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. Dense Bus Networks of Diameter 2

J.-C. BERMOND, J. BOND AND S. DJELLOUL

ABSTRACT. In this paper we considér networks in which processors share
a communication medium called-a bus. These networks are called bus
networks and are modeled by hypergraphs. The vertices of the hypergraph
represent the processors of the network and edges represent buses. We give
some techniques used to design dense bus interconnection networks of given
maximum degree A, diameter D and maximum bus size 7. In particular
we construct a new family of bus interconnection networks of diameter 2
having a large number of processors.

1. Introduction

A bus interconnection network is a collection of processing elements (pro-
cessors) and communication elements (buses). The processors produce and/or
consume messages and the buses provide communication channels to exchange
messages among the processors. Every bus provides a communication link be-
tween two or more processors. ‘ ' .

For practical reasons, a processor may only be connected to a limited number
of buses (this number is known as the processor degree) and a bus may ohly
connect a limited number of processors (this number is known as the bus size).
Therefore, messages may have to be relayed by a number of intermediate pro-
cessors before arriving at their destinations, and thus the message transmission
time becomes a function of the distance (measured in terms of the number of
buses traversed by a message) between processors. The maximum distance over
all pairs of processors is the network diameter. ‘



For given upper bounds on the processor degree A, bus size r, and network
diameter D, the construction of bus networks with maximal number of processors
is an important problem in the design of interconnection networks. We refer to
the survey [10] for a state of art on this problem. Other design parameters such
as network reliability, symmetry properties, ease of message routing, balanced
message traffic throughout the network, implementation issues (algorithms and
architecture) should also be taken into consideration.

Our aim is to give some new techniques to design dense bus connection net-
works of given maximum degree A, diameter D and maximum bus size r. In
particular we construct a new family of bus connection networks of diameter 2
" having a large number of processors.

This paper is organized as follows : In section 2 we give the necessary defi-
nitions and notation both from hypergraph theory and from design theory. We
also state the (A, D, r)-hypergraph problem and give a Moore like upper bound.
In section 3 we recall some earlier results obtained in the case of diameter 2. In
section 4 we give our main theorem and deduce as corollary some lower bounds
and construction of dense bus connection networks of diameter 2.

2. Definitions and notétion

2.1. (A,D,r)-hypergraph problem. An (undirected) hypergraph H is a
pair H = V(H), E(H) where V(H) is a non-empty set of elements, called ver-
tices, and E(H) is a finite set of subsets of V(H) called edges. The number
of vertices in the hypergraph is-n(H) = |V(H)| and the number of edges is
m(H) = |E(H)| where the vertical bars denote the cardinality of the set. The
degree of a vertex v is the number of edges containing it and is denoted by
dg (v). The mazimum degree over all of the vertices in H is denoted by A(H).
The size of an edge F € E(H) is its cardinality, and is denoted by |E|. :The
rank of H is the size of its largest edge, and is denoted by r(H). A path in
H from vertex u to vertex v is an alternating sequence .of vertices and edges
u = v, F1,v1,"++ , Eg, v = v such that v;_1,v; C E; for all 1 <7 < k. The .
length of a path is the number of edges in it. The distance between two vertices
u and v is the length of a shortest path between them. The diameter of H is the
maximum of the distances over all pairs of vertices, and is denoted by D(H).

We call a hypergraph with maximum degree A, diameter D, .and rank 7, a
(A, D,r)-hypergraph. The problem on bus networks we considered in the in-
troduction is known as the (A, D, r)-hypergraph problem and consists of finding
(A, D, r)-hypergraphs with the maximum number of vertices or finding large
(A, D,r)-hypergraphs. We will denote by n(A, D,r) the maximum number of
vertices of any (A, D, r)-hypergraph. ,

In the case » = 2 (graph case), this problem has been extensively studied
and'is known as the (A, D)-graph problem (see for example [8], [9]), and the
maximum number of vertices in any (A, D)-graph is denoted by n(A, D).



Note that parts of this problem have been studied in other contexts with
different notation. For example d or r is used for maximum degree, k or d is
used for diameter, and b or k is used for rank. (In the notation of Design Theory
r and k are used for maximum degree and rank, respectively.) We follow the
notation of Hypergraph Theory [3].

Finally, let us mention that the drawing of hypergraphs can be very complex
and therefore it is useful to represent a hypergraph H with a bipartite graph,

R(H) = (Vi(R) U Va(R), E(R))

called the bipartite representation graph. Every vertex v; in V(H) is represented
by a vertex v; in V;(R) and every edge E; in E(H) is represented by a vertex
e; in V3(R). We draw an edge between v; € Vi(R) and e; € V(R) if and only if
Vi € Ej in H.

If H is a (A, D,r)-hypergraph and R(H) is its bipartite representation graph,
then the maximum degrees in Vi(R) and in V2(R) are A and r, respectively.
The distance between two vertices of Vi(R) is at most 2D, but the diameter
of R(H) can be 2D, 2D + 1 or 2D + 2 as the vertices of V;(R) and V,(R) do
not play the same role. So, the (A, D,r)-hypergraph problem is partly related
but different from the (A1, Ag; D')-bipartite graph problem, i.e. finding large
bipartite graphs with maximum vertex degrees A;, A, and diameter D’ (for
details of this problem see [13]).

2.2. Duality tools. The dual of a hypergraph H = (V(H), E(H)) is the
hypergraph H* = (V(H*), E(H*)) where the vertices of H* correspond to the
edges of H, and the edges of H* correspond to the vertices of H. A vertex e}
is a member of an edge V;* in H* if and only if the corresponding vertex v; is a

member of E; in H.
Bermond, Bond and Peyrat [4] observed the following relationship between a

hypergraph and its dual :

PROPOSITION 2.1. [J.-C. Bermond, J. Bond, C. Peyrat] If H is a (A, D,r)-
hypergraph then its dual hypergraph H* is a (r, D*, A)-hypergraph where
D-1<D*<D+1.

Note that, if G is a graph of maximum degree A and diameter D then its
dual is a (2, D*, A)-hypergraph. Furthermore,

PROPOSITION 2.2. [J.-C. Bermond, J. Bond, C. Peyrat | If G is a bipartite
(A, D)-graph then its dual hypergraph H* is a (2, D*, A)-hypergraph where
D* < D.
In what follows we will call the diameter of the dual of, H the line diameter
of H. In particular if a hypergraph H has line diameter 2 it means that for any

pair of edges E and F either E N F # () or there exists an edge I such that
ENnI#Q@and INF #0.



2.3. Design Theory. We will need some concepts of design theory (for more
details and results see [17] and [18]). In particular, we need the concept of
transversal design.

A transversal design T[A, \; k] is a triple (X,G,P) where X is a finite set of
elements, G a partition of X into A classes G;, ¢ = 1,2,... ,A, called groups
or classes each containing exactly k elements and P a family of subsets, called
blocks of X such that :

(i) For any block P of P and any group G; |[PNG;| = 1.
(i) BEach pair {z,y} of elements of X where = and y belong to distinct groups
is contained in exactly A blocks of P.

A transversal design T'[A, A; k] has exactly Ak elements. Each block contains
exactly A elements. Easy countings show that each element belongs to exactly
kX blocks of P and that the number of blocks is k2.

The case A = 1 can be viewed as a partition of the edges of a complete A-
partite graph into cliques of size A. It is known that there exists a T'[A,1; k]
if and only if there exist A — 2 mutually orthogonal latin squares of order k
(see [17]). In particular T'[3, 1; k] transversal designs always exist and T[4, 1; k]
transversal designs exist if and only if k£ # 2,6. For a general A, a T[A,\; k]
exists if k is large enough by a result of Wilson [22].

2.4. Moore-like bounds. As for graphs, we can determine an upper bound
on the maximum number of vertices of a (A, D,r)-hypergraph . Indeed, by
computing the number of vertices at distance 0,1,...,D from a given vertex,
we find at most one vertex at distance 0, A(r — 1) vertices at distance 1, A(A —
1)(r — 1)? vertices at distance 2, A(A — 1)?(r — 1)3 vertices at distance 3, ...,
A(A—-1)P~1(r—1)P vertices at distance D. Therefore, we obtain the Moore-like
bound given by :

PROPOSITION 2.3. The mazimum number n(A, D,r) of vertices of a (A, D,r)-
hypergraph satisfies :

n(A, D,7r) €1+ Aflr - 1)DIZP-1A - 1)i(r — 1)

The topologies whose number of vertices achieves the Moore bound are called
Moore geometries. Several authors have tried to know for what values of A, D
and r Moore geometries exist. Now, it is established that the Moore bound may
be achieved only in case r = 2 or D=1 or D=2 with r > 3 (see [5] for references).

In case D = 1, the Moore bound is 1+ A(r — 1). The following result appears
in (6] :

PROPOSITION 2.4. [ J.-C. Bermond, J. Bond, J.-F. Saclé | The mazimum
number n(A, 1,7) of vertices of a (A, 1, r)-hypergraph is equal to the Moore bound
if and only if there exists a (v,r,1)-BIBD with v =1+ A(r — 1).



The problem of existence of (v,r,1)-BIBD is itself a large domain of research
and the results are complete only for r < 6.

3. Earlier results

Many results have been obtained on the construction of “good” (A, D,r)
hypergraphs (see the survey [10]) in particular in the case D = 1 or A = 2.
Let us recall what is known in the case of diameter 2. The Moore bound is
(A2 — A)r? — (2A2% —3A)r + (A —1)2. The case D = 2 and A = 2 was studied
in [4] and will be recalled in paragraph 4.

For D = 2 and A > 3 one construction is based on the following propositions :

PROPOSITION 3.1. [ J. Bond | For any A > 2, any D > 2 and any r > 2,
n(A,D,r) 2 rn(A-1,D - 1,r).

PROOF. Take r copies of a (A—1, D—1,7) hypergraph and join the r vertices
having the same label in each copy with a hyperedge. Therefore we obtain a
(A, D,r) hypergraph [12]. O

PROPOSITION 3.2. [ J.-C. Bermond, J. Bond, J.-F. Saclé | If a projective
plane of order q exists then, for A = q+1 and r > A, there exists a (A, 1,r)-
hypergraph with Ar — (A — 1)[ %] vertices and then, in this case, n(A,1,r) >
Ar—(A-1)[%].

PROOF. see [6]. O

PROPOSITION 3.3. For any A > 3 such that A—1 = g+ 1 where q is a prime
power and for anyr > A —1,

n(A,2,7) > (A —1)r? — (A — 2)r[——1].
A-1
PROOF. According to proposition 3.1, n(A,2,7) > rn(A — 1,1,7). On the
other hand, there exists a projective plane of order g and therefore a (¢+1,1,7)
hypergraph for any prime power g. Then, using proposition 3.2, we have, for

anyrzA—l,n(A—l,l,r)?_(A—-l)r—-(A—2)[A_1]. 0

REMARK 3.1. For any A > 3 such that A — 1 = g+ 1 where g is a prime
power,

2 - &
e nal % 3_A1+ 31'2 + O(r).

We give here for A = 3,4 the lower bounds f(A) on n(A,2,7), deduced from
proposition 3.3 :

n(A,2,7) > f(A) with f(A) =

A f(A) Moore bound
3|5 +0(r)| 6r*—9r+4 Table 1.
4 [ Ir*+0(r) | 12r* —20r +9




When D =2 and A > 16, A and r even, a better construction is obtained by

considering the de Bruijn bus networks which have 41‘521"2 vertices [7].

REMARK 3.2. In the particular case where v is a multiple of A, the lower
bounds of table 1 will be improved by the technique of construction we shall
propose in section 4.

4. A new technique to design dense bus connection networks of
diameter 2

4.1. Case A = 2. The technique presented below is inspired from the con-
struction presented in [4] for the case D = 2, A = 2. We repeat this construc-
tion :

Step 1 : Consider the graph Gy = Cs, the cycle of length 5. Note that Cs has
line-diameter 2.

Step 2 : Replace each vertex x; of C5 by a set X; of k vertices and each edge
z;z; of Cs by the edges of the complete bipartite graph constructed on X; U X;.
We therefore obtain a graph G regular of degree 2k, on 5k vertices and having
5k* edges. One can check that G has still line-diameter 2.

Step 3 : Takezthe dual G* of G. G* is a (2,2,r) — hypergraph with r = 2k and
N = 5k? = 3 vertices.

So we have shown that n(2,2,7) > % when 7 is even. In fact Kleitman [19]
(see also [21] and [14]) has proved that n(2,2,r) < 5—;"3 S0

THEOREM 4.1. If v is even, then n(2,2,r) = %.

If  is odd, r = 2k +1 we have to modify slightly the construction by replacing
two adjacent vertices z; and 3 of the Cy each by a set of k + 1 = [§] vertices
and the 3 other vertices by a set of k = | 7] vertices. The graph G obtained has

maximum degree r and has 5’"2]& edges. By taking its dual we obtain
n(2,2,7) > ¥°=2r+1 In [21] and [14] they have also proved that there is in fact
equality. So

THEOREM 4.2. If r is odd, then n(2,2,r) = ﬂ_—f’"—“.

Note that the value given in [4] for r odd is incorrect.

4.2. General case : Main theorem. For D = 2 and A > 2 we generalize
the construction given before :

Step 1 : We construct a hypergraph Hp, with A-uniform rank and with line-
diameter 2 (in the case A =2, Hy was choosen as Cs). Let d be the maximum
degree, n the number of vertices and m the number of edges of Hy.



Step 2 : Replace each vertex z; of Hy by a set X; of k vertices and each edge
E = (z1,®2,... ,za) of Hy by the edges (blocks) of a transversal design T'[A, 1, k]
constructed on the set X = UX;, with classes(groups) X;, (i = 1,2,...,A) corre-
sponding to the vertices z; of E. If such a transversal design exists it follows that
the hypergraph H obtained from Hj has nk vertices, mk? edges and maximum
degree dk. Figure 1 shows an example with A =4, k = 3 and Hj reduced to an
edge {a,b,c,d}.

A=
a b C d
@ —@ @ @
FIGURE 1. Hy : H,

Furthermore we will prove that

LEMMA 4.1. If there exists a transversal design T[A, 1, k] then the hypergraph
H constructed from Hy as described above has line-diameter 2.

(Note that for A = 2 we use a T'[2,1, k] transversal design which is nothing
else than a bipartite complete graph).

Step 3 : Take the dual H* of H. By step 2 and the lemma H* is a (A, 2,r)-
2
hypergraph with r = dk, N = mk® = ™5~ vertices. So we have

THEOREM 4.3. If there exists a A-uniform hypergraph of line-diameter 2 with
mazimum degree d and m edges and if there exists a transversal design T[A, 1, k]
then n(A, 2, dk) > mk?.

PROOF. (of lemma 4.1). Let P and @ be two distinct edges of H. P (resp.
() corresponds to some block of a transversal design T'[A, 1, k]associated to an
edge F (resp. F') of Hy.

Case 1 : E = F = (x1,%2,...,za). Let p be a vertex of P which does not
belong to @; p belongs to some set X;. Let ¢ be a vertex of @ not in X;. By
the definition of a tranversal design there exists an edge R containing p and q.
R intersects both P and @ and so the distance between P and @ is at most 2.

Case 2: E#F, ENF #0. Let x; € ENF and let p= PN X; (by definition
PN X; is not empty) and ¢ = QN X;. If p=¢q, P and Q are at distance 1. If
p # q, let p’ be an element of P different from p and let R be the edge of the
transversal design associated to F containing p’ and ¢. R intersects both P and
Q@ and so the distance between P and @ is at most 2.



Case 8 : ENF = (). As Hy is of line-diameter 2 there exist an edge E’ intersecting
both E end F. Let z; € ENE’ and z; € FNE'. Let p= PNX; and ¢ = QN X;.
By definition there exists in the transversal design associated to £’ an edge R
containing both p and ¢. So R intersects both P and @) and again the distance
between P and @ is at most 2 (in fact exactly 2 in that case). [

REMARK 4.1. This theorem can easily be generalized for a line-diameter D
giving a lower bound for n(A, D,dk). Unfortunately this bound is of order mk?
and therefore cannot be good asymptotically.

4.3. Results. Note that to apply theorem 4.3 we need the existence of a
transversal design T[A, 1, k] (see some known results in 2.3) and the construction
of a A-uniform hypergraph Hj of line-diameter 2. We can have many possible
choices. For a given degree d of Hy we will try to maximize m. For a given r we
will choose the hypergraph Hy optimizing 7z, with d divisor of r. (We can also
in that case use a solution for a value near for r like we did for r odd in the case
A=2)

So all the difficulty consists in finding optimal or good hypergraphs Hy. The
line-diameter of Hy correspond to half the maximum distance between vertices
belonging to the class Vo(R) associated to the buses. As we want a line-diameter
2, we have to consider bipartite graphs of diameter 4, 5 or 6. In the literature (see
for example [13]) has been considered the case of regular graphs (in that case
A = d). Using these results for diameter 5 we have a good family of hypergraphs.

Let us denote by b’ (A, 5) the maximum number of vertices of a biregular bipar-
tite graph with degree A and diameter 5, then we have a family of hypergraphs
Hy with m = ﬂ%‘r’—) and d = A. So we obtain :

THEOREM 4.4. Let A > 3 and r be a multiple of A, r = Ak, then if there
exists a transversal design T(A, 1, k]
"(A,5)r?
n(A,2,r) > o™

For example, in the case A = 3, we have ¥'(3,5) > 56. So as there exists a
T[A, 1,k for any k, n(3,2,7) > 2872 for r multiple of 3.

In the case A = 4, we have b'(4,5) > 144. So as there exists a T[A,1, k] for
any k # 2,6, n(4,2,r) > 972 for r multiple of 4, r # 8,24.

Asymptotically we have a family better than those obtained before. In the
case A = 3, recall that n(3,2,7) was of order 3r? and for A = 4, n(4,2,r) was
of order {r?.

If one is particularly interested in some values of r not multiple of A, we can
either use a d different from A (but in that case we have to construct ”good*
(d, A, D)-bipartite biregular graphs) or modifiy the construction by starting from
a solution with a slightly different r.



5. Conclusion

The technique we have proposed in this paper provides a new family of dense
bus connection networks of parameters A > 3, diameter 2 and edge size r.
Improvement in the case where r is not a multiple of A could be obtained by
finding new (d, A, D)-bipartite biregular graphs. Using these results one can
also improve, via compound techniques, some of the known values for D > 3.
Unfortunately we are still far from the Moore bound and so new ideas have to
be proposed in that case. '
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