0 has fast decay in C1.
In C2, we have |ξ/ζ1/3| ≥ c2|ξ|2/3 ≥ c3(1 + ξ2 + η2 + ζ2)1/3, hence, plugging into
(13), we get that U0 has fast decay in C2.

This proves that no point of the form (x, y, z; ξ, η, ζ) ∈ T ∗R3 with (ξ, η) 6= (0, 0)
can belong to WF (u0). Moreover, due to the factor Y (ζ), necessarily WF (u0) ⊂
{ζ > 0}. Combining with Lemma 3.1, we get the inclusion ⊂ in Lemma 3.2.

Let us finally prove that (0, 0, 0; 0, 0, λ) ∈ WF (u0) for λ > 0. We pick a, b ∈ R
such that φ(a) 6= 0 and Ψa(b) 6= 0. Then, we note that U0(ζ

1/3a, ζ1/3b, ζ) is indepen-
dent of ζ and 6= 0, thus it is not fastly decaying as ζ → +∞. Since (ζ1/3a, ζ1/3b, ζ)
converges to the direction (0, 0,+∞) as ζ → +∞, we get that there exists at least
one point of the form (x, y, z; 0, 0, λ) ∈ T ∗R3 which belongs to WF (u0). By Lemma
3.1, we necessarily have x = y = z = 0, which concludes the proof.

4 Wave front of the propagated solution

In this Section, we complete the proof of Theorem 1.2. We set

Gt = {(0, y, 0; 0, 0, λ), λ > 0, y ∈ tF ′(Support(φ))}.

In Section 4.1, we prove the inclusion WF (U(t)u0) ⊂ Gt, and then in Section 4.2
the converse inclusion Gt ⊂WF (U(t)u0). This completes the proof of Theorem 1.2.

4.1 The inclusion WF (U(t)u0) ⊂ Gt
For this inclusion, we follow the same arguments as in Section 3: we adapt Lemma
3.1 to find out the singular support of U(t)u0, and then we adapt Lemma 3.2 to
determine the full wave-front set.

Lemma 4.1 For any t ∈ R, U(t)u0 is smooth outside {(0, y, 0) ∈ R3, y ∈ tF ′(I)}.

Proof. As in Lemma 3.1, we prove successively that U(t)u0 is smooth outside x = 0,
y = 0 and z = 0. Any derivative of U(t)u0 is of the form∫∫

R2

Y (ζ)ζαψ(γ)
η1 (ζ1/3x)φ(η1)η

β
1 e
−iζ1/3(tF (η1)−yη1)eizζdη1dζ (14)

for some α, β, γ ≥ 0.

For x 6= 0, it follows from Lemma 2.1 (Point 2) that the integrand in (14) has a
fast decay in ζ. This proves that U(t)u0 is smooth outside x = 0.

If y /∈ tF ′(I), we use the fact that the phase ζ1/3(tF (η1) − yη1) − zζ is non
critical with respect to η1 to get decay in ζ. We set Rη1H = Dη1(Q−1H) where
Q = Dη1(−i(ζ1/3(tF (η1)− yη1)− zζ)) = −ζ1/3(tF ′(η1)− y). Note that Q 6= 0 since
y /∈ tF ′(I). Doing N integration by parts, the above expression becomes∫∫

R2

Y (ζ)ζαRNη1(ψ(γ)
η1 (ζ1/3x)φ(η1)η

β
1 )e−iζ

1/3(tF (η1)−yη1)eizζdη1dζ. (15)

We set H(x, η1, ζ) = ψ
(γ)
η1 (ζ1/3x)φ(η1)η

β
1 .
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Claim. For any N , there exists CN such that |RNη1H(x, η1, ζ)| ≤ CN |ζ|−N/3 for
any ζ ∈ R, any η1 ∈ I = Support(φ) and any x ∈ R.

Taking N sufficiently large, the claim implies that (15), and thus (14), converge,
which proves the smoothness when y /∈ tF ′(I) thanks to the dominated convergence
theorem.

Proof of the claim. We prove it first for N = 1. We have

Rη1H =
Dη1H

Q
−HDη1Q

Q2
. (16)

Since H is bounded (thanks to Point 2 of Lemma 2.1) and |Q| ≥ c|ζ|1/3 with c > 0

and |Dη1Q| ≤ C|ζ|1/3 on the support of φ, we have |HDη1Q

Q2 | ≤ c|ζ|−1/3. For the first

term in the right-hand side of (16), we only need to prove that Dη1H is bounded.

When Dη1 falls on φ(η1) or ηβ1 , it is immediate. When Dη1 falls on ψ
(γ)
η1 (ζ1/3x),

we use Lemma 2.1 (Point 3) and also get the result. This ends the proof of the
case N = 1. Now, we notice that our argument works not only for H, but for any

function of the form ψ
(γ′)
η1 (ζ1/3x)φ(δ)(η1)η

β′

1 where φ(δ) is any derivative of φ and
β′, γ′ ≥ 0. Hence, applying the previous argument recursively, we obtain the claim
for any N .

Finally, the case z 6= 0 is checked in the same way as in the case t = 0, just
shifting the phase by itζ1/3F (η1) in (11).

Let us finish the proof of the inclusion WF (U(t)u0) ⊂ Gt.
The Fourier transform of U(t)u0 is

F(U(t)u0)(ξ, η, ζ) = Y (ζ)φ(η/ζ1/3)Ψη/ζ1/3(ξ/ζ1/3)e−it
√
α1(η,ζ). (17)

The change of phase with respect (12) has no influence on the properties of decay at
infinity. Hence, the proof of Lemma 3.2 allows to conclude that WF (U(t)u0) ⊂ Gt
for any t ∈ R.

4.2 The inclusion Gt ⊂ WF (U(t)u0)

We fix t ∈ R and we prove the non smoothness at (0, tF ′(c), 0) for any c ∈ I. We
can assume that F ′(c) is not a critical value of F ′ since such points are dense in
I because F is an analytic, non-affine, function (see Point 1 of Lemma 2.1 and
Proposition 5.1). We want to show non-smoothness with respect to z at x = 0,
y = tF ′(c) and z = 0. We set v(z) := (U(t)u0)(0, tF

′(c), z). We will show that the
Fourier transform of v is not fastly decaying.

Starting from (3), we get the explicit formula for the Fourier transform of v,

Fv(ζ) = Y (ζ)ζ1/2K(ζ)

where

K(ζ) =

∫
R
φ(η1)ψη1(0)e−iζ

1/3t(F (η1)−F ′(c)η1)dη1.

We denote by ηα the critical points of the phase: F ′(ηα) = F ′(c) and ηα ∈
Support(φ). By assumption, we know that F ′′(ηα) 6= 0 for any α. Applying the
stationary phase theorem with respect to η1, we obtain

K(ζ) =
∑
α

e−iζ
1/3t(F (ηα)−F ′(c)ηα)

∑
j≥1

aαj (ζ1/3|t|)−j/2

10



where

aα1 = φ(ηα)ψηα(0)

(
2π

|F ′′(ηα)|

)1/2

exp(−iπ
4

sgn(F ′′(ηα))) 6= 0

for any α. Moreover, since φ ≥ 0 and ψηα(0) > 0 for any α, the sum c =
∑

α a
α
1 is

a sum of the form a exp(iπ/4) + b exp(−iπ/4), which cannot be 0. Hence, K(ζ) ∼
c(ζ1/3|t|)−1/2, and Fv(ζ) is not fastly decaying as ζ → +∞. Applying Lemma A.2
to a = Fv which is a symbol in ζ, this implies that v is not smooth at z = 0, thus
U(t)u0 is not smooth at (0, tF ′(c), 0).

5 The function Fk(µ) =
√
λk(µ)

In this Section, we illustrate Theorem 1.2 with some plots and asymptotics of the
functions Fk defined by µ→

√
λk(µ). As shown by Theorem 1.2 (and Remark 1.8),

the speeds of the propagation of singularities along the singular curve are determined
by the derivative F ′k(µ). Below, we plot F = F1 and F ′ for µ ∈ (−10, 10)5.

(a) Plot of F (µ) for µ ∈ (−10, 10) (b) Plot of F ′(µ) for µ ∈ (−10, 10)

Recall that the Fk’s are analytic (see Point 1 of Lemma 2.1). We state a more
precise version of Proposition 1.3:

Proposition 5.1 For any k ∈ N \ {0}, there holds F ′k(µ) → 1− as µ → +∞,
F ′k(µ) → 0− as µ → −∞, and F ′k is minimal for some value µ?k < 0. There exists
ak ∈ (−1, 0) such that the range of F ′k is [ak, 1).

Proposition 5.1 will be a consequence of the following result:

Proposition 5.2 Denote by λk(µ) the k-th eigenvalue of Hµ = −d2x + (µ + x2)2.
Then, for k ∈ N \ {0}, as µ→ +∞,

λk(µ) = µ2 +
√

2(2k − 1)
√
µ+

∞∑
`=2

b`,kµ
2−3`/2 (18)

and
d

dµ

√
λk(µ) = 1− 2k − 1

2
√

2
µ−3/2 + o(µ−3/2) (19)

5We thank Julien Guillod for his help in making the first numerical experiments.
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These derivatives are > 0 and converge to 1.
As µ→ −∞, for k ∈ N \ {0},

λ2k−1(µ) = 2(2k − 1)
√
−µ+

∞∑
`=2

c`,k(−µ)2−3`/2 (20)

λ2k(µ) = λ2k−1 + o
(
µ−∞

)
(21)

and

d

dµ

√
λ2k−1(µ) = −

√
2(2k − 1)

4
(−µ)−3/4 + o((−µ)3/4) (22)

and the same for d
dµ

√
λ2k(µ). These derivative are < 0 and converge to 0.

Proof of Proposition 5.2. For µ > 0, we consider the operator Tµ : ψ 7→
ψ(·/µ1/4). Then Hµ = T−1µ GµTµ where Gµ = µ2 + µ1/2(−d2x + 2x2 + x4/µ3/2).
The eigenvalues of −d2x + 2x2 + hx4 for h→ 0 can be computed with the usual per-
turbation theory (see [RS78, Chapter XII.3]), and this yields (18) with h = µ−3/2.
Moreover the formal expansion can be differentiated with respect to µ, hence we
get (19).

For µ = −µ0 < 0, we see that the transformation x 7→ µ
1/4
0 (x∓µ1/20 ) conjugates

Hµ to the operator µ
1/2
0 (−d2x+4x2±4µ

−3/4
0 x3+µ

−3/2
0 x4). Using again perturbation

theory and the separation into pairs of eigenvalues in double wells (see [HS84]), we
get (20) and (21), and (22) follows.

Proof of Proposition 5.1. The convergences at ±∞ are proved by Proposition
5.2. This behaviour at ±∞ implies the existence of µ?k such that F ′k(µ

?
k) = ak is

minimal. We denote by ψkµ the normalized eigenfunction corresponding to λk(µ).
Taking the first derivative (with value in the domain D(H0)) with respect to µ of
the eigenfunction equation (Hµ − λk(µ))ψkµ = 0, and then integrating against ψkµ,

we obtain λ′k(µ) =
∫
R(µ+ x2)ψkµ(x)2dx. Thus,

F ′k(µ) =
1√
λk(µ)

∫
R

(µ+ x2)ψkµ(x)2dx

which is positive for µ ≥ 0, hence µ?k < 0.

It remains to show that |F ′k(µ)| < 1 for every µ: by the Cauchy-Schwarz inequal-
ity, we get

F ′k(µ)2 ≤ 1

λk(µ)

∫
R

(µ+ x2)2ψkµ(x)2dx

∫
R
ψkµ(x)2dx

and, from the quadratic form associated to Hµ,∫
R

(µ+ x2)2ψkµ(x)2dx < λk(µ),

which concludes the proof.
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Appendix

A Fourier transform of symbols

Definition A.1 A smooth function a : Rd → C is called a symbol of degree ≤ m if
there exists 0 < ρ ≤ 1 so that the partial derivatives of a satisfy

∀α ∈ Nd, |Dαa(ξ)| ≤ Cα(1 + |ξ|)m−ρ|α|.

The space of symbols is an algebra for the pointwise product. If a is a real valued
symbol of degree m < 1 and ρ > m, eia is a symbol of degree 0 (with a different ρ).

We will need the

Lemma A.2 If a is a symbol, the Fourier transform Fa of a is smooth outside
x = 0 and all derivatives of Fa decay fastly at infinity. If moreover a does not
belong to the Schwartz space S(Rd), then Fa is non smooth at x = 0.

Proof. For x 6= 0 and for any α, β ∈ Nd, we have

(Fa)(β)(x) = Cβ

∫
Rd
ξβa(ξ)e−ixξdξ =

cαβ
xα

∫
Rd
Dα
ξ (ξβa(ξ))e−ixξdξ. (23)

The multi-index β ∈ Nd being fixed, this last integral converges for |α| sufficiently
large since a is a symbol. By the dominated convergence theorem, this implies that
Fa is smooth outside x = 0. Moreover, (23) also implies that all derivatives of Fa
decay fastly at infinity.

Finally, if Fa were smooth at 0, then Fa would be in the Schwartz space as well
as a.
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