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Graphical Abstract

Investigating the cross-slip rate in face-centered cubic metals using
an atomistic-based cross-slip model in dislocation dynamics simu-
lations

M. Longsworth, M. Fivel

1. Attractive screw dipole. 2. Identify screw segments.

3. Evaluate atomic-based cross-slip 
probability of screw segments.

4. If (green) segment cross-slips, 
it glides in the conjugate plane.

5. Both dislocations annihilate each other.



Highlights

Investigating the cross-slip rate in face-centered cubic metals using
an atomistic-based cross-slip model in dislocation dynamics simu-
lations

M. Longsworth, M. Fivel

� Cross-slip rate model in DD simulations reproduces Arrhenius plots.

� Cross-slip energy model in DD simulations reproduces atomistic results.

� No scaling factors used; only unstressed energy barrier is required.

� Unstressed energy barrier used obtained from DD simulations.
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Abstract

The cross-slip rate of screw segments in dislocation dynamics simulations
was calculated using the model of Esteban-Manzanares et al. (2020), which
is based on a combination of the harmonic transition state theory and the
Meyer-Neldel rule. In said model, the cross-slip rate is expressed as a function
of the microstructure parameters. In particular, the rate prefactor depends
on the nucleation length of cross-slip and the activation enthalpy, which
are themselves functions of the local stress. Malka-Markovitz and Morde-
hai (2019) solved the line tension model of cross-slip exactly by linearizing
the interaction force between the partials. They obtained analytical expres-
sions for the nucleation length and the activation enthalpy as functions of a
general stress state. These expressions were used to evaluate the cross-slip
rate at each simulation step. The results are in quantitative agreement with
atomistic simulations.

Keywords:
cross-slip rate, cross-slip enthalpy, dislocation dynamics, line tension model

1. Introduction

The cross-slip mechanism is a thermally activated process in which screw
dislocations change their glide plane, allowing them to overcome obstacles
and populate other slip planes (Anderson et al., 2017). It plays an important
role during plastic deformation by creating dislocation structures (Johnston
and Gilman, 1960; Ikeno and Furubayashi, 1972), controlling the dynamic
recovery (Hirsch, 2009) and producing work hardening (Jackson, 1985; Sud-
manns et al., 2019).
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Many dislocation dynamics (DD) simulations have successfully modeled
plastic deformation in crystals (Zbib et al., 1998; Weygand et al., 2002;
Verdier et al., 1998; Déprés et al., 2004; Chaussidon et al., 2008). The first
cross-slip model used in DD simulations was proposed by Kubin et al. (1992).
They postulated that the cross-slip probability explicitly depends on the re-
solved shear stress at the onset of stage-III plastic deformation, which is a
macroscopic parameter obtained from the stress-strain curve of the material:

P = β
L

L0

exp

(
[τ − τIII ]V

kbT

)
δt (1)

where β is a scaling factor, L the screw-segment length, L0 a reference
length, τ the resolved shear stress in the primary plane, τIII the resolved shear
stress at the onset of stage III, V the activation volume, kb the Boltzmann
constant, T the absolute temperature and δt the time step.

The values for the activation volume and resolved shear stress at the onset
of stage III were obtained from experiments. However, the scaling factor and
reference length were defined arbitrarily. In consequence, the absolute cross-
slip rates were difficult to validate using other simulation methods.

Hussein et al. (2015) proposed a more physical model depending only on
the microstructure parameters:

P = ω
L

L0

exp

(
−∆Ec − V∆σE

kbT

)
δt (2)

where ω is the attempt frequency, ∆Ec the energy barrier required to
form a constriction point on the screw dislocation, and ∆σE = σgE − σcsE the
difference of Escaig stress on the glide and cross-slip planes.

Although the energy barrier and activation volume were obtained from
atomistic simulations, the attempt frequency was determined using an heuris-
tic argument, which introduced uncertainty in the absolute cross-slip rates.

The models 1 and 2 depend either on the Schmid or Escaig stresses, but
not on both. Hence, they might be incomplete descriptions of the cross-
slip rate. In fact, Kang et al. (2014) showed that both stress components
have a comparable effect on the activation enthalpy. This assertion has been
thoroughly verified using different formulations of the Line Tension (LT)
model (Kang et al., 2014; Liu et al., 2019; Longsworth and Fivel, 2021),
linear-elasticity models (Longsworth and Fivel, 2021; Kuykendall et al., 2020)
and atomistic simulations (Kang et al., 2014; Esteban-Manzanares et al.,
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2020; Kuykendall et al., 2020; Liu et al., 2019). Therefore, the influence of
all the stress components should be considered in the cross-slip rate.

More recently, Malka-Markovitz et al. (2021) calculated the cross-slip
probability of screw segments in DD simulations using the following equation:

P = β
L

L0

exp

(
−∆H

kbT

)
δt (3)

where ∆H is the activation enthalpy.
They considered the full effect of a general stress in the activation enthalpy

by using the analytical expression of Malka-Markovitz and Mordehai (2019)
to calculate it. Nonetheless, their semi-empirical model of the cross-slip rate
requires the scaling factor β to be calibrated with atomistic results.

The present work provides a method to calculate the cross-slip rate of
screw segments in DD simulations without relying on scaling factors, yet
able to reproduce atomistic results.

The rest of the paper is organized as follows. Section 3 introduces the
rate equation proposed by Esteban-Manzanares et al. (2020) to compute the
cross-slip probability of screw segments; the general expression obtained by
Malka-Markovitz and Mordehai (2019) to calculate the activation enthalpy
and the DD simulation setup. Section 4 shows a comparison between the
annihilation rates of a screw dipole obtained from DD simulations and the
atomistic results of Vegge et al. (2000) and Oren et al. (2017) as a reference.
Finally, Section 5 presents the summary and conclusions of this work.

2. Theory

2.1. Cross-slip rate equation

Consider the potential energy Φ(y1, .., yN) of a system having only one
saddle point P between two minima A and B. There is a unique hyper-
surface S of dimension N − 1 passing though P that is perpendicular to the
level curves of Φ. Let S0 be another hyper-surface with the same shape as S,
but passing through A and oriented such that the normal to S0 at A is along
the line of force leading to P (see Fig. 1). In this framework, the following
constrained partition functions are defined (Vineyard, 1957):

QS = ρ0

∫
S

exp

(
− Φ

kbT

)
dS (4)
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Figure 1: Contour plot of a potential with two minima and a saddle point.
The solid lines represent level curves and the segmented ones hyper-surfaces.

Q0 = ρ0

∫
S0

exp

(
− Φ

kbT

)
dS0 (5)

and

QA = ρ0

∫
A

exp

(
− Φ

kbT

)
dV (6)

where ρ0 is a normalization factor, kb the Boltzmann constant, T the
absolute temperature,

∫
S

the surface integral over S,
∫
S0

the surface integral

over S0 and
∫
A

the volume integral under S.
In Transition State Theory (TST), the rate of transition from state A to

B can be expressed as (Vineyard, 1957):

ΓTST =

√
kbT

2π

QS

QA

(7)

Multiplying and diving the latter equation by Q0:

ΓTST =

√
kbT

2π

Q0

QA

QS

Q0

=

√
kbT

2π

Q0

QA

exp

(
−∆F

kbT

)
(8)

where ∆F is the free-energy change from A to P . The rate prefactor
represents the effective frequency ν̃:
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ν̃ =

√
kbT

2π

Q0

QA

(9)

In systems subject to constant stress, ∆F is the Gibbs free-energy ∆G ≡
∆H − T∆S, where ∆H and ∆S are the activation enthalpy and entropy,
respectively. Under this assumption, Eq. 8 can be rewritten as:

ΓTST = ν̃ exp

(
∆S

kb

)
exp

(
−∆H

kbT

)
(10)

In Harmonic TST (HTST), the potential energy is expanded in Taylor
series around A up to second order, which leads to the following simplified
rate equation (Vineyard, 1957; Granato et al., 1964):

ΓHTST = ν1

N∏
i=2

νi
ν ′i

exp

(
−∆H

kbT

)
(11)

where νi are the eigenfrequencies of state A and ν ′i those of the transition
state P . In particular, ν1 is the fundamental frequency.

A comparison between Eqs. 10 and 11 shows that the entropic factor
e∆S/kb is approximately equal to

∏N
i=2

νi
ν′i

if ν̃ is considered to be ν1.

The activation entropy can also be calculated using an empirical relation
known as the Meyer-Neldel (MN) rule (Meyer and Neldel, 1937):

∆S =
∆H

Tm
(12)

where Tm is the melting temperature.
Esteban-Manzanares et al. (2020) studied the effect of stress on the cross-

slip rate in Aluminum using atomistic simulations. They found a rate equa-
tion in great quantitative agreement with their results by applying the MN
rule within the HTST framework:

ΓHTST = ν
L

Ln
exp

(
−∆H

kbT

[
1− T

Tm

])
(13)

where ν = 1011 Hz is the fundamental frequency (Sobie et al., 2017), L
the screw-dislocation length and Ln the nucleation length of cross-slip.
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Figure 2: Cross-slip stages of a dissociated screw dislocation as function of
the reaction coordinate s. The shaded region indicates that the stacking-
fault is located the cross-slip plane.
Source: Figure adapted from Malka-Markovitz and Mordehai (2018).

2.2. Nucleation length of cross-slip

In this study, the nucleation length was inferred from a LT model of
cross-slip. According to said model, the dislocations can be approximated as
flexible strings with line tension Tp (Kang et al., 2014):

Tp =
αµb2

2
(14)

where α is the line-energy parameter, µ is the shear modulus and b the
magnitude of the Burgers vector.

The total energy of the dislocations Es is a function of the line tension,
the shape of the partials y1(x) and y2(x) and the interaction energy between
them V (y1, y2) (Malka-Markovitz and Mordehai, 2018):

Es =

∫ +∞

−∞

[
1

2
Tp(y

′
1)2 +

1

2
Tp(y

′
2)2 + V

]
dx (15)

The prime symbol denotes the derivative with respect to the line direction
x. Under Escaig stress σE, the equilibrium separation between the partials
is given by (Malka-Markovitz and Mordehai, 2018):

dσ = β(σE)d0 (16)
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where:

β(σE) =
1

1 +
√

3b
6γ
σE

and d0 =
µb2

24πγ

2− 3ν

1− ν (17)

γ being the intrinsic stacking-fault energy and ν the Poisson’s ratio. In
absence of stress, β(0) = 1 and dσ reduces to d0 as expected.

The dissociation width D(x) satisfies D(x) = y1(x) − y2(x). Therefore,
an infinite dislocation at equilibrium satisfies D(x) = dσ for all x.

The reaction coordinate s is a dimensionless variable defined in the inter-
val [-1,1]. The cross-slip process as function of s is illustrated in Fig. 2. For
s ∈ (0, 1], the dislocation is fully contained in the glide plane at equilibrium.
The dissociation width at the pinning point x = 0 decreases as s goes to 0
i.e. Ds(0) = sdσ. At s = 0, the dislocation constricts, which means that
Ds(0) = 0. For s ∈ [−1, 0), the dislocation expands in the cross-slip plane.
When only Escaig stresses are applied, the dissociation width at the pinning
point can be expressed as Ds(0) = |s|dσ. The cross-slip process finishes when
s = −1, as the dislocation is completely contained in the conjugate plane at
equilibrium.

The energy functionalEs(y1, y2) can be minimized using the Euler-Lagrange
equation in order to find the cross-slip trajectory. Applying the boundary
conditions Ds(x→∞) = dσ and D′s(x→∞) = 0, it can be shown that the
dissociation width in the glide plane satisfies (Malka-Markovitz and Morde-
hai, 2018):

x = dσ

√
Tp
4

∫ D∗s (x)

s

dη√
V (η)

(18)

where D∗s = Ds/dσ is the normalized dissociation width between the
partials and η an adimensional integration variable.

The linear approximation can be used to model the interaction force be-
tween the partials for distances near the equilibrium dissociation width d0.
This is called the Harmonic Approximation (HA) because the resulting in-
teraction energy is a quadratic function of their separation. It can be shown
that using this approximation, the interaction potential in the glide plane is
given by (Malka-Markovitz and Mordehai, 2018):

V g
HA(D∗) =

1

2
(γd0)(D∗ − 1)2 (19)
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Substituting Eq. 19 into Eq. 18 gives the relation between x and D∗:

x = βg

√
Tpd0

2γ

∫ D∗s (x)

s

dη

|η − 1| (20)

The notation βg means β(σgE), where σgE is the Escaig stress on the glide
plane (see Eq. 17).

Thus, the normalization factor in front of the integral could be interpreted
as the dislocation length bowing towards the constriction (Malka-Markovitz
and Mordehai, 2018). For that reason, it was used in the present work to
estimate the nucleation length of cross-slip Ln on the glide plane:

Ln = βg

√
Tpd0

2γ
(21)

Since σgE appears in the denominator of βg, Ln decreases with positive
Escaig stress on the glide plane. In the convention of Malka-Markovitz and
Mordehai (2018), a positive Escaig stress shrinks the dissociation width,
which increases the cross-slip probability.

2.3. Activation enthalpy

The activation enthalpy can be also obtained from the LT model of cross-
slip. The first formulation of it was proposed by Stroh (1954) to estimate
the effect of Escaig stress in the constriction energy. Kang et al. (2014)
generalized it by including the influence of Schmid stress in the cross-slip
plane. Later on, Malka-Markovitz and Mordehai (2019) generalized Strohs’s
LT model (Stroh, 1954) for an arbitrary interaction force between the par-
tials, and then solved it analytically by using the linear approximation for
the interaction force. Malka-Markovitz and Mordehai (2019) assumed the
FE mechanism in their LT model, which implies that the dislocation does
not move before cross-slipping. As a consequence, the Schmid stress on the
glide plane σgS does not appear in their model. They found a general ex-
pression for the cross-slip energy as a function of the separation between
the constriction points l, the elastic constants and the local stress. In their
model, the cross-slip energy reaches its maximum when the separation be-
tween the constriction points l = lc satisfies the following critical equation
(Malka-Markovitz et al., 2021):

8
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1.55

cosh2(lc)
− 3δ

βcs
l2c = 2E∗ (22)

where δ is a function of the Schmid stress on the cross-slip plane σcsS and
E∗ is a dimensionless off-set in the interaction energy between the glide and
cross-slip planes:

δ =
1

6

(
bσcsS
γ

)2

and E∗ = ln

(
βcs
βg

)
(23)

The notation βcs means β(σcsE ), where σcsE is the Escaig stress on the
cross-slip plane (see Eq. 17). Once the value of lc was found, the activation
enthalpy ∆H is obtained by evaluating the corrected cross-slip energy H(σ, l)
at l = lc (Malka-Markovitz et al., 2021):

H(σ, l)

∆E0

=
βg
2

+

(
βcs
2

)[
tanh(l)− 2αLs

1.55
lE∗ − α3

Ls

1.55

δ

βcs
l3
]

(24)

where ∆E0 is the unstressed energy barrier and αLs ≈ 0.6. In the present
work, we consider the energy barrier to be the maximum of Eq. 24. For
that reason, the critical equation for lc was obtained by differentiating Eq.
24 with respect to l and equating it to zero, which gives:

1.55

cosh2(lc)
− 3α3

Lsδ

βcs
l2c = 2αLsE

∗ (25)

Fig. 3 shows the minor difference between evaluating H(σ, l) at the crit-
ical length given by Eqs. 22 and 25 for FCC copper. The magnitude of the
Burgers vector was assumed to be b = 2.55 Å, the intrinsic stacking-fault en-
ergy γ = 42 mJ/m2 and the unstressed energy barrier ∆E0 = 1.9 eV. Notice
that the activation enthalpy obtained by evaluating H(σ, l) at the solution
of Eq. 22 is slightly lower than the maximum of H(σ, l) for a given stress
condition.

3. Methodology

The cross-slip process in DD simulations is usually modeled using a kinetic
Monte Carlo method (Kubin et al., 1992; Hussein et al., 2015; Déprés et al.,

9
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Figure 3: Effect of the stress components on the energy barrier for: (A)
compressive Escaig stress on the glide plane (σgS = σcsE = σcsS = 0), (B)
expansive Escaig stress on the cross-slip plane (σgS = σgE = σcsS = 0) and
(C) Schmid stress on the cross-slip plane (σgS = σgE = σcsE = 0). The green
line shows the energy barrier obtained by evaluating H (see Eq. 24) at
the solution of Eq. 22. The blue line show the energy barrier obtained by
evaluating H at the solution of Eq. 25.
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2004; Malka-Markovitz et al., 2021). In the present work, the cross-slip rate
proposed by Esteban-Manzanares et al. (2020) (see Eq. 13) was implemented
in the DD code NuMoDis (Drouet et al., 2014) to compute the cross-slip
probability of screw segments. Thus, the probability of a screw segment of
length L to cross-slip during a time step δt is given by:

P = ν
L

Ln
exp

(
−∆H

kbT

[
1− T

Tm

])
δt (26)

where ν = 1011 Hz is the fundamental frequency (Sobie et al., 2017), Ln
the nucleation length of cross-slip, kb the Boltzmann constant, T the absolute
temperature, Tm the melting temperature and ∆H the activation enthalpy.

The activation enthalpy was obtained by evaluating the cross-slip energy
H(σ, l) (see Eq. 24) at the critical length satisfying Eq. 25. The only
free parameter in the theory of Malka-Markovitz and Mordehai (2019) is
the unstressed energy barrier ∆E0, which can be obtained either from line
tension models (Kang et al., 2014; Malka-Markovitz and Mordehai, 2019),
atomistic simulations (Oren et al., 2017; Liu et al., 2019; Esteban-Manzanares
et al., 2020; Kuykendall et al., 2020) or DD simulations (Ramı́rez et al., 2012;
Longsworth and Fivel, 2021). In the present paper, the energy barrier of FCC
copper ∆E0 = 1.9 eV was obtained from DD simulations (Longsworth and
Fivel, 2021) to make the work independent of other numerical results.

The nucleation length was deduced from the theory developed by Malka-
Markovitz and Mordehai (2018) (see Eq. 21). In said model, the only free
variable is the line tension Tp, which is proportional to the line-energy param-
eter α (see Eq. 14). Typical values of the line-energy parameter are in the
range between 0.1 and 0.6. Kang et al. (2014) studied the cross-slip energy of
FCC nickel using Molecular Dynamics (MD) simulations and their line ten-
sion model. They reported a reasonable agreement between their atomistic
simulations and LT model for α values in the range from 0.1 to 0.6. In a
previous work (Longsworth and Fivel, 2021), the line-energy parameter was
calibrated using the LT model of Kang et al. (2014). In order to obtain an
unstressed energy barrier of 1.9 eV in FCC copper, the line-energy parameter
was adjusted to 0.22. For that reason, an average line-energy value of 0.3
was used in the present work.

The screw chains were identified in the dislocations every simulation step.
A dislocation chain was considered to have a screw character if the angle
between its Burgers vector and line direction was smaller than one degree.
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Property Value

a0 (Davey, 1925)3.61 Å

b (Kittel and McEuen, 2018)a0/
√

2

d (Kittel and McEuen, 2018)a0/
√

3
γ (Bonneville and Escaig, 1979)42 mJ/m2

ν (Ledbetter and Naimon, 1974)0.324
µ (Schmauder and Mishnaevsky, 2008)54.6 GPa
Tm (Mangum et al., 2001)1358 K
B (Philibert, 1979)1.5 ×10−5 Pa-s

Table 1: Parameter values used for face-centered cubic (FCC) Cu; a0 is the
lattice parameter, b the magnitude of the Burgers vector, d the interplanar
separation, γ the intrinsic stacking-fault energy, ν the Poisson’s ratio, µ
the shear modulus, Tm is the melting temperature and B the viscous drag
coefficient at room temperature.

h [Å] Li [Å] yi [Å] yc [Å] δt
6d ≈ 12.5 2000b ≈ 5105.3 10b ≈ 25.5 4.4 0.0001
25d ≈ 52.1 350b ≈ 893.4 30b ≈ 76.6 18.5 0.01

Table 2: Dipole dimensions in the DD simulations; h is the dipole height, Li
the initial dislocation length, yi the initial separation of the dislocations in
the direction of ŷ, yc their separation at the common cross-slip plane and δt
the time step.

For each screw chain, a random number R between 0 and 1 was generated.
If the cross-slip probability P was larger than R, the glide plane of the
corresponding screw segment was changed to its deviated plane. Else, the
system remained unchanged.

In order to calculate the activation enthalpy and the nucleation length,
σgS, σgE, σcsS and σcsE must be obtained as functions of the total stress tensor
components. Therefore, the Cartesian coordinate system was rotated such
that the [111] direction matched with the ẑ axis and the Burgers vector [110]
with the x̂ axis. The resulting equations of the stress components were given
by:

σgS = σxz (27)

12



Figure 4: Screw dipole of height h contained in the glide plane (shaded in
gray). The dislocation separation at the common cross-slip plane (shaded in
blue) is denoted as yc.

σgE = σyz (28)

σcsS =
2
√

2σxy − σxz
3

(29)

σcsE =
7σzy + 2

√
2(σyy − σzz)
9

(30)

The cross-slip mechanism has been extensively studied using atomistic
simulations. In particular, Vegge et al. (2000) and Oren et al. (2017) have
investigated the kinetics of cross-slip in FCC copper. Both studies offer a
quantitative analysis of the activation enthalpy and annihilation rate of screw
dipoles, which can be used as a standard to compare against other results.
For the purpose of comparison, similar dipole dimensions to theirs were used
in the present DD simulations of FCC copper.

Consider a screw dipole of height h with both dislocations arrested in
the glide plane, at the intersection with the common cross-slip plane. In
FCC structures, the angle between two conjugate planes is θc = arccos

(
1
3

)
≈

70.5◦. Consequently, the dislocation separation in the direction of ŷ is yc =
h cot θc (see Fig. 4). If under these conditions one of the dislocations cross-
slips, it would start gliding in the conjugate plane and both dislocations
would annihilate each other. For that reason, the activation enthalpy and
annihilation rate were calculated at the intersection with the common cross-
slip plane.
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σgE [MPa] ∆H [eV] L [Å] Ln [Å] Γ0
HTST [Hz]

0 1.190 4862 32.9 3.93×1017

1300 0.295 4862 10.0 6.07×1014

Table 3: Parameter values obtained from DD simulations for the 13-Å-high
dipole; σgE is the compressive Escaig stress applied on the glide plane of the
screw dipole, ∆H the activation enthalpy, L the screw-segment length, Ln

the nucleation length and Γ0
HTST = ν L

Ln
exp

(
∆H
kbTm

)
the constant prefactor of

Eq. 13.

The dipole dimensions, physical properties and elastic constants used in
the DD simulations are shown in Tables 1 and 2.

4. Results and discussion

4.1. Screw dipole of height 1.3 nm

The DD simulations were performed using non-dissociated dislocations.
In consequence, there were no internal Escaig stresses induced by the screw
dipole in the present DD simulations. According to linear elasticity theory,

a screw dislocation with Burgers vector
−→
b = bx̂ generates non-zero stress

components σxy and σxz (Anderson et al., 2017). As a result, a perfect screw
dipole can only produce Schmid stresses on the glide and cross-slip planes
(see Eqs. 27 and 29). However, a dissociated screw dipole could create both
Schmid and Escaig stresses on the glide and cross-slip planes. The screw
component of the Shockley partials would induce Schmid stresses on the
glide and cross-slip planes as the perfect screw dipole. On the other hand,
the edge components of the Shockley partials would introduce Escaig stresses
on the glide and cross-slip planes. It can be shown that an edge dislocation

with line direction ξ̂ = x̂ and Burgers vector
−→
b = bŷ generates non-zero

stress components σxx, σyy, σzz and σyz (Anderson et al., 2017). For that
reason, the edge component of the Shockley partials would introduce Escaig
stresses on the glide and cross-slip planes of a dissociated screw dipole (see
Eqs. 28 and 30).

Fig. 5 shows the Arrhenius of the cross-slip rate for the 13-Å-high dipole.
The logarithm of the annihilation rates obtained by Vegge et al. (2000) using
MD simulations are also plotted for reference. Since their data points could
be fitted well with a straight line, they proposed the following rate equation:
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Figure 5: Arrhenius plots of the cross-slip rate for the 13-Å-high dipole. The
black dots with error bars represent the 19 data points obtained by Vegge
et al. (2000) using MD simulations. The black line corresponds to the linear
fit proposed by Vegge et al. (2000) to model their atomistic data. The blue
line represents the model of Esteban-Manzanares et al. (2020) used in the
DD simulations.

15



σgE [MPa] ∆H [eV] L [Å] Ln [Å] Γ0
HTST [Hz]

0 1.55 447 32.9 8.14×1017

700 0.56 447 14.8 3.61×1014

900 0.45 447 12.8 1.58×1014

1100 0.36 447 11.2 8.86×1013

1500 0.26 447 9.1 4.64×1013

Table 4: Parameter values obtained from DD simulations for the 50-Å-high
dipole.

Γ =
1

τ
= Γ0 exp

(
−∆H

kbT

)
(31)

where τ is the average annihilation time and Γ0 is a the rate prefactor.
The least squares fit lead them to the values ∆H = 291 ± 27 meV and
Γ0 = 7.8× 1014 Hz.

In order to compensate for the absence of internal Escaig stresses in the
DD simulations, a compressive Escaig stress of 1300 MPa was applied on the
glide plane. As a result, the activation enthalpy decreased to ∆H = 0.295
eV.

The parameter values obtained from DD simulations are shown in table 3.
The rate-prefactor value calculated using the model of Esteban-Manzanares
et al. (2020) was similar to the one proposed by Vegge et al. (2000) to fit
their atomistic data (6.07×1014 and 7.8×1014 Hz, respectively). Therefore,
the cross-slip rates were in good quantitative agreement as observed in Fig.
5. It is worth mentioning that the external Escaig stress only affects the
dissociation width. For that reason, the screw-segment length remains un-
affected by the applied Escaig stress for a given dipole height (see the third
column of Table 3).

4.2. Screw dipole of height 5 nm

Fig. 6 shows the activation enthalpy of the 50-Å-high dipole as function
of compressive Escaig stress applied on the glide plane. The atomistic re-
sults obtained by Oren et al. (2017) using MD simulations are also plotted
for reference. The results were in good quantitative agreement. The activa-
tion enthalpy at 1500 MPa was approximately 0.3 eV using both simulation
techniques. Although not all the values obtained in this work lie within their
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Figure 6: Activation enthalpy of the 50-Å-high dipole as function of com-
pressive Escaig stress applied on the glide plane. The blue circles are the
activation enthalpies obtained from the DD simulations using the model of
Malka-Markovitz and Mordehai (2019). The black diamonds are the data
points obtained by Oren et al. (2017) using MD simulations.

uncertainty, the largest discrepancy was only a small fraction of an electron-
volt.

Oren et al. (2017) deduced an energy barrier of 1.05 ± 15% eV, which
lies within the experimental value of 1.15 ± 0.37 eV measured by Bonneville
et al. (1988). They inferred this value from their data by double interpolation
to both zero applied stress and infinite dipole height. On the other hand,
the energy barrier of 1.9 eV used in this work was almost the double of their
estimate. In spite of it, the simulation results are in good agreement because
the activation enthalpy does not decrease linearly with the applied stress.
Instead, the activation energy reduces to almost half of its value at 250 MPa
(Longsworth and Fivel, 2021), but decreases only 0.3 eV when increasing the
stress magnitude from 700 to 1500 MPa (see table 4).

Fig. 7 shows the Arrhenius plots of the cross-slip rate for the 50-Å-high
dipole as function of compressive Escaig stress applied on the glide plane.
Most values were in good quantitative agreement. The harmonic approxima-
tion used in the rate equation assumes that the transition state is close to the
original one. This is most accurate at sufficiently low temperatures, when
the transition cannot be induced by thermal activation. In the investigated
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Figure 7: Arrhenius plots of the cross-slip rate for the 50-Å-high dipole as
function of compressive Escaig stress applied on the glide plane. The dots
are the cross-slip rates obtained from the DD simulations using the model of
Esteban-Manzanares et al. (2020). The diamonds correspond to the atomistic
results of Oren et al. (2017). The temperature range goes from 350K to 650K
in steps of 25K.
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temperature range, the activation enthalpy is larger than the thermal en-
ergy. For that reason, the cross-slip rates calculated using the HTST should
be valid.

In faulted screw dipoles, the compressive Escaig stresses in the glide plane
are expected to increase with decreasing dipole height (Rasmussen et al.,
2000). As a result, the nucleation length modeled using Eq. 21 would de-
crease with decreasing dipole height. However, there are no internal Escaig
stresses in perfect screw dipoles. In consequence, the nucleation length was
32.9 Å at zero applied stress, independently of the dipole height (compare
Tables 3 and 4). As reference, the nucleation length of aluminum was ap-
proximately 28 Å according to Esteban-Manzanares et al. (2020).

5. Summary and conclusion

The objective of this work is to propose a method to compute the cross-
slip rate of screw segments in DD simulations without relying on scaling
factors, yet able to reproduce atomistic results. Thus, all the input informa-
tion used to compute the cross-slip rate was retrieved from DD simulations.
The stress and forces on the dislocation segments were calculated using the
analytical expressions obtained by Cai et al. (2006), who developed the non-
singular theory of dislocations. As a consequence, the core-width parameter
introduced to obtain those non-singular expressions influenced the DD sim-
ulations strongly. In particular, atomistic and continuum energies are only
comparable if the core-width value is deduced using both an atomistic and
a continuum dislocation model. Since the aim was to compare the DD sim-
ulations’ outcome with previous atomistic results, the core-width value was
calculated using the theory of Schöck (2010) as proposed by Ramı́rez et al.
(2012). They deduced an expression for the core-width parameter based on
both atomistic and continuum dislocation models.

The cross-slip rate of screw segments was calculated using the atomistic-
based model proposed by Esteban-Manzanares et al. (2020) (see Eq. 13),
which combines the HTST framework and the NM rule. In that model, the
only two input parameters that depend on the local stress are the activation
enthalpy and the nucleation length. Both quantities were obtained from the
LT model of cross-slip as follows.

The activation enthalpy was obtained by evaluating the cross-slip energy
H(σ, l) (see Eq. 24) at the critical length satisfying Eq. 25 . In the model of
Malka-Markovitz and Mordehai (2019), the activation enthalpy is a function
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of the microstructure parameters and the stress components acting on the
crystallographic planes, which are easily accessible from the DD simulation.
With the aim of calibrating their model, the unstressed energy barrier was
set to 1.9 eV as obtained with the DD simulations of FCC copper (Ramı́rez
et al., 2012; Longsworth and Fivel, 2021).

The nucleation length was inferred from the LT model of cross-slip devel-
oped by Malka-Markovitz and Mordehai (2018) (see Eq. 21). It is expressed
as a function of the line tension, the microstructure parameters and the Es-
caig stress on the glide plane. In said model, the only free variable is the
line tension, which is proportional to the line-energy parameter (see Eq. 14).
Typical values of the line-energy parameter are in the range between 0.1 and
0.6 (Kang et al., 2014). For that reason, an average line-energy value of 0.3
was used in the present work.

In summary, the cross-slip modeling proposed in this paper by combining
equations 13, 21 and 24 with α = 0.3 and ∆E0 = 1.9 eV can be reliably used
in DD simulations of FCC copper. The activation enthalpies and cross-slip
rates obtained were in good quantitative agreement with the atomistic results
of Oren et al. (2017) and Vegge et al. (2000). These results ratify that the
HTST approximation and the MN rule are valid in the studied temperature
range and stress conditions.
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