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Fast Gossiping by Short Messages*

j.—C. Bermond,! L. Gargano,? A. A. Rescigno,? and U. Vaccaro?

1 138, CNRS, Université de Nice, 06903 Sophia Antipolis Cedex, France
9 Dipartimento di Informatica, Universita di Salerno, 84081 Baronissi (SA), Italy.

Abstract. Gossiping is the process of information diffusion in which
each node of a network holds a packet that must be communicated to
all other nodes in the network. We consider the problem of gossiping
in communication networks under the restriction that communicating
nodes can exchange up to a fixed number p of packets at each round.
In the first part of the paper we study the extremal case p = 1 and
we exactly determine the optimal number of communication rounds to
perform gossiping for several classes of graphs, including Hamiltonian
graphs and complete k-ary trees. For arbitrary graphs we give asymp-
totically matching upper and lower bounds. We also study the case of
arbitrary p and we exactly determine the optimal number of communi-
cation rounds to perform gossiping under this hypothesis for complete
graphs, hypercubes, rings, and paths.

1 Introduction

Gossiping (also called total exchange or all-to—all communication) in distributed
systems is the process of distribution of information known to each processor to
every other processor of the system. This process of information dissemination
is carried out by means of a sequence of message transriissions between adjacent
nodes in the network.

Rossiping is a fundamental primitive in distributed memory multiprocessor
system. There are a number of situations in multiprocessor computation, such
as global processor synchronization, where gossiping occurs. Moreover, the gos-
siping problem is implicit in a large class of parallel computation problems, such
as linear system solving, Discrete Fourier Transform, and sorting, where both
input and output data are required to be distributed across the network [7]. Due
to the interesting theoretical questions it poses and its numerous practical appli-
cations, gossiping has been widely studied under various communication models.
Hedetniemi, Hedetniemi and Liestman [12] provide a survey of the area. Two

" The work of the first author was partially supported by the French GDR/PRC
Project PRS. He wants also to thank the Dipartimento di Informatica ed Applicazioni
of the Universita di Salerno, where part of his research was done, for inviting him.
T‘he work of the last three authors was partially supported by Progetto Finalizzato
Sistemi Informatici e Calcolo Parallelo of C.N.R. under Grant No. 92.01622.PF69 and
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more recent surveys paper collecting the latest results are [9, 14}, Thé reader can /|
also profitably see the book [16].

The great majority of the previous work on gossiping has considered the
case in which the packets known to a processor at any given time during the
execution of the gossiping protocol can be freely concatenated and the resulting
(longer) message can be transmitted in a constant amount of time, that is, it has
been assumed that the time required to transmit a message is independent from -
its length. While this assumption is reasonable for short messages, it is clearly
unrealistic in case the size of the messages becomes large. Notice that most of
the gossiping protocols proposed.in the literature require the transmission, in
the last rounds of the execution of the protocol, of messages of size ©(n), where
n is the number of nodes in the network Therefore, 1t would be interesting to
have gossiping protocols that require only the transmission of bounded length
messages between processors. In this paper we consider the problem of gossiping
in communication networks under the restriction that communicating nodes can
exchange up to a fixed number p of packets at each round. ‘

1.1 The Model

Consider a communication network modeled by a graph G = (V, E) where the
node set V represents the set of processors of the network and E represents the
set of the communication lines between processors.

Initially each node holds a packet that must be transmitted to any other node
in the network by a sequence of calls between adjacent processors. During each
call, communicating nodes can exchange up to p packets, where p is an. a priori
fixed integer. We assume that each processor can participate in at most one call
at time. Therefore, we can see the gossiping process: as a sequence of rounds:
During each round a disjoint set of edges (matching) is selected and the nodes
that are end vertices of these edges make a call. This communication model is
usually referred to as telephone model [12] or Full-Duplex 1-Port (Fy) [15]. We
denote by gr, (p, G) the minimum possible number of rounds to complete the
gossiping process in the network G subject to the above conditions. Another
popular communication model is the mail model [12] or Half-Duplex 1-Port
(H1) [15], in which in each round any node can either send a message to one of
its neighbors or receive a message from it but not simultaneously. The problem
of estimating gg, (p, G) has been considered in [4]. Analogous problems in bus
networks have been considered in [10, 13]. Optimal bounds on gg,(1,G) when
the edges of G are subject to random failures are given in [8]. Packet routing in
interconnection networks in the F; model has been considered in [1].

»

1.2 Results

We first study the extremal case in which gossiping is to be performed under
the restriction that communicating nodes can exchange ezactly one packet at
each round. We provide several lower bounds on the gossiping time gp, (1, G)
and we provide matching upper bounds for Hamiltonian graphs, complete trees,



and complete bipartite graphs. For general graphs we provide asymptotically
tight upper and lower bounds. Subsequently, we study the case of arbitrary p
and we compute exactly gr, (p, G) for complete graphs, hypercubes, rings and
aths. Our result for hypercubes allows us to improve the corresponding result
-1 the Hy model given in [4]. Due to the space:limits, all proofs are omitted. We
refer to the full version [5] for all omitted proofs and some additional results.

2 Gossiping by exchanging one packet at time

In this section we study gr,(1,G), that is the minimum possible number of
rounds to complete gossiping in a graph G under the condition that at each
round communicating nodes can exchange ezactly one packet. In order to avoid
overburdening the notation, we will simply write g(G) to denote g, (1, G).

2.1 Lower bounds on g(G)

In this section we give some lower bounds on the time needed to complete the
gossiping process.

Lemma 2.1 For any graph G = (V, E), with |V| =n, let u(G) be the size of a

mazimum matching in G, then g(G) > [12(’?—(_51)-1]

Lemma 2.2 Let X C V be a vertex cutset of the graph G = (V, E) whose

removal disconnects G into the connected components V1, ..., Vy, then g(G) >
[Zle ma)c{lmfl—llﬁl}} , where |[Mx| is the size of @ marimum matching Mx in

G such that any edge in it has an endpoint in X and the other in V — X.
Corollary 2.1 Let a(G) be the independence number of G, then

s@ 2 [2QEZDT

Let T be a tree and v one of its nodes, we indicate the connected components
into which the node set of T" is splitted by the removalof v by Vi (v), ..., Vieg(v)(v),
ordered so that |Vy(v)| > ... 2> |Vieg(v)(v)|- ~

Corollary 2.2 Let T be a tree on n nodes of mazimum degree A = max,cy deg(v),
then g(T') > max, . geg(v)=a L(v), where

L(v) = { (deg(v) —)n+1 R € il
(deg(v) = 2)n + 1 +2[Vi(v)| if [Vi(v)| > n/2.
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2.2 Upper bounds

We will determine exactly g(G) for several classes of graphs, including Hamilto-
nian graphs and complete k-ary trees. We will also provide good upper bounds
for general graphs. We first note that in any graph G = (V, E) the size of a
maximum matching x(G) is at most ||V'|/2]. Therefore, from Lemma 2.1 we get
that the gossiping time g(G) of any graph with n nodes is always lower bounded
by

n — 1if n is even; )

9(G) 2 {n if n is odd.

We can prove that this lower bound is attained by Hamiltonian graphs.
Let C, = (V, E) denote the ring of length n; we assume the vertex set be
V ={0,...,n— 1} and the edge set be E = {(v,w) : 1= |v— w|(mod n)}2.

n—1 ifn is even;
Lemma 2.3 9(Cn) < {n if n is odd.

Proof. We shall discuss only the case n even. The case n odd is similar. For
each integer ¢ define the perfect matching in C,, given by

M, = {(v,w) : viseven and w=v+ 1} if ¢ is even (3)
"7 1{(v,w) : visodd and w = v+ 1(mod n)} ift is odd;

notice that M; and M, are disjoint for each ¢. The gossiping algorithm is shown
in Figure 1. The easy proof of correctness is left to the reader.

Gossiping-even(Cyr)

Round t = 1: each node v sends its own packet to the node w such that (v, w) € Mj;
Round ¢ = 2: each node v sends its own packet to the node w such that (v, w) € My;
Round ¢, 3 < ¢ < n— 1: For each node v let w be the node such that (v, w) € M,
node v sends a new packet to w, namely v sends the packet it has first got among
those v has neither received from w nor sent to w in any previous round.

Figure 1: Gossiping Algorithm in Cp, n even.

From Lemma 2.3 and (2) we immediately get

Theorem 2.1 For any Hamiltonian graph G on n vertices we have

n—1 tfn is even;

9(G) = {n if n is odd. N,

2 Here and in Fhe rest of the paper with z = a (mod b) we denote the'unique integer
0 <z < bsuch that z =gb +a.




2.3 Trees

In this section we investigate the gossiping time in trees. We first give an upper
pound on the gossiping time in any tree and afterwards we exactly compute the -
gossiping time of k-ary trees.

Consider a tree T' = (V, E). We recall that for each node v the set V;(v)
denotes the largest of the connected components into which T is splitted by the
removal of v. Let ¥ = max|Vj(v)|, where the maximum is taken over all the
internal nodes v having exactly deg(v) — 1 leaves as neighbors; notice that any
other internal node u has |V} (u)| < 9 — 1.

Call pre-leaf any node v such that |V;(v)| = ¢ and denote by 7 the maximum
degree of a node in the subgraph consisting only of the edges (u, f) where f is
either a leaf or a pre—leaf of T'. |

‘Finally, let A be the maximum number of leaves connected to a same node and

A = max,ev deg(v).
Theorem 2.2 For any tree T on n nodes g(T) < (0 —1)A+ 7+ (n -9 —1)\.

The gossiping algorithm in 7' is given in the Figure 2.

r
Gossiping-tree(T)
Phase 1
[Color each edge (u,v) of T with color ¢(u,v) =c(v,u) € {0,...,A4—-1}.]
Round ¢, for t = 1,...,A(9 — 1): For each node u, if there is an edge (u, v)
such that c¢(u,v) = ¢t — 1(mod A) then u sends a new packet to v, namely u
sends to v a packet among those that u has neither sent to v nor received from
v in a previous round, if such a packet exists, otherwise u sends nothing.
Phase 2 _
[Give to each edge (u, f), where f is a leaf or 4 pre-leaf, a color c'(u, f) €
{0,...,7/—=1}] '
Round A(Y9 — 1)+ ¢, for t =1,...,n: For each leaf or pre-leaf f, if there is
an edge (u, f) with ¢'(u, f) = t — 1, then u sends to f a packet among those
that u has neither sent to f nor received from f in a previous round, if any.
Phase 3
[Give to each edge (u, f), where f is a leaf of T, a colorc”(u, f) € {0,...,A—1}.]
Round A(9 —1)+n+¢t, for t =1,...,(n — 9 — 1)A: For each leaf f, if the
edge (u, f) on f has ¢"(u, f) = t — 1(mod ) then u sends to f any packet f
does not know. .

Figure 2: Gossiping Algorithm in a tree T'.

Let § denote the minimum degree of an internal node in 7T'. It is easy to see
that we can upper bound ¥ by n — §. Therefore, from Theorem 2.2 we have
the following upper bound on ¢(7") that is expressed only in terms of degree
properties of the nodes in 7. :

Corollary 2.3 For any tree T on n nodes ¢(T') < (n—48)A+ (6 —1)A



Given a connected graph G' = (V, E), denote by T the set of all spanning trees
of G and for any vertex v € V denote by degp(v) the degree of v in T' € 7.
Define d(G) = minye7 maxyey degp(v). The following corollary is immediate.

Corollary 2.4 For any connected graph G = (V, E) with n vertices
9(G) < (n - 1)d(G). ()

We point out that, altough the problem of computing d(G) is N P-hard, there ex-
ists an efficient algorithm to compute a spanning tree of maximum degree at most
d(G)+1 (see [11]). From Corollary 2.2.and Corollary 2.4 we have that for any tree
with n nodes and maximum degree A it holds nA—n+1 < g(T) < nA— A. Let
us consider now the tree S, 4 of Figure 3. If A = n—1 then Sy, ,,_1 is the star on
n nodes and from Corollary 2.2 and Theorem 2.2 we have g(Sn n-1) = (n—1)2. If
A > 2 is constant with respect to n > 2A then from Corollary 2.2 and Theorem
2.2 we get A(n—1)—(A—=1) < g(Sn,a) < A(n—1)—2. It is not difficult to ob-
tain a specific gossiping algorithm attaining the lower bound. Therefore, we have
that for any n and A there exists a graph G, a with n vertices and maximum
degree A such that g(Gn a) = £2((n — 1)A), hence the bound (4) is asymptot-
ically tight. In [8] it is conjectured that for any graph G it holds gg, (1,G) =
2(nd(G)). This conjecture, if true, together with Corollary 2.4 would imply
the rather interesting fact that for any graph G it holds ¢(G) = O(nd(G)).
*2
3

A-3 ¢ A-1
Figure 3: Tree S, a

We shall now exactly compute the gossiping time of k-ary trees, that is,
rooted trees in which each internal node has exactly k sons. Let T} , denote any

k—ary tree with n nodes.
Let us first notice that for n = k + 1 the tree T} , is the star Sk41x. Consider
then a tree Ty , with n > 2k + 1 nodes. Let u be a node of T ,, whose sons are

all leaves, by Corollary 2.2 we get

kn+1 fn=2k+1
iihad 2 Tl 2. %) = {(k 2 =05k Ensskel B

We show now that (5) holds with equality. Applying Theorem 2.2.to T » we get
that .

9(Tkn) <@ -DA+r+ (-0 =)A= -1)(k+1)+ 7+ (n -9 —1)k. (6)



Unless exactly k — 1 sons of the root are leaves (cf. the tree in Figure 4) Tk ,
has Y =n—k—1and 7 < A =k+1, that by (6) and (5) gives

9(Tkn) =(n—k=2)(k+ 1)+ k+1+k =(k+1)(n—1) -k

Consider now the remaining case when 7} ,, is the tree of Figure 4. The only
pre-leaf is the root, and 9 =n—k.If n > 3k + 1 we have 7 = k and from (6)

we geb
I(Thp) <(n—k=1)(k+1)+k+(k—Dk=m-1)(k+1)—k

ifn=2k+1wehave r=A==Fk+1and g(Tk 2k+1) < kn+ 1.

Figure 4
Therefore, we have proved the following result.

Theorem 2.3 For any k-ary tree on n nodes Ty , it holds that
k2 fn=k+1
9(Ten) =14 282+ k+1 ifn=2k+1

(k+1)(n—1)—k ifn>3k+1.

The particular case k = 1 of above theorem deserves to be explicitely stated.

1 ifn=2
Corollary 2.5 For the path on n nodes P, we have g(P,) = { 4 ifn=3
2n—3 ifn > 4.

2.4 Complete bipartite graphs

Let K, ; = (V(K,;s), E(K,,,)) be the complete bipartite graph on the node set
V(I(T‘,}s) = {GO: ceey ar—l}U{b()a sosrwy ba—l}y with {alg ERE ar‘—l}ﬂ{bo; sy b.s—l} =
B, » > s, and edge set E(Kys) = {a0,...,ar-1} X {bo,...,bs=1}. In the next
theorem we determine the gossiping time of K, ,. o

Theorem 2.4 Foreachr ands,r > s> 1, itholds g(K,,)=[(r+s—1)r/s].



Proof. The lower bound g(K.,) > [(r+s—1)r/s] is an immediate conse-
quence of Corollary 2.1 since the complete bipartite graph has a(K, ) = r.

In order to give a gossiping algorithm in K, , requiring [(r 4+ s — 1)r/s] com-
munication rounds, we define the matchings

sz{(bi:ai+j (mod r)) : OSiSS_l}:

for j =0,...,7— 1. The algorithm is shown in Figure 5.

Gossiping—bipartite(K )

Phase 1
round ¢, for ¢t =1,...,r: For each edge (bi,@i}¢—1 (mod r)) € Mi—1 nodes b;
and a;¢—1 (mod r) €Xchange their own packets;

Phase 2
round ¢, for t = r 4 1,...,[r(r + s — 1)/8]: For each edge (bi,a;) €
M(¢—1—r)s (mod r) Node b; sends to a; any packet that a; has not received
in a previous round; '
if £ < r+ s—1 then b; receives from a; the packet of b;y:_r(mod s)-

Figure 5: Gossiping Algorithm in K, ,.

2.5 Generalized Petersen Graphs

In Section 2.2 we have seen that Hamiltonian graphs have the minimum possible
gossiping time among all graphs with n nodes. A natural question to ask is to
see if there are non-Hamiltonian graphs on n vertices with gossiping time equal
to n if n is odd and n — 1 if n is even. A quick check shows that this is not
the case for rectangular grids G, with both ¢ and s odd 3. In fact, we know
that a(Ge,;) = [%] and from Corollary 2.1 we get g(Gl,5) > s-t+ 1. Moreover,
it is also easy to check that the gossiping time of the Petersen graph on 10
vertices is at least 10. Therefore, one could be tempted to conjecture that the
gossiping time g(G) of a graph G is equal to the minimum possible only if G is
Hamiltonian. This conjecture, although nice sounding, would be wrong as the
following classes of graphs, including the Generalized Petersen Graphs, shows.

Let Py r be the graph consisting of two cycles of size k£ connected by a
perfect matching in the following way: given a permutation « of {0,...,k — 1}
the graph Py » = (V(Px,x), E(Pr,x)) has vertex set V(Pr ) = {ag,...,ak-1} U
{bo,...,bk—1} and edge set

E(Pr,x) = {(ai, @i41(mod 1)) + 0 <8 <h}U{(bi,bis1(mod x)) : 0 <8 <k}
U {(ai,br(i)) : 0< i<k} "\

3 It is well known that all rectangular grids G¢,s are Hamiltonian but for values of ¢
and s both odd.




The Petersen Graph has & = 5 and (i) = 3i(mod 5), for i = 0,1,2,3,4;
Generalized Petersen Graphs (GPG) have k odd and n(s -i(mod k)) =4, i =
0,...,k —1, for a fixed integer s. From Lemma 2.1 we know that 9(Pr,x) >
|V (Pi,x)| — 1= 2k — 1. We can prove the following theorem.

Theorem 2.5 For any k and © such that Py . is 3-edge-colorable, we have
g(Pk,ﬂ-) = 2k = ].

Notice that each cubic GPG, other than the Petersen graph itself, is 3—edge-
colorable. Moreover, the class of 3-edge—colorable Py ,’s includes the family of
non Hamiltonian GPGs with k& = 5 (mod 6) and s = 2 (see [2] and references
therein quoted).

3 Gossiping by exchanging more than one packet at time

In this section we shall study the minimum number of time units gp, (p, G)
necessary to perform gossiping in a graph G, under the restriction that at each
time instant communicating nodes can exchange up to p packets, p fixed but
arbitrary otherwise. We assume that p is smaller than the number of nodes of
the graph G, otherwise the problem is equivalent to the classical one. Again, for
ease of notation, we shall write g(p, G) to denote gr, (p, G).

3.1 Lower Bounds

First of all we shall present a simple lower bound on g(p,G) based on ele-
mentary counting arguments. Nonetheless, we shall prove in the sequel that
the obtained lower bound is tight for complete graphs with an even number
of nodes and for hypercubes. In order to derive the lower bound, let us de-
fine I(p,t) as the maximum number of packets a vertex can have possibly re-
ceived after ¢ communication rounds in any graph. Since at each round i, with
1 < i < t, any vertex can receive at most min{p, 2'~!} packets, it follows that

I(p,t) =1+ Zf-:l min{p, 2" "1}, or, equivalently

[log p]
I(p,t) =1+ Y 27" +p(t — [logp]) = 287! 4 p(t — [logp])  (7)
i=1
for any ¢t > [logp]|. Therefore, for any graph G = (V, E), the gossiping time
g(p, G) is always lower bounded by the smallest integer t* for which I(p,t*) >
|V]. Since t* is obviously greater or equal to [log|V|] > [logp], we can use (7)
and obtain g(p, G).> [logp] + [%(|V| - 2“03?1)} . Moreover, notice that if the

number of nodes in the graph is odd then at each round there is a node that
does not receive any message. This implies that after any round ¢ there exists
a node who can have possibly received at most I(p,t — 1) packets. Therefore,

9(p, G) > [log p]+ Ll? (V|- 9[log p] )] +1. The above arguments give the following

lemma.
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Lemma 3.1 For any graph' G = (V,E); V] = n, and integerp such that "

2[logp] < n we have

) (log p] + [5("’ - 2rlosﬂ)] if n is even,
] 2
a(p [log p] + [%(n - grlosﬂ)] +1 ifn is odd.

3.2 Rings and Paths

Let g(co,G) denote the gossiping time of the graph G in absence of any re-
striction on the size of the messages. It is obvious that for each p it holds
9(p, G) > g(o0,G), it is possible to see that equality holds for any p > 2 when
G is either the ring Cy, or the path P, on n nodes. It is well known that [14]

Cofn]_ _Injf2 if n is even,
g(oo, Pr) =2[5] —1 andg(ooC’n)—{(n+3)/2 if n is odd.

We just pomt out that it is easy to see that the algorithms attaining g(oco, Cy,)
and g(oo, P,) do not need to send more than 2 packets at time. Therefore the
following results hold.

Theorem 3.1 For each n > 3 and p > 2 it holds

n/2 if n is even,

g(p: Cn) = g(Q,Cn)lz { (n+3)/2 if n is odd.

Theorem 3.2 For eachn > 2 and p > 2 it holds g(p, P,) = 9(2, Pn) = 2[5]-1.

3.3 Complete graphs

Let K, be the complete graph on n nodes. We recall that g(oo, K,,) is equal to
[log n] if n is even, and [logn] + 1 if n is odd.

Theorem 3.3 For each even integer n and integer p such that 2M'°8P1 < n 4t
holds g(p, Ka) = [logp] + [2=2""1] .

Theorem 3.4 For each odd integer N and integer p such that 2[°8P1 < N 41

it holds [logp] + I-NLIE”"]—-I 3+1<g(p, Kn) < [logp] + [Nﬂ_grlom] Lo,

For N odd, we believe that the true value of g(p, Kx) is [log p] + [M] +1;

we can verlfy this equality for small values of N and p. In case p = 2, Theorem
3.1 and Lemma 3.1 tell us that ¢g(2, Kn) = (N +3)/2.= ¢(2,Cn), for each odd
N > 2. Moreover, we can prove that

Theorem 3.5 Ifp is a multiple of 4 then g(p, Kn) = [logp] + [——"‘—‘Nizgowrl + 1.



3.4 Hypercube

Let Hg be the d-dimensional hypercube with 29 nodes. We can prove

Theorem 3.6 For each integer p < 2% it holds
g(p, Hd) = l']ogp.l 5 [% (24 S 2[105P1)] i

Remark 3.1 It is worth pointing out that the obvious inequality gg, (p, G) <
2gr, (p, G) and above theorem allow us to improve the upper bound on gy, (p, Hg)
- given by Theorem 4 of [4] for all values of p not power of two. Indeed, the authors
of [4] have gu, (p, Ha) < 2d + 2%t /p — 2/p while from Theorem 3.6 and above
inequality we get

Theorem 3.7 For each integer p < 2% we have

g1, (p, Ha) < 2[logp] + 2 ,'%(24 s 2[103111)] _

4 Concluding Remarks and Open Problems

We have considered the problem of gossiping in communication networks under
the restriction that communicating nodes can exchange up to a fixed number
p of packets at each round. In the extremal case p = 1 we have given optimal
algorithms to perform gossiping in several classes of graphs, including Hamil-
tonian graphs, paths, complete k-ary trees, and complete bipartite graphs. For
arbitrary graphs we gave asymptotically matching upper and lower bounds.

In the case of arbitrary p we have determined the optimal number of commu-
nication rounds to perform gossiping under this hypothesis for complete graphs,
hypercubes, rings, paths and complete bipartite graphs K, .. Several open prob-

lems remain in the area. We list the most important of them here.

e It would be interesting to determine the computational complexity of comput-
ing gr, (1, G) (g9r,(p, G)) for general graphs, it is very likely that it is NP-hard.
(We know that computing g, (00, G) is NP-hard, see [15]). . )

e We have left open the problem of determining the gossiping time gz, ,G:,),
and more generally gr, (p, Gt,s), of rectangular grids G; , with both ¢ and s odd.
We know from Corollary 2.1 that gg, (1,Gts) > st + 1. Does equality holds?
We can prove that g (1,Gs3) = 10. A general upper bound on gg, (1, G, s)
can be obtained by observing that Gy, = P; x Py, where P, and P, are the
paths on ¢ and s nodes, respectively, and x denotes the cartesian graph prod-
uct. Now, given two graphs G = (V, E) and H = (W, F) it is easy to see that
gr, (1,G x H) < min{gr, (1,G) + |VIgr, (1, H), gr, (1, H) + |W|gr,(1,G)} that,
together with Corollary 2.5, immediately gives gr, (1, Gt,s) < 2ts—3 —max{t, s}.
e We know from (2) that for any graph G with n vertices one has"-_t_;rfp1 (1,G) >n
if n is odd, gp,(1,G) > n— 1 if n is even and from Theorem 2.1 we get that the
equality holds for Hamiltonian graphs. It would be interesting to characterize



the class of graphs for which this lower bound is tight. We know from the results
of Section 2.5 that this class is larger than the class of the Hamiltonian graphs.
e Finally, we mention that in [6] we have analyzed the minimum total number
of calls necessary to perform gossiping under the restriction that communicat-
ing nodes can exchange up to p packets during each call. In the full version -
of the present paper [5] we will also present results concerning the construc-
tion of sparse interconnection networks with gossiping time equal to that of the
complete graph.
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