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BACKWARD EULER FINITE DIFFERENCE APPROXIMATIONS

OF A LOGARITHMIC HEAT EQUATION

OVER A 2D RECTANGULAR DOMAIN

PANAGIOTIS PARASCHIS� AND GEORGIOS E. ZOURARIS�

Abstract. We formulate an initial and Dirichlet boundary value problem for a semilinear heat
equation with logarithmic nonlinearity over a two dimensional rectangular domain. We approx-

imate its solution by using for space discretization the standard second order finite difference

scheme, and for time-stepping the Linearized Backward Euler method, or, the ε−Backward Eu-
ler method after applying a smooth ε−cutoff of the logarithmic term, where the small positive

parameter ε acts as a discretization parameter (along with the time-step and the space mesh

widths) and has no influence on the complexity of the method. We prove optimal order error
estimates in the discrete L∞t (L2

x) and the discrete L∞t (L∞x ) norm, where the constants are ε−free

and no mesh conditions are imposed. Results from numerical experiments expose the efficiency
of the numerical methods proposed. It is the first time in the literature where numerical meth-

ods for the approximation of the solution to the heat equation with logarithmic nonlinearity are

applied and analysed.

May 6, 2021

1. Introduction

1.1. Formulation of the problem. Let T > 0, D ∶= [a1, a2] × [b1, b2] ⊂ R2, Q ∶= [0, T ] × D and
u ∶ Q→ R be the solution of the following initial and boundary value problem:

ut =∆u + g(u) + f on (0, T ] × int(D),(1.1)

u(t, x) = 0 ∀ (t, x) ∈ (0, T ] × ∂D,(1.2)

u(0, x) = u0(x) ∀x ∈ int(D),(1.3)

where f ∈ C(Q,R), u0 ∈ C(D,R) with

(1.4) u0 ∣∂D = 0

and g ∈ C(R,R) is an odd function given by

(1.5) g(s) = {
0, s = 0,

s log(∣s∣), s /= 0,
∀ s ∈ R,

which is not differentiable at s = 0 and it is not locally Lipschitz around s = 0. For theory related to
this problem, we refer the reader to [5], [1] and [7]. Hereafter, we shall make the formal assumption
that the problem above admits a unique solution which is sufficiently smooth for our purposes.

1.2. Formulation of the numerical methods.
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1.2.1. Basic notation. Let N be the set of all positive integers. For given N ∈ N, we introduce
a uniform partition of the time interval [0, T ] with time-step τ ∶= T

N
and nodes tn ∶= nτ for

n = 0, . . . ,N . Also, for given J1, J2 ∈ N, we define a uniform partition of [a1, a2] with mesh-width
h1 ∶= a2−a1

J1+1 and nodes x1,i ∶= a1 + i h1 for i = 0, . . . , J1 + 1, along with a uniform partition of [b1, b2]
with mesh-width h2 ∶= b2−b1

J2+1 and nodes x2,j ∶= b1+j h2 for j = 0, . . . , J2+1. To simplify the notation,

we set I ∶= {(i, j) ∶ i = 0, . . . , J1 + 1, j = 0, . . . , J2 + 1}, I○ ∶= {(i, j) ∶ i = 1, . . . , J1, j = 1, . . . , J2} and
∂I ∶= I/I○. Then, we introduce the discrete matrix space

XH ∶= {V = (Vα)α∈I ∈ R(J1+2)×(J2+2) ∶ Vα = 0 ∀α ∈ ∂I} ,
a discrete Laplacian operator ∆H ∶ XH → XH by

(∆HV )(i,j) ∶=
V(i−1,j)−2V(i,j)+V(i+1,j)

h2
1

+ V(i,j−1)−2V(i,j)+V(i,j+1)
h2
2

∀ (i, j) ∈ I○, ∀V ∈ XH

and the operator IH ∶ C(D) → XH by (I○H[z])(i,j) ∶= z(x1,i, x2,j) for all (i, j) ∈ I○ and z ∈ C(D).
Finally, we simplify the notation, by setting un ∶= IH[u(tn, ⋅)] for n = 0, . . . ,N , and by defining, for
any W ∈ XH and g ∈ C(R,R), g(W ) ∈ XH by (g(W ))α ∶= g(Wα) for all α ∈ I○.

1.2.2. A ε−cutoff function. Let ε ∈ (0, 1
2e

) and pε ∈ P3[ε,2ε] defined by

(1.6) pε(s) ∶= ( s−ε
ε

)2 [log(2ε) + (2 log(2ε) − 1
2
) ( 2ε−s

ε
)] ∀ s ∈ [ε,2ε].

Then, we define an even function ξε ∈ C1(R,R) by

(1.7) ξε(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, s ∈ [0, ε]
pε(s), s ∈ (ε,2ε],
log(s), s ∈ (2ε,+∞),

∀ s ≥ 0,

and an odd function gε ∈ C1(R,R) by

(1.8) gε(s) ∶= s ξε(s) ∀ s ≥ 0.

1.2.3. The finite difference methods. We describe below two finite differences methods approxi-
mating, at the time node tn, the solution u to the problem (1.1)-(1.5) by a matrix Un ∈ XH.

The first step is common for both methods:

Step A: Set

(1.9) U0 ∶= IH [u0] ∈ XH.

The ε−Backward Euler Finite Difference (εBEFD) method is implicit, requiring, at every time
step, the solution of a nonlinear system of algebraic equation and its structure is as follows:

(εBEFD)-Step B: For n = 0, . . . ,N − 1, find Un+1 ∈ XH such that

(1.10) Un+1−Un
τ

=∆H (Un+1) + gε(Un+1) + IH [f(tn+1, ⋅)] .

The Linearized Backward Euler Finite Difference (LBEFD) method is linearly implicit, requir-
ing, at every time step, the solution of a linear system of algebraic equations and its algorithm is
given below:

(LBEFD)-Step B: For n = 0, . . . ,N − 1, find Un+1 ∈ XH such that

(1.11) Un+1−Un
τ

=∆H (Un+1) + g(Un) + IH [f(tn+1, ⋅)] .

Remark 1.1. The numerical approximations of the (LBEFD) method are unconditionally well
defined, since the nonlinear term has no contribution in the matrix of the linear system to be solved.
The discussion on the well-posedness of the (εBEFD) method is postponed until Section 3.2.
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1.3. Main results and related work. The numerical approximation of the solution uLgNLS to the
logarithmic nonlinear Schrödinger (LgNLS) equation has been considered, recently, in [3], where
the authors first introduce an ε−regularization gε,LgNLS(z) = z log (ε + ∣z∣) of the complex nonlinear
term gLgNLS(z) = z log(∣z∣) and then apply the linearly implicit finite difference method introduced in
[6] for the cubic (NLS) equation. The convergence analysis adopts the viewpoint that the numerical
method approximates the solution uε,LgNLS to the (εLgNLS) equation which follows after substitut-
ing gLgNSL by gε,LgNLS. For that reason, its first outcome is an O(ε) bound of the modelling error
uLgNLS − uε,LgNLS in the L∞t (L2

x)−norm (see Proposition 2.5 in [3]). Then, for the numerical method
in the one dimensional case, a standard second order error estimate in the discrete L∞t (L2

x)−norm
is provided, under the, rather unrealistic, assumption that higher order derivatives of uε,LgNLS are
bounded by a constant independent of ε (see Theorem 3.1 in [3]). In the latter error estimate the
exponential constant, coming as an outcome of the application of the discrete Gronwall argument,
is of the form exp(O(T ∣ log(ε)∣2)), and thus, convergence is achieved by assuming that the size of
the time step and the space width is O(√ε exp(−O(T ∣ log(ε)∣2))). In [2], the (LgNLS) equation is
regularized, again, by using gε,LgNLS and its solution is approximated by a time-discrete Lie-Trotter
splitting method, the convergence analysis of which arrives at an O(∣ log(ε)∣√τ) error estimate in
the L∞t (L2

x)−norm. In [8], the authors regularize the term gLgKG(s) = s log(s2) of the logarithmic
Klein-Gordon equation by gε,LgKG(s) = s log(ε + s2) and, without addressing the estimation of the
corresponding modelling error, obtain convergence results, similar to those in [3], for a linearized
Crank-Nicolson method and for the standard Courant-Friedrichs-Lewy explicit method (see Theo-
rems 3.1 and 3.2 in [8]). Our opinion is that the dependence of the Gronwall constant on ε in [3] is
strongly related to the stability properties of the numerical method chosen. Also, we believe that
the use of the solution to the fictional ε−regularized problem, as an intermediate in the convergence
analysis of the numerical method, gives birth to constants that may depend singularly on ε, and
thus introducing a unexisting competion of those constants with the discretization parameters.

In the paper at hands, our aim is to contribute in the understanding of the numerical approxi-
mation of semilinear evolution equations with logarithmic nonlinearity, which is challenging since
the usual locally Lipshitz poperty is absent. We consider, as a model problem, the semilinear heat
equation with logarithmic nonlinearity over a two dimensional rectangular domain described by
(1.1)-(1.5). To discretize the problem in space, we use the standard second order finite difference
method as a way to avoid, in the actual computations, the integration of the logarithmic term
required by the finite element method. For time stepping, we propose the use of the Linearised
Backward Euler method, or, of the Backward Euler method after substituting g by its ε−cutoff gε
(see (1.8)), which is different than that used in the bibliography (cf., e.g. [3], [2], [8]). Thus, we
arrive at the (LBEFD) method, or, the (εBEFD) method, respectively.

The convergence analysis is based on the introduction and the error estimation of a proper
modified version of the proposed methods (see Sections 3.1 and 3.3), which follow by mollifying
properly the non-linear term (cf. [9]). For the (LBEFD) method, we provide an error estimate
in the discrete L∞t (L2

x) and in the discrete L∞t (L∞x ) norm, i.e. there exists a costant CLBEFD > 0,
independent of τ , h1 and h2, such that

max
0≤n≤N

( ∥Un − un∥0,H + ∣Un − un∣∞,H ) ≤ CLBEFD [ τ ∣ log(τ)∣ + h21 + h22 ] .

For the (εBEFD) method, we derive, also, an error estimate in the discrete L∞t (L2
x) and in the

discrete L∞t (L∞x ) norm, i.e. there exists a constant CBEFD > 0, independent of ε, τ , h1 and h2, such
that

max
0≤n≤N

( ∥Un − un∥0,H + ∣Un − un∣∞,H ) ≤ CBEFD [ ε ∣ log(ε)∣ + τ + h21 + h22 ] .

We would like to stress, that, to obtain the error estimates above, we do not impose coupling
conditions on the discretization parameters τ , h1, h2 and ε.

We close this section by giving a brief overview of the paper. In Section 2, we introduce additional
notation, provide a series of auxiliary results and estimate the consistency error. Section 3 is
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dedicated to the convergence analysis of the proposed method. Finally, we expose results from
numerical experiments in Section 4.

2. Preliminaries

2.1. Discrete norms. We provide XH with the discrete L2(D)−inner product (⋅, ⋅)0,H given by
(V,Z)0,H ∶= h1 h2 ∑α∈I○ VαZα for V,Z ∈ XH, and we denote by ∥ ⋅∥0,H its induced norm, i.e. ∥v∥0,H ∶=
[(V,V )0,H]1/2 for V ∈ XH. Also, we equip XH with a discrete L∞(D)−norm ∣ ⋅ ∣∞,H defined by
∣W ∣∞,H ∶= maxα∈I○ ∣Wα∣ for W ∈ XH and with a discrete H1(D)-type norm ∣ ⋅ ∣1,H given by

∣V ∣1,H ∶=
⎡⎢⎢⎢⎣
h1 h2

J2

∑
j=1

J1

∑
i=0

∣V(i+1,j)−V(i,j)
h1

∣
2
+ h1 h2

J1

∑
i=1

J2

∑
j=0

∣V(i,j+1)−V(i,j)
h2

∣
2⎤⎥⎥⎥⎦

1/2
∀V ∈ XH.

In the convergence analysis of the method, we will make use of the, easy to verify, discrete
integration by part result

(2.1) (∆HV,V )0,H = −∣V ∣21,H ∀V ∈ XH

and of the discrete Poincaré-Friedrichs inequality

(2.2) ∥V ∥0,H ≤ 1
2

min{a2 − a1, b2 − b1} ∣V ∣1,H ∀V ∈ XH.

2.2. A δ−mollifier. For δ > 0, let nδ ∈ C1(R;R) (see, e.g. [9]) be an odd function defined by

(2.3) nδ(s) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s, if s ∈ [0, δ],
qδ(s), if s ∈ (δ,2δ],
2 δ, if s > 2δ,

∀ s ≥ 0,

where qδ ∈ P3[δ,2δ] is a polynomial defined by

(2.4) qδ(s) ∶= s + (s−δ)2(2δ−s)
δ2

∀ s ∈ [δ,2δ].
In the lemma below, we present some basic properties of the function nδ.

Lemma 2.1. For δ > 0, it holds that

(2.5) n′δ(s) ∈ [0, 4
3
] ∀ s ∈ R

and

(2.6) max
s∈R ∣nδ(s)∣ = 2δ.

Proof. Since nδ is an odd function, we conclude that n′δ is an even function, and thus it is sufficient
to investigate the range of n′δ on [0,+∞). According to (2.3), we have

(2.7) n′δ(s) = 0 ∀ s ∈ [2δ,+∞) and n′δ(s) = 1 ∀ s ∈ [0, δ].
Also, from (2.3) and (2.4), we obtain

n′δ(s) = q′δ(s) =
δ2+(s−δ) (5δ−3s)

δ2
= −3s2+8δs−4δ2

δ2
∀ s ∈ [δ,2δ].

Observing that q′δ(δ) = 1, q′δ(2δ) = 0 and q′′δ (s) ≥ 0 iff s ≤ 4
3
δ, we conclude that q′δ is increasing on

[δ, 4δ
3
] and decreasing on [ 4δ

3
,2δ]. Since n′δ ( 4δ

3
) = 4

3
, we, easily, arrive at

(2.8) n′δ(s) ∈ [0, 4
3
] ∀ s ∈ [δ,2δ].

Thus, (2.5) follows as a simple outcome of (2.7) and (2.8).
Finally, (2.5) yields that nδ is increasing on R, and hence nδ(s) ∈ [0,2δ] for s ∈ [0,+∞), from

which (2.6), easily, follows. �

Remark 2.1. Obviously, it holds that nδ(u(t, x)) = u(t, x) for (t, x) ∈ Q, when δ ≥ maxQ ∣u∣.
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2.3. Properties of the ε−cutoff function. In the lemmas below, we present some useful prop-
erties of function gε defined by (1.8).

Lemma 2.2. For ε ∈ (0, 1
2e

) and c ≥ e, we have

(2.9) max
s∈R

∣g(s) − gε(s)∣ < 9 ε ∣ log(2ε)∣

and

(2.10) max
s∈[−c,c]

∣gε(s)∣ ≤ c log(c).

Proof. Taking into account that g and gε are odd functions, we use (1.8) and (1.7), to have

max
s∈R

∣gε(s) − g(s)∣ = max
s∈[0,+∞)

∣gε(s) − g(s)∣

= max{ max
s∈[0,ε]

∣gε(s) − g(s)∣, max
s∈[ε,2ε]

∣gε(s) − g(s)∣}

= max{ max
s∈[0,ε]

∣g(s)∣, max
s∈[ε,2ε]

∣gε(s) − g(s)∣}

(2.11)

and

max
s∈[−c,c]

∣gε(s)∣ = max
s∈[0,c]

∣gε(s)∣ = max{ max
s∈[ε,2ε]

∣gε(s)∣, max
s∈[2ε,c]

∣g(s)∣} .(2.12)

Observing that g is non-positive on [0,1], g(1) = 0, g is strictly decreasing on [0, 1
e
] and strictly

increasing on [ 1
e
,+∞), we use (1.6) to obtain

(2.13) max
s∈[0,ε]

∣g(s)∣ = ε ∣ log(ε)∣,

max
s∈[2ε,c]

∣g(s)∣ = max{ max
s∈[2ε,e−1]

∣g(s)∣, max
s∈[e−1,c]

∣g(s)∣}

= max{∣g(e−1)∣, c log(c)}
= max{ 1

e
, c log(c)}

= c log(c),

(2.14)

max
s∈[ε,2ε]

∣gε(s)∣ = max
s∈[ε,2ε]

∣s pε(s)∣

≤2ε max
s∈[ε,2ε]

∣pε(s)∣

≤2ε [3 ∣ log(2ε)∣ + 1
2
]

≤6ε ∣ log(2ε)∣ + ε

(2.15)

and

max
s∈[ε,2ε]

∣gε(s) − g(s)∣ ≤ max
s∈[ε,2ε]

∣gε(s)∣ + max
s∈[ε,2ε]

∣g(s)∣

≤6ε ∣ log(2ε)∣ + ε + 2ε ∣ log(2ε)∣
≤ ε + 8ε ∣ log(2ε)∣.

(2.16)

Combining (2.11), (2.13), (2.16) and (2.12), (2.15), (2.14), we get

max
s∈R

∣gε(s) − g(s)∣ ≤ max{ε ∣ log(ε)∣, ε + 8ε ∣ log(2ε)∣}

≤ max{∣g(ε)∣, ε + 4 ∣g(2ε)∣}
≤ ε + 4 ∣g(2ε)∣
<9 ε ∣ log(2ε)∣
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and

max
s∈[−c,c]

∣gε(s)∣ ≤ max{6ε ∣ log(2ε)∣ + ε, c log(c)}

≤ max{3 ∣g(2ε)∣ + 1
2e
, c log(c)}

≤ max{3 ∣g(e−1)∣ + 1
2e
, c log(c)}

≤ max{ 7
2e
, c log(c)}

≤ c log(c).
Thus, we arrive at (2.9) and (2.10). �

Lemma 2.3. Let ε ∈ (0, 1
2e

) and c ≥ e. Then, we have

(2.17) g′ε(s) ≤ 1 ∀ s ∈ [−e−1, e−1] ,

(2.18) max
∣s∣∈[e−1,c]

∣g′ε(s)∣ ≤ 2 log(c),

(2.19) max
s∈[−c,c]

∣g′ε(s)∣ ≤ 8 max{log(c), ∣ log(2ε)∣}

and

(2.20) g′ε(s) ≤ 2 log(c) ∀ s ∈ [−c, c].
Proof. Since gε is an odd function, it follows that g′ε is an even function, and thus it is sufficient
to investigate the range of g′ε on [0, e−1]. According to (1.7) and (1.8), we have

g′ε(s) =0 ∀ s ∈ [0, ε],
g′ε(s) =1 + log(s) ≤ 0 ∀ s ∈ [2ε, e−1] .

(2.21)

Also, for s ∈ [ε,2ε], we have

g′ε(s) = s p′ε(s) + pε(s) = (s − ε) ε−3 [log(2ε) q1,ε(s) + q2,ε(s)](2.22)

where q1,ε(s) ∶= −8s2 + 19εs − 5ε2 and q2,ε(s) ∶= 2s2 − 4εs + ε2. Observing that q1,ε(ε) = 6ε2,

q1,ε(2ε) = ε2, and q′1,ε(s) ≥ 0 iff s ≤ 19
16
ε, we conclude that q1,ε is increasing on [ε, 19

16
ε] and

decreasing on [ 19
16
ε,2ε]. Also, observing that q2,ε(ε) = −ε2, q2,ε(2ε) = ε2, and q′2,ε(s) ≥ 0 iff s ≥ ε,

we conclude that q2,ε is increasing on [ε,2ε]. Thus, we obtain

(2.23) q1,ε(s) ∈ [0, q1,ε ( 19ε
16

)] ∀ s ∈ [ε,2ε]
and

(2.24) max
s∈[ε,2ε]

∣q2,ε(s)∣ ≤ ε2 ∀ s ∈ [ε,2ε].

Combining, (2.22), (2.23) and (2.24), we get

g′ε(s) ≤ (s − ε) ε−3 q2,ε(s)
≤ (s − ε) ε−3 ε2

≤1 ∀ s ∈ [ε,2ε].
(2.25)

Thus, (2.17) follows, easily, from (2.21) and (2.25).
In addition, from (1.8), (1.7), (2.22), (2.23) and (2.24), we get

max
∣s∣∈[e−1,c]

∣g′ε(s)∣ = max
s∈[e−1,c]

∣g′(s)∣ = max
s∈[e−1,c]

∣1 + log(s)∣

= max
s∈[e−1,c]

(1 + log(s))

=1 + log(c)
≤2 log(c),

(2.26)
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max
∣s∣∈[2ε,e−1]

∣g′ε(s)∣ = max
s∈[2ε,e−1]

∣1 + log(s)∣ = 1 + ∣ log(2ε)∣ ≤ 2 ∣ log(2ε)∣(2.27)

and

max
∣s∣∈[ε,2ε]

∣g′ε(s)∣ = max
s∈[ε,2ε]

∣g′ε(s)∣ ≤ ε−2 [ε2 + ∣ log(2ε)∣ q1,ε ( 19ε
16

)]

≤1 + ∣ log(2ε)∣ 201
32

≤ ∣ log(2ε)∣ + ∣ log(2ε)∣ 201
32

≤8 ∣ log(2ε)∣.

(2.28)

Thus, (2.18) follows from (2.26). Also, we arrive at (2.19) by combining (2.21), (2.28), (2.27) and
(2.26). Finally, (2.20) is a simple outcome of (2.17) and (2.18). �

Lemma 2.4. Let ε ∈ (0, 1
2e

) and q ∈ C1(R,R) with supR(∣q∣ + ∣q′∣) < +∞ and q′ ≥ 0 on R. Then, it
holds that

(2.29) ( gε (q(V )) − gε (q(W )) , V −W )0,H ≤ CS ∥V −W ∥20,H ∀V,W ∈ XH,

where CS = 2 supR ∣q′∣ log(c) with c = max{e, supR ∣q∣}.

Proof. Let α ∈ I○ and V,W ∈ XH. For simplicity, we set Sα ∶= [gε(q(Vα)) − gε(q(Wα))] (Vα −Wα),
βα ∶= s q(Vα)+ (1− s) q(Wα) and γα ∶= sVα + (1− s)Wα for s ∈ [0,1]. Applying the Taylor formula
we get

Sα = ∫
1

0
g′ε(βα(s)) (q(Vα) − q(Wα)) (Vα −Wα) ds

= ∫
1

0
[∫

1

0
g′ε(βα(s)) q′(γα(s′)) (Vα −Wα)2 ds′] ds.

(2.30)

Let c = max{e, supR ∣q∣}. It is easily seen that maxs∈[0,1] ∣βα(s)∣ ≤ supR ∣q∣ ≤ c. Thus, under the light
of (2.20), we conclude that

(2.31) g′ε(βα(s)) ≤ 2 log(c) ∀ s ∈ [0,1].
Now, we use (2.30), (2.31) and the assumption q′ ≥ 0, to get

(2.32) Sα ≤ 2 log(c) sup
R

∣q′∣ (Vα −Wα)2.

Finally, under the light of (2.32), we have

(gε(q(V )) − gε(q(W )), V −W )0,H =h1 h2 ∑
α∈I○

Sα ≤ 2 sup
R

∣q′∣ log(c) ∥V −W ∥20,H,

which, obviously, yields (2.29). �

2.4. Consistency Errors. Let ε ∈ (0, 1
2e

).

2.4.1. Consistency error in time. For n = 0, . . . ,N − 1, we define rnε , ρ
n
ε ∈ XH by

(2.33) un+1−un
τ

= IH [∆u(tn+1, ⋅) + gε(u(tn+1, ⋅)) + f(tn+1, ⋅) ] + rnε

and

(2.34) un+1−un
τ

= IH [∆u(tn+1, ⋅) + gε(u(tn, ⋅)) + f(tn+1, ⋅) ] + ρnε .
Using (1.1), (2.33) and (2.34), we obtain

rnε ∶= [un+1−un
τ

− IH [ut(tn+1, ⋅)]] − IH [gε(u(tn+1, ⋅)) − g(u(tn+1, ⋅)) ]

and

ρnε ∶= [un+1−un
τ

− IH [ut(tn+1, ⋅)]] − IH [gε(u(tn, ⋅)) − gε(u(tn+1, ⋅)) ]
− IH [gε(u(tn+1, ⋅)) − g(u(tn+1, ⋅)) ]
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for n = 0, . . . ,N − 1. Applying the Taylor formula and using (2.9), we obtain

(2.35) max
0≤n≤N−1

∣rnε ∣∞,H ≤ CTC [τ max
Q

∣utt∣ + ε ∣ log(2ε)∣] .

Assuming that ε ∈ (0, 1
2c0

) with c0 ∶= max{e,maxQ ∣u∣}, and applying the Taylor formula, the mean

value theorem, (2.9) and (2.19) (with c = c0), it follows that

(2.36) max
0≤n≤N−1

∣ρnε ∣∞,H ≤ CLTC [τ max
Q

∣utt∣ + τ ∣ log(2ε)∣ max
Q

∣ut∣ + ε ∣ log(2ε)∣] .

2.4.2. Consistency error in space. For n = 0, . . . ,N − 1, let snε , σ
n
ε ∈ XH be given by

(2.37) un+1−un
τ

=∆H(un+1) + IH [gε(u(tn+1, ⋅)) + f(tn+1, ⋅)] + snε

and

(2.38) un+1−un
τ

=∆H(un+1) + IH [gε(u(tn, ⋅)) + f(tn+1, ⋅)] + σnε .
Then, subtracting (2.37) from (2.33) and (2.38) from (2.34), we obtain

snε − rnε = ρnε − σnε = IH [∆u(tn+1, ⋅)] −∆H(un+1), n = 0, . . . ,N − 1.

After using the Taylor formula with respect to the space variables, we conclude

(2.39) max
0≤n≤N−1

∣snε − rnε ∣∞,H = max
0≤n≤N−1

∣σnε − ρnε ∣∞,H ≤ CSC (h21 max
Q

∣∂4x1
u∣ + h22 max

Q
∣∂4x2

u∣) .

3. Convergence Analysis

3.1. The modified (εBEFD) method. For δ > 0 and ε ∈ (0, 1
2e

), the modified (εBEFD) method
(see, e.g. [9]) constructs approximations (V nδ )Nn=0 ⊂ XH of the solution u over the time nodes, by
stepping as follows:

Step M1: Set

(3.1) V 0
δ ∶= U0.

Step M2: For n = 0, . . . ,N − 1, find V n+1δ ∈ XH such that

(3.2)
V n+1δ −V nδ

τ
=∆H (V n+1δ ) + gε(nδ(V n+1δ )) + IH [f(tn+1, ⋅)] .

In the sequel, we investigate the existence of the modified (εBEFD) approximations, using as a
basic tool the following Brouwer-type fixed-point lemma (see [4]).

Lemma 3.1. Let (R,H, (⋅, ⋅)H) be a real finite dimensional inner product space, ∥ ⋅ ∥H be the
associated norm, µ ∶ H ↦ H be a continuous operator, Sε ∶= {z ∈ H ∶ ∥z∥H = ε} and Bε ∶= {z ∈ H ∶
∥z∥H ≤ ε} for ε > 0. If there exists a positive constant β > 0 such that (µ(z), z)H > 0 ∀ z ∈ Sβ,
then there exists w ∈ Bβ such that µ(w) = 0.

Proposition 3.1. For δ > 0 and ε ∈ (0, 1
2e

), there exist (V nδ )Nn=1 ⊂ XH satisfying (3.2).

Proof. Let Z ∈ XH and µ ∶ XH ↦ XH be a continuous nonlinear operator defined by

µ(V ) ∶= V − τ ∆H(V ) − τ gε (nδ(V )) +Z ∀V ∈ XH.

Let ∣D∣ ∶= area(D), β > 0 and V ∈ XH with ∥V ∥0,H = β. Using (2.1), the Cauchy-Schwarz inequality
and (2.6), we obtain

(µ(V ), V )0,H = ∥V ∥20,H + τ ∣V ∣21,H − τ (gε (nδ(V )) , V )0,H + (Z,V )0,H
> ∥V ∥0,H [ ∥V ∥0,H − τ ∣D∣1/2 ∣gε (nδ(V )) ∣∞,H − ∥Z∥0,H ]

≥β [β − τ ∣D∣1/2 max
∣s∣∈[0,2δ]

∣gε(s)∣ − ∥Z∥0,H ] .
(3.3)
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Choosing β = 1 + τ ∣D∣1/2 max
∣s∣∈[0,2δ]

∣gε(s)∣ + ∥Z∥0,H, (3.3) yields (µ(V ), V )0,H > 0, which, under the

light of Lemma 3.1, results the existence of a W ∈ XH such that ∥W ∥0,H ≤ β and µ(W ) = 0.
We establish, now, the existence of the modified (εBEFD) approximations by induction. First,

we observe that V 0
δ is well defined. Next, we assume that, for given κ ∈ {0, . . . ,N − 1} there exists

a modified approximation V κδ ∈ XH. Then, we choose Z = −V κδ − τ IH [f(tκ+1, ⋅)], to obtain a root
V κ+1δ ∈ XH of the corresponding operator µ. �

In the lemma below, assuming τ be small enough, we ensure the uniqueness of the modified
(εBEFD) approximations.

Proposition 3.2. If δ > e, ε ∈ (0, 1
2e

) and

(3.4) τ log(2δ) < 3
8
,

then the modified (εBEFD) approximations (V nδ )Nn=1 ⊂ XH satisfying (3.2) are unique.

Proof. Our assumptions and Proposition 3.1 yield the existence of (V nδ )Nn=1 ⊂ XH satisfying (3.2).
To ensure their uniqueness, we will employ an induction argument.

Obviously, V 0
δ is unique. Now, let us assume that, for given κ ∈ {0, . . . ,N − 1}, the modified

approximations (V `δ )κ`=0 are unique, and that there exists W ∈ XH such that

(3.5)
W−V κδ
τ

=∆H (W ) + gε(nδ(W )) + IH [f(tκ+1, ⋅)] .
Subtracting (3.5) from (3.2) (with n = κ), we obtain

(3.6) V κ+1δ −W = τ ∆H (V κ+1δ −W ) + τ [gε(nδ(V κ+1δ )) − gε(nδ(W ))] .
Taking the (⋅, ⋅)0,H−inner product of both sides of (3.6) with (V κ+1δ −W ) and using (2.1), we obtain

∥V κ+1δ −W ∥20,H + τ ∣V κ+1δ −W ∣21,H = τ (gε(nδ(V κ+1δ )) − gε(nδ(W )), V κ+1δ −W )
0,H

,

which, after applying (2.29) (with q = nδ) and incorporating (2.5) and (2.6), yields

∥V κ+1δ −W ∥20,H ≤ 8
3
τ log(2δ) ∥V κ+1δ −W ∥20,H.

Thus, the latter inequality, along with (3.4), yield ∥V κ+1δ −W ∥0,H = 0, or, equivalently, W = V κ+1δ ,
which completes the induction. �

Remark 3.1. Let δ > e and ε ∈ (0, 1
4δ

). Then, (3.2) can be written equivalently as

V n+1δ = νn(V n+1δ ) n = 0, . . . ,N − 1,

where νn ∶ XH ↦ XH is an operator given by

νn(V ) ∶= (IH − τ ∆H)−1 [V nδ + τ gε(nδ(V )) + τ IH [f(tn+1, ⋅)]] ∀V ∈ XH

and IH ∶ XH ↦ XH stands for the identity operator. Observing that ∥(IH − τ∆H)−1Z∥0,H ≤ ∥Z∥0,H for
Z ∈ XH, and using (2.6), (2.19) (with c = 2δ), we obtain

∥νn(V ) − νn(W )∥0,H = τ ∥(IH − τ∆H)−1[gε(nδ(V )) − gε(nδ(W ))]∥0,H
≤ τ ∥gε(nδ(V )) − gε(nδ(W ))∥0,H
≤ τ max

∣s∣∈[0,2δ]
∣g′ε(s)∣ ∥V −W ∥0,H

≤8 τ max{log(2δ), ∣ log(2ε)∣} ∥V −W ∥0,H
≤8 τ ∣ log(2ε)∣ ∥V −W ∥0,H ∀V,W ∈ XH, n = 0, . . . ,N − 1.

(3.7)

Under the condition 8 τ ∣ log(2ε)∣ ≤ 1
2

, (3.7) yields that the operators (νn)N−1
n=0 become contractions

on XH, which results the uniqueness of the modified (εBEFD) approximations and the convergence
of the corresponding fixed point iteration method.

Now, we develop a convergence result for the modified (εBEFD) method.
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Theorem 3.3. Let δ⋆ = 2 max{e,max
Q

∣u∣}, ε ∈ (0, 1
2e

) and τ ∈ (0, 1
11 log(2δ⋆)). Then, there exist

constant CNL,δ⋆ > 0, independent of ε, τ , h1 and h2, such that:

(3.8) max
0≤m≤N

∥um − V mδ⋆ ∥0,H + max
0≤m≤N

∣um − V mδ⋆ ∣∞,H ≤ CNL,δ⋆ ( ε ∣ log(2ε)∣ + τ + h21 + h22 ) .

Proof. To simplify the notation, we set em ∶= um − V mδ⋆ for m = 0, . . . ,N , and we use the symbol
C to denote a generic non-negative constant that is independent of ε, τ , h1, h2 and δ⋆, and may
changes value from one line to the other. Also, we will use the symbol Cδ⋆ to denote a generic
non-negative constant that depends on δ⋆ but is independent of ε, τ , h1 and h2, and may changes
value from one line to the other.

Under our assumptions, the modified (BEFD) approximations are well defined. Subtracting
(3.2) from (2.37), we obtain the following error equations:

(3.9) en+1 − en = τ ∆H (en+1) + τ [gε(nδ⋆(un+1)) − gε(nδ⋆(V n+1δ⋆ ))] + τ snε , n = 0, . . . ,N − 1.

Discrete L2-error estimate. Take the (⋅, ⋅)0,H−inner product of both sides of (3.9) with en+1,
and then use (2.1) to get

(3.10) ∥en+1∥20,H − ∥en∥20,H + ∥en+1 − en∥20,H + 2 τ ∣en+1∣21,H ≤ Kn1 +Kn2 , n = 0, . . . ,N − 1,

where

Kn1 ∶=2 τ (snε , en+1)0,H,
Kn2 ∶=2 τ (gε(nδ⋆(un+1)) − gε(nδ⋆(V n+1δ⋆ )), en+1)

0,H
.

Let n ∈ {0, . . . ,N − 1}. Using the Cauchy-Schwarz inequality, (2.35), (2.39), (2.2) and the
arithmetic mean inequality, it follows that

Kn1 ≤2 τ ∥snε ∥0,H ∥en+1∥0,H
≤C τ (∥snε − rnε ∥0,H + ∥rnε ∥0,H) ∣en+1∣1,H
≤C τ [ τ + ε ∣ log(2ε)∣ + h21 + h22 ]

2 + τ ∣en+1∣21,H.
(3.11)

Also, (2.5), (2.6) and (2.29) (with q = nδ⋆) yield

Kn2 ≤ 16
3
τ log(2δ⋆) ∥en+1∥20,H

≤ 32
3
τ log(2δ⋆) (∥en+1 − en∥20,H + ∥en∥20,H)

≤ 32
3
τ log(2δ⋆) ∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H

≤ 32
33

∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H.

(3.12)

Combining, (3.10), (3.11) and (3.12), we conclude that

∥en+1∥20,H ≤ (1 +Cδ⋆ τ) ∥en∥20,H +C τ ( τ + ε ∣ log(2ε)∣ + h21 + h22 )
2
, n = 0, . . . ,N − 1.(3.13)

Since e0 = 0, after employing a standard Gronwall argument on (3.13), we arrive at

(3.14) max
0≤n≤N

∥en∥0,H ≤ Cδ⋆ ( τ + ε ∣ log(2ε)∣ + h21 + h22 ) .

Discrete L∞-error estimate. Let n ∈ {0, . . . ,N − 1} and α = (α1, α2) ∈ I○ such that ∣en+1α ∣ =
∣en+1∣∞,H. Multiplying both sides of (3.9) with en+1α , we obtain

[1 + 2τ
h2
1
+ 2τ
h2
2
] (en+1α )2 = enα en+1α + τ

h2
1
[en+1(α1−1,α2) + en+1(α1+1,α2)] e

n+1
α + τ

h2
2
[en+1(α1,α2−1) + en+1(α1,α2+1)] e

n+1
α

+ τ [gε(nδ⋆(un+1α )) − gε(nδ⋆((V n+1δ⋆ )α))] en+1α

+ τ [((snε )α − (rnε )α) + (rnε )α] en+1α
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which, along with (2.35) and (2.39), yields that

∣en+1α ∣2 + ∣en+1α − enα∣2 ≤ ∣enα∣2 +C τ [ ε ∣ log(ε)∣ + τ + h21 + h22 ] ∣en+1α ∣
+ 2 τ [gε(nδ⋆(un+1α )) − gε(nδ⋆((V n+1δ⋆ )α))] en+1α .

(3.15)

Applying (2.32) (with q = nδ) along with (2.6) and (2.5), we conclude that

2τ [gτ(nδ⋆(un+1α )) − gτ(nδ⋆((V n+1δ⋆ )α))] en+1α ≤ 16
3
τ log(2δ⋆) (en+1α )2

≤ 32
3
τ log(2δ⋆) [(en+1α − enα)2 + (enα)2]

≤Cδ⋆ τ (enα)2 + 32
3
τ log(2δ⋆) (en+1α − enα)2

≤Cδ⋆ τ (enα)2 + 32
33

(en+1α − enα)2.

(3.16)

Using (3.15) and (3.16), we have

∣en+1∣2∞,H ≤ (1 +Cδ⋆) ∣en∣2∞,H +Cδ⋆ τ ( ε ∣ log(ε)∣ + τ + h21 + h22 ) ∣en+1∣∞,H, n = 0, . . . ,N − 1,

which, easily, yields

(3.17) ∣en+1∣∞,H ≤ (1 +Cδ⋆) ∣en∣∞,H +Cδ⋆ τ ( ε ∣ log(ε)∣ + τ + h21 + h22 ) , n = 0, . . . ,N − 1,

Finally, we apply a standard Gronwall argument on (3.17), to arrive at

(3.18) max
0≤n≤N

∣en∣∞,H ≤ Cδ⋆ ( ε ∣ log(2ε)∣ + τ + h21 + h22 ) .

�

Thus, (3.8), easily, follows from (3.14) and (3.18).

3.2. Convergence of the (εBEFD) method.

Theorem 3.4. Let δ⋆ = 2 max{e,max
Q

∣u∣}, ε ∈ (0, 1
2e

), τ ∈ (0, 1
11 log(2δ⋆)) and CNL,δ⋆ be the constant

specified in Theorem 3.3. If

(3.19) CNL,δ⋆ (ε ∣ log(2ε)∣ + τ + h21 + h22) ≤ δ⋆
2
,

then, the matrices (Um)Nm=0 ⊂ XH, given by Um ∶= V mδ⋆ for m = 0, . . . ,N , are (εBEFD) appoxima-
tions and satisfy

(3.20) max
0≤m≤N

( ∥um −Um∥0,H + ∣um −Um∣∞,H ) ≤ CNL,δ⋆ ( ε ∣ log(2ε)∣ + τ + h21 + h22 ) .

Proof. Using that δ⋆ ≥ 2 maxQ ∣u∣, along with (3.8) and (3.19), we obtain

∣V nδ⋆ ∣∞,H ≤ ∣un − V nδ⋆ ∣∞,H + ∣un∣∞,H
≤CNL,δ⋆ [τ ∣ log(2τ)∣ + h21 + h22] +max

Q
∣u∣

≤ δ⋆, n = 1, . . . ,N,

which, along with (2.3), yields nδ⋆(V nδ⋆) = V nδ⋆ for n = 1, . . . ,N . Thus, for δ = δ⋆, the modified
(εBEFD) approximations defined are (εBEFD) approximations and the error estimate (3.20) follow
as a natural outcome of (3.8). �

Remark 3.2. Let δ⋆ = 2 max{e,max
Q

∣u∣}, ε ∈ (0, 1
2e

) and τ ∈ (0, 1
11 log(2δ⋆)). Then, every set

(Um)Nm=0 ⊂ XH of (εBEFD) approximations satisfying max
0≤m≤N

∣Um∣∞,H ≤ δ⋆, is, also, a set of modified

(εBEFD) approximations and according to Proposition 3.2, is unique. However, we are not able
to provide a general uniqueness result for the (εBEFD) approximations.
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3.3. The modified (LBEFD) method. For δ > 0, the modified (LBEFD) approximations
(Wn

δ )Nn=0 ⊂ XH of the solution u are specified by the algorithm below:

Step ML1: Set

(3.21) W 0
δ ∶= U0.

Step ML2: For n = 0, . . . ,N − 1, find Wn+1
δ ∈ XH such that

(3.22)
Wn+1
δ −Wn

δ

τ
=∆H (Wn+1

δ ) + g(nδ(Wn
δ )) + IH [f(tn+1, ⋅)] .

Next, we develop a convergence result for the modified (LBEFD) approximations.

Theorem 3.5. Let δ⋆ = 2 max{e,max
Q

∣u∣} and τ ∈ (0, 1
4δ⋆

). Then, there exists constant CL,δ⋆ ,

independent of τ , h1 and h2, such that

(3.23) max
0≤m≤N

∥um −Wm
δ⋆ ∥0,H + max

0≤m≤N
∣um −Wm

δ⋆ ∣∞,H ≤ CL,δ⋆ [τ ∣ log(2τ)∣ + h21 + h22] .

Proof. We simplify the notation, by setting em ∶= um −Wm
δ⋆

for m = 0, . . . ,N , and by adopting the
notation convection of the proof of Theorem 3.3.

Subtract (3.22) from (2.38) (with ε = τ), to get the corresponding error equations:

(3.24) en+1 − en = τ ∆H (en+1) + τ [gτ(nδ⋆(un)) − g(nδ⋆(Wn
δ⋆))] + τ σ

n
τ , n = 0, . . . ,N − 1.

Discrete L2-error estimate. Take the (⋅, ⋅)0,H−inner product of both sides of (3.24) with en+1

and then use (2.1) to arrive at

(3.25) ∥en+1∥20,H − ∥en∥20,H + ∥en+1 − en∥20,H + 2 τ ∣en+1∣21,H ≤
3

∑
`=1

Ln` , n = 0, . . . ,N − 1,

where

Ln1 ∶=2 τ (σnτ , en+1)0,H,
Ln2 ∶=2 τ (gτ(nδ⋆(un)) − gτ(nδ⋆(Wn

δ⋆)), e
n+1)

0,H
,

Ln3 ∶=2 τ (gτ(nδ⋆(Wn
δ⋆)) − g(nδ⋆(W

n
δ⋆)), e

n+1)
0,H

.

Let n ∈ {0, . . . ,N −1}. First, we use the Cauchy-Schwarz inequality, (2.36), (2.39), (2.2) and the
arithmetic mean inequality, to have

Ln1 ≤2 τ ∥σnτ ∥0,H ∥en+1∥0,H
≤2 τ (∥σnτ − ρnτ ∥0,H + ∥ρnτ ∥0,H) ∥en+1∥0,H
≤C τ [h21 + h22 + τ ∣ log(2τ)∣ ] ∣en+1∣1,H
≤C τ [ τ ∣ log(2τ)∣ + h21 + h22 ]

2 + τ
2
∣en+1∣21,H.

(3.26)

Also, we use the Cauchy-Schward inequality, (2.6), (2.5), (2.29) (with q = nδ⋆), the arithmetic mean
inequality and (2.10) (with c = 2δ⋆), to get

Ln2 =2 τ (gτ(nδ⋆(un)) − gτ(nδ⋆(Wn
δ⋆)), e

n+1 − en)
0,H

+ 2 τ (gτ(nδ⋆(un)) − gτ(nδ⋆(Wn
δ⋆)), e

n)
0,H

≤2 τ ∥gτ(nδ⋆(un)) − gτ(nδ⋆(Wn
δ⋆))∥0,H ∥en+1 − en∥0,H + 16

3
τ log(2δ⋆) ∥en∥20,H

≤ τ2 [∥gτ(nδ⋆(un))∥0,H + ∥gτ(nδ⋆(Wn
δ⋆))∥0,H]

2 + ∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H
≤C τ2 [4δ⋆ log(2δ⋆)]2 + ∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H
≤Cδ⋆ (τ2 + τ ∥en∥20,H) + ∥en+1 − en∥20,H.

(3.27)
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Finally, we use the Cauchy-Schward inequality, (2.2), (2.9) and the aritmetic mean inequality, to
obtain

Ln3 ≤2 τ ∥gτ(nδ⋆(Wn
δ⋆)) − g(nδ⋆(W

n
δ⋆))∥0,H ∥en+1∥0,H

≤C τ2 ∣ log(2τ)∣ ∣en+1∣1,H
≤C τ [ τ ∣ log(2τ)∣ ]2 + τ

2
∣en+1∣21,H.

(3.28)

Combining, (3.25), (3.26), (3.27) and (3.28), we conclude that

∥en+1∥20,H ≤ (1 +Cδ⋆τ) ∥en∥20,H +Cδ⋆ τ [ τ 1/2 + τ ∣ log(2τ)∣ + h21 + h22 ]
2
, n = 0, . . . ,N − 1.

Apply a standard discrete Gronwall argument and use that e0 = 0, to get

(3.29) max
0≤m≤N

∥em∥0,H ≤ Cδ⋆ [ τ 1/2 + τ ∣ log(2τ)∣ + h21 + h22 ] .

Now, use (3.27), the arithmetic mean inequality, (2.6), (2.5), (2.19) (with c = 2δ⋆) and (3.29), to
reestimate Ln2 as follows

Ln2 ≤ τ2 ∥gτ(nδ⋆(un)) − gτ(nδ⋆(Wn
δ⋆))∥

2
0,H + ∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H

≤ τ2 max
∣s∣∈[0,2δ⋆]

∣g′τ(s)∣2 max
s∈R

∣n′δ⋆ ∣
2 ∥en∥20,H + ∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H

≤C τ2 (max{log(2δ⋆), ∣ log(2τ)∣})2 ∥en∥20,H + ∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H
≤Cδ⋆ τ2 ∣ log(2τ)∣2 [ τ 1/2 + τ ∣ log(2τ)∣ + h21 + h22 ]

2

+ ∥en+1 − en∥20,H +Cδ⋆ τ ∥en∥20,H, n = 0, . . . ,N − 1.

(3.30)

Combining, (3.25), (3.26), (3.28) and (3.30), and observing that
√

2τ ∈ (0, e), we get

∥en+1∥20,H ≤ (1 +Cδ⋆τ) ∥en∥20,H +Cδ⋆ τ [1 + τ 1/2 ∣ log(2τ)∣ ]2 [ τ ∣ log(2τ)∣ + h21 + h22 ]
2

≤ (1 +Cδ⋆τ) ∥en∥20,H +Cδ⋆ τ [1 + ∣g(
√

2τ)∣]
2
[ τ ∣ log(2τ)∣ + h21 + h22 ]

2

≤ (1 +Cδ⋆τ) ∥en∥20,H +Cδ⋆ τ [ τ ∣ log(2τ)∣ + h21 + h22 ]
2
, n = 0, . . . ,N − 1.

Now, we apply, again, a standard discrete Gronwall argument to conclude

(3.31) max
0≤m≤N

∥em∥0,H ≤ Cδ⋆ [ τ ∣ log(2τ)∣ + h21 + h22 ] .

Discrete L∞-error estimate. Let n ∈ {0, . . . ,N − 1} and α ∈ I○ such that ∣en+1α ∣ = ∣en+1∣∞,H.
Proceeding as in the proof of Theorem 3.3, we obtain

(3.32) ∣en+1α ∣2 + ∣en+1α − enα∣2 ≤ ∣enα∣2 +Λ1,n
α +Λ2,n

α +Λ3,n
α +Λ4,n

α ,

where

Λ1,n
α ∶=2 τ [ ∣(σnτ )α − (ρnτ )α∣ + ∣(ρnτ )α∣ ] ∣en+1α ∣,

Λ2,n
α ∶=2 τ [gτ(nδ⋆(unα)) − gτ(nδ⋆((V nδ⋆)α))] (en+1α − enα),

Λ3,n
α ∶=2 τ [gτ(nδ⋆(unα)) − gτ(nδ⋆((V nδ⋆)α))] e

n
α,

Λ4,n
α ∶=2 τ [gτ(nδ⋆((V nδ⋆)α)) − g(nδ⋆((V

n
δ⋆)α))] e

n+1
α .

Using (2.36), (2.39), (2.9) and the arithmetic mean inequality, we have

Λ1,n
α ≤C τ [τ ∣ log(2τ)∣ + h21 + h22] ∣en+1∣∞,H

≤C τ [τ ∣ log(2τ)∣ + h21 + h22]
2 + τ

4
∣en+1∣2∞,H

(3.33)
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and

Λ4,n
α ≤18 τ [τ ∣ log(2τ)∣] ∣en+1∣∞,H

≤C τ [τ ∣ log(2τ)∣]2 + τ
4
∣en+1∣2∞,H.

(3.34)

Applying (2.32) (with q = nδ) along with (2.5), (2.6), we conclude that

Λ3,n
α ≤ 16

3
τ log(2δ⋆) (enα)2

≤Cδ⋆ τ ∣en∣2∞,H.
(3.35)

Also, (2.10) (with c = 2δ⋆) and the arithmetic mean inequality yields

Λ2,n
α ≤2 τ [ ∣gτ(nδ⋆(unα))∣ + ∣gτ(nδ⋆((V nδ⋆)α))∣ ] ∣en+1α − enα∣

≤2 τ [4δ⋆ log(2δ⋆)] ∣en+1α − enα∣
≤Cδ⋆ τ2 + ∣en+1α − enα∣2.

(3.36)

Using (3.32), (3.33), (3.34), (3.35) and (3.36), we arrive at

(1 − τ
2
) ∣en+1∣2∞,H ≤ (1 +Cδ⋆τ) ∣en∣2∞,H +Cδ⋆ τ [ τ 1/2 + τ ∣ log(2τ)∣ + h21 + h22 ]

2

for n = 0, . . . ,N − 1. Since τ < 1 and e0 = 0, a standard Gronwall argument yields

(3.37) max
0≤m≤N

∣em∣∞,H ≤ Cδ⋆ [ τ 1/2 + τ ∣ log(2τ)∣ + h21 + h22 ] .

Let us reestimate Λ2,n
α , by using (2.6), (2.19) (with c = 2δ⋆), (2.5), (3.37) and the arithmetic mean

inequality, as follows

Λ2,n
α ≤2 τ max

∣s∣∈[0,2δ⋆]
∣g′τ(s)∣ max

s∈R
∣n′δ⋆(s)∣ ∣e

n
α∣ ∣en+1α − enα∣

≤C τ ∣ log(2τ)∣ ∣enα∣ ∣en+1α − enα∣
≤C τ2 ∣ log(2τ)∣2 ∣en∣2∞,H + ∣en+1α − enα∣2

≤Cδ⋆ τ [1 + τ 1/2 ∣ log(2τ)∣ ]2 [τ ∣ log(2τ)∣ + h21 + h22 ]
2 + ∣en+1α − enα∣2

≤Cδ⋆ τ [1 + ∣g(
√

2τ )∣ ]
2
[τ ∣ log(2τ)∣ + h21 + h22 ]

2 + ∣en+1α − enα∣2

≤Cδ⋆ τ [τ ∣ log(2τ)∣ + h21 + h22 ]
2 + ∣en+1α − enα∣2.

(3.38)

Now, combining (3.32), (3.33), (3.34), (3.35) and (3.38), we get

(1 − τ
2
) ∣en+1∣2∞,H ≤ (1 +Cδ⋆τ) ∣en∣2∞,H +Cδ⋆ τ [ τ ∣ log(2τ)∣ + h21 + h22 ]

2

for n = 0, . . . ,N − 1, which, after using a standard Gronwall argument, yields

(3.39) max
0≤m≤N

∣em∣∞,H ≤ Cδ⋆ [ τ ∣ log(2τ)∣ + h21 + h22 ] .

Thus, (3.23), easily, follows from (3.31) and (3.39). �

3.4. Convergence of the (LBEFD) method.

Theorem 3.6. Let δ⋆ = 2 max{e,max
Q

∣u∣}, τ ∈ (0, 1
4δ⋆

) and CL,δ⋆ be the positive constant specified

in Theorem 3.5. If
CL,δ⋆ [τ ∣ log(2τ)∣ + h21 + h22 ] ≤ δ⋆

2
,

then the approximations (Um)Nm=0 of the (LBEFD) method satisfy

Um =Wm
δ⋆ , m = 0, . . . ,N,

and
max
0≤m≤N

∥um −Um∥0,H + max
0≤m≤N

∣um −Um∣∞,H ≤ CL,δ⋆ [τ ∣ log(2τ)∣ + h21 + h22 ] .

Proof. It is similar to the proof of Theorem 3.4, and thus it is omitted. �
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4. Numerical Results

The proposed numerical methods has been implemented in python programs. The (LBEFD)
code solves the linear systems of algebraic equations by applying the usual Conjugate Gradient
method. The (εBEFD) code solves the nonlinear systems of algebraic equations by applying
the iterative Newton’s method along with the GMRES method for inverting the corresponding
Jacobian matrices by calling the subroutine gmres of the library scipy.sparse.linalg.

When the exact solution to the problem is known, we test the performance of our finite difference
methods by computing the error in the discrete L∞t (L2

x)−norm E0(N,J1, J2) ∶= max
0≤n≤N

∥Un −un∥0,H
and in the discrete L∞t (L∞x )−norm E∞(N,J1, J2) ∶= max

0≤n≤N
∣Un − un∣∞,H. Then, after choosing

ν ∈ N, function f ∶ (0,+∞) ↦ (0,+∞)3 and (N,J1, J2) = f(ν), we compute the experimental order
of convergence with respect to ν, corresponding to given values ν1 and ν2 of ν, by using the formula:

log [E (f(ν1)) /E (f(ν2))] / log(ν2/ν1),
where E = E0 or E∞.

4.1. Example 1. Let T = 1, D = [0,1] × [0,1], N = f1(ν) = ν, J1 = f2(ν) =
√
ν, J2 = f3(ν) =

√
ν,

ε = τ2, ν ∈ {200,400,800,1600,3200} and load f such that the function

u(t, x) = 1
2

exp(2 + sin(2πt)) sin(2πx1) sin(2πx2)
to be the exact solution to the problem (1.1)-(1.5). The errors we computed are shown on Table 1,
and confirm a first order experimental order of convergence with respect to ν, for both methods
and norms.

(LBEFD) method
Example 1

ν E0(f(ν)) Rate E∞(f(ν)) Rate
200 7.033(-2) — 1.393(-1) —
400 3.583(-2) 0.97 7.138(-2) 0.96
800 1.883(-2) 0.92 3.761(-2) 0.92
1600 9.413(-3) 1.00 1.882(-2) 0.99
3200 4.880(-3) 0.94 9.769(-3) 0.94

(εBEFD) method with ε = τ2
Example 1

ν E0(f(ν)) Rate E∞(f(ν)) Rate
200 7.009(-2) — 1.388(-1) —
400 3.569(-2) 0.97 7.107(-2) 0.96
800 1.876(-2) 0.92 3.745(-2) 0.92
1600 9.376(-3) 1.00 1.874(-2) 0.99
3200 4.862(-3) 0.94 9.729(-3) 0.94

Table 1.

4.2. Example 2. Let T = 1, D = [0,1] × [0,1], N = f1(ν) = ν, J1 = f2(ν) =
√
ν, J2 = f3(ν) =

√
ν,

ε = τ2, ν ∈ {200,400,800,1600,3200} and load f such that the function

u(t, x) = 100 et (x51 + x52)
4

∏
i=1

(x1 − ai)(x2 − ai),

with a1 = 0, a2 = 1, a3 = 0.5 and a4 = 0.25, to be the exact solution to the problem (1.1)-(1.5), with
non zero initial value. Computing again the numerical approximation errors we conclude a first
order experimental order of convergence, for both methods as it is shown on Table 2.

References

[1] M. Alfaro and R. Carles, Superexponential growth or decay in the heat equation with a logarithmic nonlinearity,
Dyn. Partial Differ. Equ. 14 (2017), 343-358.

[2] W. Bao, R. Carles, C. Su and Q. Tang, Regularized numerical methods for the logarithmic Schrödinger equation,
Numerische Mathematik 143 (2019), 461-487.

[3] W. Bao, R. Carles and Q. Tang, Error estimates of a regularized finite difference method for the logarithmic

Schrödinger equation, SIAM J. Numer. Anal. 57 (2019), 657-680.

15



(LBEFD) method
Example 2

ν E0(f(ν)) Rate E∞(f(ν)) Rate
200 3.435(-3) — 1.208(-2) —
400 1.766(-3) 0.95 6.336(-3) 0.93
800 9.299(-4) 0.92 3.406(-3) 0.89
1600 4.659(-4) 0.99 1.708(-3) 0.99
3200 2.412(-4) 0.94 8.830(-4) 0.95

(εBEFD) method with ε = τ2
Example 2

ν E0(f(ν)) Rate E∞(f(ν)) Rate
200 3.437(-3) — 1.209(-2) —
400 1.768(-3) 0.95 6.340(-3) 0.93
800 9.306(-4) 0.92 3.408(-3) 0.89
1600 4.663(-4) 0.99 1.709(-3) 0.99
3200 2.414(-4) 0.94 8.836(-4) 0.95

Table 2.

[4] F. E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, In: R.
Finn, ed., Applications of Nonlinear Partial Differential Equations. Proc. Symp. Appl. Math. v. 17 (1965) 2449.

American Mathematical Society, Providence.

[5] H. Chen, P. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic
nonlinearity, Journal of Mathematical Analysis and Applications 422 (2015), 84-98.
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