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We consider the Vlasov-Maxwell equations with one spatial direction and two mo-

menta, one in the longitudinal direction and one in the transverse direction. By solv-

ing the Jacobi identity, we derive reduced Hamiltonian fluid models for the density,

the fluid momenta and the second order moments, related to the pressure tensor. We

also provide the Casimir invariants of the reduced Poisson bracket. We show that the

linearization of the equations of motion around homogeneous equilibria reproduces

some essential feature of the kinetic model, the Weibel instability.
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I. INTRODUCTION

The Vlasov–Maxwell system on a three dimensional phase space (one space and two mo-

mentum directions) is the minimal plasma configuration supporting electromagnetic modes

and is thus of fundamental interest. We consider a system of N charge particles of mass m

and charge q, described by a distribution function f(z, px, pz, t) and electromagnetic fields

E = Ex(z, t) x̂ + Ez(z, t) ẑ and B = By(z, t) ŷ. The distribution function satisfies∫
dzdpxdpz f(z, px, pz, t) = N,

for all time. The dynamics is given by:

∂f

∂t
= −vz

∂f

∂z
− q

(
Ex −

vz
c
By

) ∂f

∂px
− q

(
Ez +

vx
c
By

) ∂f

∂pz
, (1)

∂Ex

∂t
= −c∂By

∂z
− 4πq

∫
dpxdpzvxf, (2)

∂Ez

∂t
= −4πq

∫
dpxdpzvzf, (3)

∂By

∂t
= −c∂Ex

∂z
, (4)

where vz and vx are the velocities in the z- (longitudinal) and x- (transverse) directions. For

instance, in the non-relativistic case, we have pz = mvz and px = mvx. In what follows, we

omit the implicit time-dependence of the field variables f , Ex, Ez and By, as is usual for

dynamical variables. In the literature, this model is referred to as the 1.5D Vlasov-Maxwell

system (see, e.g., Refs. 1–3 where the well-posedness of these equations is addressed).

There are systems where the entirety of the phase space data embodied in the distribution

function is not relevant and a low-order moment description may be suitable. For example, in

a laser-driven plasma accelerator4 the phase velocity of the wakefield is typically well below

the thermal velocity making wave-particle resonance unimportant to evolution of the laser

field and the generation of plasma waves. Nonetheless, it is of interest to capture the behavior

beyond the cold fluid approximation,5 but numerical solutions of the Vlasov–Maxwell system

is wholly impractical. Fluid closures represent a practical means of incorporating this physics

at a reasonable computational cost.6

In addition, it is very convenient to work with fluid moments like the fluid density, fluid

velocity and pressure tensor. These fluid variables are often more intuitive than their kinetic

counterparts since they are functions in the configuration space rather than phase space.
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By taking moments of Eq. (1), we notice that the equations of motion for the moments of

order K depends on the moment of order K+1. From the Vlasov equation, we construct an

infinite ladder of fluid equations. This ladder has to be truncated for practical purposes, and

this truncation is a highly non-trivial problem. The term at the origin of this conundrum is

the convective term −vz∂f/∂z.

There are many ways of truncating this ladder. Usually, it involves an ansatz for the

distribution function (e.g., a Maxwellian7–9, a bi-Maxwellian distribution function10 or a

sum of Dirac functions11–14), from which we compute the higher order moments as functions

of the low-order moments. Another way is to include a dissipative term which emulates the

transfers of energy from lower to higher order moments, as represented, e.g., by the growth

rate of kinetic instabilities (see, e.g., Ref. 15).

In this article, we follow the route initiated in Refs. 16 and 17 for the one-dimensional

Vlasov-Ampère equations. We require that the truncated system of equations preserves

an important property of the parent Vlasov-Maxwell equations, namely its Hamiltonian

structure. The Jacobi identity imposes numerous constraints on the truncated system which

need to be satisfied to properly define a Hamiltonian fluid model. This procedure belongs

to a class of methods, Hamiltonian reductions, used to reduce the set of variables of a

Hamiltonian system while preserving the Hamiltonian structure.

In two phase-space dimensions (one spatial and one velocity), it was found in Refs. 18–20

that the waterbag closures21–23 correspond to a Hamiltonian closure, the main reason being

that the waterbag is an exact solution of the Vlasov equation. However, this reduction is no

longer possible in higher dimensions, where one has to deal with at least two velocities. Here

we consider the minimal situation where the waterbag closure is not applicable to derive

reduced Hamiltonian fluid models: one spatial direction and two velocities. The parent

system is the 1.5D Vlasov-Maxwell equations as given by Eqs. (1-4).

In Sec. II, we provide the Hamiltonian structure of the parent model, the 1.5D Vlasov-

Maxwell equations. In Sec. III, we define the reduced variables, i.e., the fluid density, the two

fluid momenta and the three components of the pressure tensor, and we provide the reduced

bracket. Then we detail and solve the constraints imposed on the third order moments by the

Jacobi identity in order to define reduced Hamiltonian fluid models. In addition, we provide

the Casimir invariants of the non-canonical Poisson bracket of these reduced systems. In

Sec. IV, we investigate the associated linearized system of equations around homogeneous
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equilibria. We show that by adjusting the free parameters of the reduced Hamiltonian fluid

models, we can reproduce an essential result of the kinetic model, namely the instability of

low-wavelength modes under temperature anisotropy.

II. HAMILTONIAN STRUCTURE OF THE 1.5D VLASOV-MAXWELL

SYSTEM

The system of equations (1-4) is Hamiltonian with a non-canonical Poisson bracket24,25

(see also Refs. 26 and 27 for an introduction to non-canonical Hamiltonian systems in fluid

and plasma physics). The Poisson bracket is given by

{F,G} =

∫
dzdpxdpz f

[(
∂

∂z

δF

δf

)
∂

∂pz

δG

δf
−
(

∂

∂pz

δF

δf

)
∂

∂z

δG

δf

]
+
q

c

∫
dzdpxdpz fBy

[(
∂

∂pz

δF

δf

)
∂

∂px

δG

δf
−
(

∂

∂px

δF

δf

)
∂

∂pz

δG

δf

]
+ 4πq

∫
dzdpxdpz f

[
δG

δEx

∂

∂px

δF

δf
+
δG

δEz

∂

∂pz

δF

δf
− δF

δEx

∂

∂px

δG

δf
− δF

δEz

∂

∂pz

δG

δf

]
+ 4πc

∫
dz

(
δG

δEx

∂

∂z

δF

δBy

− δF

δEx

∂

∂z

δG

δBy

)
. (5)

The equations of motion are obtained with Ḟ = {F,H}. In particular, the equations ḟ =

{f,H}, Ėx = {Ex, H}, Ėz = {Ez, H} and Ḃy = {By, H}, with the Hamiltonian

H[f, Ex, Ez, By] =

∫
dzdpxdpz fK(px, pz) +

∫
dz

E2
x + E2

z +B2
y

8π
,

where K(px, pz) = (p2
x + p2

z)/(2m) in the non-relativistic case, and K(px, pz) = mc2[1 + (p2
x +

p2
z)/m

2c2]1/2 in the relativistic case, are identical to Eqs. (1-4). The velocities vx and vz are

given by vx = ∂K/∂px and vz = ∂K/∂pz.

We verify that this bracket is a Poisson bracket, i.e., it is bilinear, antisymmetric, satisfies

the Leibniz rule and the Jacobi identity given by

{F1, {F2, F3}}+ {F3, {F1, F2}}+ {F2, {F3, F1}} = 0,

for all observables F1, F2 and F3. A direct proof of the Jacobi identity is possible following

Refs. 26 and 28. A more straightforward verification is obtained by using the canonical

momenta

πx = px +
q

c
Ax(z),

πz = pz +
q

c
Az(z),
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where By = ∂Ax/∂z. Expressing the distribution function in these variables fm(z, πx, πz) =

f(z, px, pz), the following Poisson bracket

{F,G} =

∫
dzdπxdπz fm

[(
∂

∂z

δF

δfm

)
∂

∂πz

δG

δfm

−
(

∂

∂πz

δF

δfm

)
∂

∂z

δG

δfm

]
+ 4πc

∫
dz

(
δF

δEx

δG

δAx

+
δF

δEz

δG

δAz

− δF

δAx

δG

δEx

− δF

δAz

δG

δEz

)
,

reduces to the Poisson bracket (5) in the Coulomb gauge ∂Az/∂z = 0. From the expression

of the bracket in terms of the canonical momenta, it is easier to verify the Jacobi identity

(see also Ref. 25). As a consequence, the resulting system (1–4) is a Hamiltonian system.

III. HAMILTONIAN FLUID REDUCTION

The next step is to define fluid moments in the following way:

ρ =

∫
dpxdpz f,

Px =
1

ρ

∫
dpxdpz px f,

Pz =
1

ρ

∫
dpxdpz pz f,

Snk =
1

ρk+1

∫
dpxdpz (px − Px)n(pz − Pz)

k f.

We want to keep the second-order moments (related to the pressure tensor) as dynamical

variables, i.e., we consider ρ, Px, Pz, S20, S11 and S02 as dynamical variables characterizing

the distribution function f . We keep Ex, Ez and By as dynamical variables characterizing

the electromagnetic field.

A. Expression of the bracket

We perform the reduction by considering the subset of observables which only depends on

the first moments, i.e., the subset of F̃ [ρ(z), Px(z), Pz(z), S20(z), S11(z), S02(z), Ex(z), Ez(z), By(z)].

This subset is a priori not a Poisson subalgebra. In order to compute the bracket, we use

the following reduction:

F [f(z, px, pz), Ex(z), Ez(z), By(z)]

= F̃ [ρ(z), Px(z), Pz(z), S20(z), S11(z), S02(z), Ex(z), Ez(z), By(z)],
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and we obtain the following relation between the functional derivatives

δF

δf
=
δF̃

δρ
+
px − Px

ρ

δF̃

δPx

+
pz − Pz

ρ

δF̃

δPz

+
(px − Px)2 − S20

ρ

δF̃

δS20

,

+
(px − Px)(pz − Pz)− 2ρS11

ρ2

δF̃

δS11

+
(pz − Pz)

2 − 3ρ2S02

ρ3

δF̃

δS02

.

We insert this expression for the functional derivative into the bracket (5), and we obtain

the reduced bracket

{F,G} =

∫
dz

[(
∂

∂z

δF

δρ
− 4πq

δF

δEz

)
δG

δPz

− δF

δPz

(
∂

∂z

δG

δρ
− 4πq

δG

δEz

)
+ 4π

(
c
∂

∂z

δF

δBy

+ q
δF

δPx

)
δG

δEx

− 4π
δF

δEx

(
c
∂

∂z

δG

δBy

+ q
δG

δPx

)
− 1

ρ

(
qBy

c
+
∂Px

∂z

)[
δF

δPx

δG

δPz

− δF

δPz

δG

δPx

+ 2
S20

ρ

(
δF

δS20

δG

δS11

− δF

δS11

δG

δS20

)
+ 4

S11

ρ

(
δF

δS20

δG

δS02

− δF

δS02

δG

δS20

)
+ 2

S02

ρ

(
δF

δS11

δG

δS02

− δF

δS02

δG

δS11

)]
+

∂

∂z

(
1

ρ

δF

δPx

)
1

ρ

(
S20

δG

δS11

+ 2S11
δG

δS02

)
− 1

ρ

(
S20

δF

δS11

+ 2S11
δF

δS02

)
∂

∂z

(
1

ρ

δG

δPx

)
+
δF

δPz

1

ρ

(
∂S20

∂z

δG

δS20

+
∂S11

∂z

δG

δS11

+
∂S02

∂z

δG

δS02

)
−1

ρ

(
∂S20

∂z

δF

δS20

+
∂S11

∂z

δF

δS11

+
∂S02

∂z

δF

δS02

)
δG

δPz

]
+ {F,G}c, (6)

where {F,G}c is the part of the bracket which explicitly depends on the third order moments

S30, S21, S12 and S03:

{F,G}c =

∫
dz

1

ρ

[
S30

(
∂

∂z

(
1

ρ

δF

δS20

)
δG

δS11

− δF

δS11

∂

∂z

(
1

ρ

δG

δS20

))
+ 2S21

(
∂

∂z

(
1

ρ

δF

δS20

)
δG

δS02

− δF

δS02

∂

∂z

(
1

ρ

δG

δS20

))
+ S12

(
∂

∂z

(
1

ρ

δF

δS02

)
δG

δS11

− δF

δS11

∂

∂z

(
1

ρ

δG

δS02

))
+ 2S03

(
∂

∂z

(
1

ρ

δF

δS02

)
δG

δS02

− δF

δS02

∂

∂z

(
1

ρ

δG

δS02

))
+ S21

(
∂

∂z

(
1

ρ

δF

δS11

)
δG

δS11

− δF

δS11

∂

∂z

(
1

ρ

δG

δS11

))
+ 2S12

(
∂

∂z

(
1

ρ

δF

δS11

)
δG

δS02

− δF

δS02

∂

∂z

(
1

ρ

δG

δS11

))]
.

As expected, the bracket (6) involving second order moments explicitly contains third order

moments as in the one-dimensional case (see Ref. 16). At this stage, it is natural to consider
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symmetric distribution functions and assume that these third order moments vanish. How-

ever, it has been noticed in Ref. 29 that this leads to a failure of the Jacobi identity and the

resulting reduced system is no longer Hamiltonian. Here we follow a different route, and we

consider that the third order moments are closure functions. In other words, we replace the

third order moments by closure functions of the reduced set of dynamical field variables ρ,

Px, Pz, S20, S11, S02, Ex, Ez, and By, i.e.,

S30 = S30(ρ, Px, Pz, S20, S11, S02, Ex, Ez, By),

S21 = S21(ρ, Px, Pz, S20, S11, S02, Ex, Ez, By),

S12 = S12(ρ, Px, Pz, S20, S11, S02, Ex, Ez, By),

S03 = S03(ρ, Px, Pz, S20, S11, S02, Ex, Ez, By).

The central question is what are appropriate functions S30, S21, S12 and S03, i.e., functions

that makes the bracket (6) a Poisson bracket.

In order to facilitate the calculations, we consider the bracket in terms of the canonical

momenta, i.e., we perform the following change of variables

Πx = Px +
q

c
Ax,

Πz = Pz +
q

c
Az,

Y = S02 S20 − S2
11,

Σ =
S11

S20

.

The algebra becomes the set of observables F [ρ,Πx,Πz, S20,Σ, Y, Ex, Ez, Ax, Az], and the
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bracket becomes

{F,G} =

∫
dz

[
∂z
δF

δρ

δG

δΠz

− δF

δΠz

∂z
δG

δρ

− 4πc

(
δF

δAx

δG

δEx

− δF

δEx

δG

δAx

+
δF

δAz

δG

δEz

− δF

δEz

δG

δAz

)
+
δF

δΠz

1

ρ

(
∂zΠx

δG

δΠx

+ ∂zS20
δG

δS20

+ ∂zΣ
δG

δΣ
+ ∂zY

δG

δY

)
− 1

ρ

(
∂zΠx

δF

δΠx

+ ∂zS20
δF

δS20

+ ∂zΣ
δF

δΣ
+ ∂zY

δF

δY

)
δG

δΠz

+ ∂z

(
1

ρ

δF

δΠx

)
1

ρ

δG

δΣ
− 1

ρ

δF

δΣ
∂z

(
1

ρ

δG

δΠx

)
− 2

∂zΠx

ρ2

(
δF

δS20

GΣ − FΣ
δG

δS20

)
+
U30

ρ

(
∂z

(
1

ρ

δF

δS20

)
δG

δΣ
− δF

δΣ
∂z

(
1

ρ

δG

δS20

))
+
U21

ρ

(
∂z

(
1

ρ

δF

δS20

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δS20

))
+

U21

2ρ S3
20

(
∂z

(
1

ρ

δF

δΣ

)
δG

δΣ
− δF

δΣ
∂z

(
1

ρ

δG

δΣ

))
+
U03

ρ

[
∂z

(
1

ρ

δF

δY

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δY

)]
+

1

ρ2

(
Y

S20

∂zU30 + S3
20∂z

(
U12

S3
20

))(
δF

δΣ

δG

δY
− δF

δY

δG

δΣ

)
+

1

ρ

(
Y

S20

U30 + 3U12

)[
∂z

(
1

ρ

δF

δΣ

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δΣ

)]]
,

(7)

where the closure functions for this bracket are given by

U30 =
S30

S20

,

U21 = 2S20

(
S21 −

S11

S20

S30

)
,

U12 = S12 − 2
S11

S20

S21 +
S2

11

S2
20

S30,

U03 =
Y

S20

U21 + 2S2
20

(
S03 − 3

S11

S20

S12 + 3
S2

11

S2
20

S21 −
S3

11

S3
20

S30

)
.

B. Constraints from the Jacobi identity

We require the bracket (7) to satisfy the Jacobi identity, i.e.,

{{F,G}, H}+ {{H,F}, G}+ {{G,H}, F} = 0,

8



for all observables F , G and H, functionals of the field variables ρ(z), Πx(z), Πz(z), S20(z),

Σ(z), Y (z), Ex(z), Ez(z), Ax(z) and Az.

By considering F = ρ(z), we deduce that the closure functions do not depend on Πz.

By considering F = Πx(z), we deduce that the closure functions do not depend on Σ. By

considering F = Πz(z), we deduce that the closure functions do not depend on ρ. By

considering F = Ex(z), we deduce that the closure functions do not depend on Ax. By

considering F = Ax(z), we deduce that the closure functions do not depend on Ex. The

same holds for Az and Ez(z). As a consequence, the closure functions U30, U21, U12 and U03

only depend on Πx, S20 and Y . Using these results, we identify a sub-algebra of observables

F [ρ,Πx, S20,Σ, Y ] with the bracket given by

{F,G} =

∫
dz

1

ρ

[
∂z

(
1

ρ

δF

δΠx

)
δG

δΣ
− δF

δΣ
∂z

(
1

ρ

δG

δΠx

)
− 2

∂zΠx

ρ

(
δF

δS20

δG

δΣ
− δF

δΣ

δG

δS20

)
+ U30

(
∂z

(
1

ρ

δF

δS20

)
δG

δΣ
− δF

δΣ
∂z

(
1

ρ

δG

δS20

))
+ U21

(
∂z

(
1

ρ

δF

δS20

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δS20

))
+
U21

2S3
20

(
∂z

(
1

ρ

δF

δΣ

)
δG

δΣ
− δF

δΣ
∂z

(
1

ρ

δG

δΣ

))
+ U03

[
∂z

(
1

ρ

δF

δY

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δY

)]
+

(
Y

S20

∂zU30 + S3
20 ∂z

(
U12

S3
20

))
1

ρ

(
δF

δΣ

δG

δY
− δF

δY

δG

δΣ

)
+

(
Y

S20

U30 + 3U12

)[
∂z

(
1

ρ

δF

δΣ

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δΣ

)]]
.

(8)

A necessary and sufficient condition for the bracket (7) to be a Poisson bracket is that the

bracket (8) is a Poisson bracket.

C. A further reduced bracket

We consider the subalgebra of observables F [ρ,Πx, S20, Y ] with the bracket given by

{F,G} =

∫
dz

1

ρ

[
U21

(
∂z

(
1

ρ

δF

δS20

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δS20

))
+ U03

[
∂z

(
1

ρ

δF

δY

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δY

)]]
. (9)
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We notice that this subalgebra only involves the closure functions U03 and U21. A necessary

(but not sufficient) condition for the bracket (8) to be a Poisson bracket is that the bracket (9)

is a Poisson bracket. A necessary and sufficient condition for the bracket (9) to be a Poisson

bracket is that the closure functions U21 and U03 satisfy

U21
∂U03

∂Y
− 2U03

∂U21

∂Y
− U21

∂U21

∂S20

= 0. (10)

We notice that U21 = 0 is an obvious solution, and in this situation, the bracket (9) is a

Poisson bracket regardless of the closure function U03. We notice that the resulting Poisson

bracket has a Casimir invariant, i.e., a function C which commutes with all observables F ,

{C,F} = 0,

given by

C =

∫
dzρ

∫
dY√
|U03|

,

where
∫

dY/
√
|U03| is a anti-derivative of 1/

√
|U03| with respect to Y . This invariant defines

a normal variable φ(Πx, S20, Y ) =
∫

dY/
√
|U03|.

If U21 6= 0, we define the functions ν(Πx, S20, Y ) and η(Πx, S20, Y ) such that

ν(Πx, S20, Y ) =

∫
dY

U21

,

η(Πx, S20, Y ) =
U03

U
2

21

.

Equation (10) becomes
∂2ν

∂Y ∂S20

+
∂η

∂Y
= 0,

with solution

η(Πx, S20, Y ) = Ψ(Πx, S20)− ∂ν

∂S20

.

This gives the closure

U21 =

(
∂ν

∂Y

)−1

,

U03 =

(
Ψ(Πx, S20)− ∂ν

∂S20

)(
∂ν

∂Y

)−2

,

where Ψ is an arbitrary function. The resulting bracket has a Casimir invariant

C =

∫
dzρ

(
ν −

∫
dS20Ψ

)
,

10



where
∫

dS20Ψ is a anti-derivative of Ψ with respect to S20. In this case, the closure is more

easily expressed in terms of the normal variable φ(Πx, S20, Y ) = ν −
∫

dS20Ψ.

In sum, two cases have to be considered, depending on the normal variable φ(Πx, S20, Y ):

The first case is when

U21 = 0,

U03 =

(
∂φ

∂Y

)−2

,

and the second case is obtained for

U21 =

(
∂φ

∂Y

)−1

,

U03 = − ∂φ

∂S20

(
∂φ

∂Y

)−2

,

where φ is an arbitrary function of Πx, S20 and Y . We notice that these two cases are both

constrained up to an arbitrary function φ of Πx, S20 and Y , and that in both cases, the

corresponding Poisson bracket possesses
∫

dzρφ as a Casimir invariant.

Furthermore, we are looking for a closure which generalizes the one-dimensional case.

From the inspection of the closure functions, we conclude that the first case (U21 = 0) is the

relevant one since it generalizes the closure found in Ref. 16: One feature is that the scaling

of the closure function U03 with the normal variable, obtained by replacing φ by uφ, is 1/u2

as in the one-dimensional case whereas it is 1/u in the second case.

D. The case U21 = 0

In this case, the bracket (8) becomes

{F,G} =

∫
dz

1

ρ

[
∂z

(
1

ρ

δF

δΠx

)
δG

δΣ
− δF

δΣ
∂z

(
1

ρ

δG

δΠx

)
− 2

∂zΠx

ρ

(
δF

δS20

δG

δΣ
− δF

δΣ

δG

δS20

)
+ U30

(
∂z

(
1

ρ

δF

δS20

)
δG

δΣ
− δF

δΣ
∂z

(
1

ρ

δG

δS20

))
+

1

ρ

(
Y

S20

∂zU30 + S3
20∂z

(
U12

S3
20

))(
δF

δΣ

δG

δY
− δF

δY

δG

δΣ

)
+

(
Y

S20

U30 + 3U12

)[
∂z

(
1

ρ

δF

δΣ

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δΣ

)]
+ U03

[
∂z

(
1

ρ

δF

δY

)
δG

δY
− δF

δY
∂z

(
1

ρ

δG

δY

)]]
.
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Inserting the above-bracket into the Jacobi identity leads to a set of coupled nonlinear partial

differential equations in the closure functions. The number of these equations depends on

the number of field variables. Here there are four field variables, so we expect a dozen of

coupled PDEs, among which some are not necessarily independent from the others. It is too

lengthy to list all of these conditions, and not necessary for the approach we have chosen:

We first consider a subset of these conditions, find solutions of this subset of equations,

form an ansatz for the closure functions, and then insert it back into the Jacobi identity

to determine further constraints. We iterate this procedure until the bracket satisfies the

Jacobi identity. Here we begin with the following set of conditions required by the Jacobi

identity:

U03
∂U30

∂Y
= 0, (11)

U30

(
Y

S20

∂U30

∂Y
+
∂U30

∂S20

)
+
∂U30

∂Πx

+ 3U12
∂U30

∂Y
+ 2 = 0, (12)

U30

(
Y

S20

∂U12

∂Y
+
∂U12

∂S20

)
+
∂U12

∂Πx

+ 3U12
∂U12

∂Y
− 3

U12U30

S20

− 2
Y

S20

= 0, (13)

U30

(
Y

S20

∂U03

∂Y
+
∂U03

∂S20

)
+
∂U03

∂Πx

+ 3U12
∂U03

∂Y
− 2

U03U30

S20

− 4U03
∂U12

∂Y
= 0. (14)

From Eq. (11), we deduce that U03 = 0 or U30 is independent of Y . We investigate a

closure for which U03 6= 0 in analogy with the one-dimensional case for which the third

order moment is an arbitrary function of the second order moment.16 Equation (12) reduces

to

U30
∂U30

∂S20

+
∂U30

∂Πx

+ 2 = 0, (15)

which resembles an inviscid Burgers’ equation. In particular, there are two obvious solutions,

one dependent on Πx only and the other one dependent on S20 only:

U
(1)

30 = −2Πx + 2α,

U
(2)

30 =
√
κ− 4S20,

but we will see that none of these obvious solutions lead to a Hamiltonian closure.

Since U30 is independent of Y , an additional constraint resulting from the Jacobi identity

is given by

S20

(
∂U12

∂Y

)2

− U30
∂U12

∂Y
− 1 = 0.

12



From this equation, we conclude that ∂U12/∂Y is independent of Y , i.e.,

U12 = Y V 12(Πx, S20) +W 12(Πx, S20),

where V 12 satisfies S20V
2

12 − U30V 12 − 1 = 0. We insert this equation for U12 into Eq. (13)

and we obtain the following two equations

U30
∂V 12

∂S20

+
∂V 12

∂Πx

+ V
2

12 = 0,

U30
∂W 12

∂S20

+
∂W 12

∂Πx

+ 3W 12

(
V 12 −

U30

S20

)
= 0.

The first equation is always satisfied provided that S20V
2

12−U30V 12−1 = 0 and U30 satisfies

Eq. (12). We solve these equations by assuming that the dependence on Πx of the functions

V 12 and W 12 solely comes from the dependence of U30 on Πx, i.e., we assume that V 12 and

W 12 are functions of S20 and U30. In this way, we have

V 12 =
U30 ±

√
U

2

30 + 4S20

2S20

, (16)

W 12 =

(
U30 ±

√
U

2

30 + 4S20

)3

Φ12(U
2

30 + 4S20), (17)

where Φ12 is an arbitrary scalar function. We insert these expressions in the Jacobi identity.

The constraint on U12 imposes that Φ12 = 0, and an additional constraint on U30 is given

by

2S20
∂U30

∂S20

+

√
U

2

30 + 4S20 − U30 = 0.

The solution of this equation is given by

U30 =
1

β(Πx)
− β(Πx)S20,

i.e., the closure function U30 is linear in S20. We insert this equation into Eq. (15) and we

find

U30 =
(Πx − α)2 − S20

α− Πx

,

where α is an arbitrary constant. Considering the cases Πx < α and Πx > α in Eqs. (16-17),

we show that the two branches for U12 lead to the same solution

U12 = Y
α− Πx

S20

.

13



Next, we solve Eq. (14) for U03. Since this equation is a first order linear partial differential

equation, its solution is obtained using the method of characteristics, and it is given by

U03 =
S6

20

(Πx − α)4 Φ03

(
(Πx − α)2 + S20

α− Πx

,
Y

S4
20

(Πx − α)3

)
, (18)

where Φ03 is an arbitrary function of two variables. An additional condition resulting from

the Jacobi identity implies that

x
∂Φ03

∂x
− 3y

∂Φ03

∂y
+ 4Φ03 = 0,

leading to

U03 = 2S2
20

(
Y

S20

)4/3

Φ

((
Y

S20

)1/3
(Πx − α)2 + S20

S20

)
,

where Φ is an arbitrary function.

In summary, the closure for the bracket (6) is given by

S30 = S20(α− Πx)− S2
20

α− Πx

, (19)

S21 = S11(α− Πx)− S20S11

α− Πx

, (20)

S12 = S02 (α− Πx)− S2
11

α− Πx

, (21)

S03 =
S11

S20

(
3S02 − 2

S2
11

S20

)
(α− Πx)− S3

11

S20(α− Πx)

+

(
S02 −

S2
11

S20

)4/3

Φ

((
S02 −

S2
11

S20

)1/3
(Πx − α)2 + S20

S20

)
, (22)

where Φ is an arbitrary function. In these expressions, Πx = Px + (q/c)
∫

dzBy is the

canonical momentum. When we insert this closure into the Jacobi identity, we show that

this identity vanishes. In order to check this, the Mathematica30 notebook is provided at

github.com/cchandre/VM15D.

Remark: Comparison with the one-dimensional case – For f(z, px, pz) = f1D(z, pz)δ(px),

we have Px = 0, S11 = 0 and S20 = 0. The closure is on the moment S03 and it is given by

S03 = Φ(S02).

Therefore we recover the one-dimensional closure which states that the moment of order

three is given by an arbitrary function of the moment of order two.
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Next, we determine the Casimir invariants of the Poisson bracket that are of the entropy-

form:

C =

∫
dz ρ φ(Πx, S20,Σ, Y ).

From {Πx, C} = 0 and {S20, C} = 0, we conclude that φ does not depend on Σ. From

{Y,C} = 0, we obtain

U03

(
∂φ

∂Y

)2

= r,

where r = 0 or r = ±1 (depending on the sign of U03). We first consider the case r = 0.

The Casimir invariant must satisfy {Σ, C} = 0 which reduces to

∂z
∂φ

∂Πx

− 2∂zΠx
∂φ

∂S20

+ U30∂z
∂φ

∂S20

= 0.

Since U30 does not depend on Y , this equation has a solution given by

φ =
(
(Πx − α)2 + S20

)
Γ

(
Πx − α

(Πx − α)2 + S20

)
,

where Γ is an arbitrary function. This constitutes an infinite family of Casimir invariants.

They are obviously absent in the one dimensional case, since they only depend on Πx and

S20. In particular, the total momentum, obtained for Γ(p) = p, is a Casimir invariant

corresponding to translation invariance in x.

The case r = ±1 leads to

φ =

∫
dY√
|U03|

,

as in the first case of Sec. III C. This Casimir invariant is a generalization of the Casimir

invariant found in the one-dimensional system. It represents the total entropy in the longi-

tudinal direction.16 The relation between φ and the closure function U03 given by Eq. (18)

is

φ =
S20

(Πx − α)2 + S20

Ψ

((
Y

S20

)1/3
(Πx − α)2 + S20

S20

)
,

where (Ψ′)2Φ = const.

In summary, the following observables are Casimir invariants of the bracket (6):

Ct =

∫
dzρ

(
(Πx − α)2 + S20

)
Γ

(
Πx − α

(Πx − α)2 + S20

)
, (23)

Cl =

∫
dzρ

S20

(Πx − α)2 + S20

Ψ

((
S02 −

S2
11

S20

)1/3
(Πx − α)2 + S20

S20

)
, (24)
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where Γ is an arbitrary function and Ψ is determined by the choice of the closure function

S03, i.e., (Ψ′)2Φ = const.

Remark: Gauge invariance – Since the closure functions depend on Πx = Px + (q/c)Ax,

it might be concluded that the closure depends on the gauge for the vector potential, i.e.,

on the change Ax 7→ Ax + a0. However, by adjusting the free parameter α, this gauge can

be fixed and the closure functions made gauge free.

If we require that the longitudinal entropy is not a function of the fields By and the

transverse momentum Px, Ψ has to be chosen as Ψ(p) = p (which implies that Φ is a

constant). The longitudinal entropy is then given by

Cl =

∫
dzρ

(
S02 −

S2
11

S20

)1/3

.

The closure function S03 becomes

S03 =
S11

S20

(
3S02 − 2

S2
11

S20

)
(α− Πx)− S3

11

S20(α− Πx)
+ λ

(
S02 −

S2
11

S20

)4/3

,

where λ is an arbitrary constant. This closure corresponds to a more physical model in

which the longitudinal entropy density does not depend on the momentum in the transverse

direction. In other words, we have used the transverse direction to specify the closure in the

longitudinal direction.
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E. The case U21 6= 0

The closure functions need to satisfy the following constraints:

U21

(
Y

S20

∂U30

∂Y
− ∂U30

∂S20

+
∂U12

∂Y

)
− 2U03

∂U30

∂Y
= 0, (25)

U30

(
Y

S20

∂U30

∂Y
+
∂U30

∂S20

)
+
∂U30

∂Πx

+ 3U12
∂U30

∂Y
− U21

2S3
20

∂U21

∂Y
+ 2 = 0, (26)

U21

(
∂U21

∂S20

− ∂U03

∂Y

)
+ 2U03

∂U21

∂Y
= 0, (27)

U30

(
Y

S20

∂U12

∂Y
+
∂U12

∂S20

)
+
∂U12

∂Πx

+ 3U12
∂U12

∂Y
− 3

U12 U30

S20

− 2
Y

S20

+
U21

2S3
20

(
Y

S20

∂U21

∂Y
− ∂U03

∂Y
+

3U21

S20

)
= 0, (28)

U30

(
Y

S20

∂U03

∂Y
+
∂U03

∂S20

)
+
∂U03

∂Πx

+ 3U12
∂U03

∂Y
− 2

U03 U30

S20

− 4U03
∂U12

∂Y

+
U21

S20

(
Y

S20

U30 − 2S20
∂U12

∂S20

− 3U12

)
= 0, (29)

U30

(
Y

S20

∂U21

∂Y
+
∂U21

∂S20

)
+
∂U21

∂Πx

+ 3U12
∂U21

∂Y
− U21 U30

S20

− 2U21
∂U12

∂Y
= 0, (30)

which are generalizations of Eqs. (11-14) to the case U12 6= 0. These equations are more

cumbersome to solve since there are more nonlinearities than in Eqs. (11-14). Here we are

looking for solutions which lead to a systems possessing entropy-like Casimir invariants, i.e.,

of the form

C =

∫
dzρφ(Πx, S20, Y ).

This leads to three additional constraints on the closure functions obtained from {S20, C} =

0, {Y,C} = 0 and {Σ, C} = 0:

U21
∂φ

∂Y
= const, (31)

U03

(
∂φ

∂Y

)2

+
∂φ

∂S20

= const, (32)

U30∂z

(
Y

S20

∂φ

∂Y
+

∂φ

∂S20

)
+ ∂z

∂φ

∂Πx

− 2∂zΠx
∂φ

∂S20

+ 3∂z

(
U12

∂φ

∂Y

)
− S3

20

∂φ

∂Y
∂z
U12

S3
20

= 0.(33)

The first two equations determine U03 and U21 as functions of φ, while the last equations

only involves the closure functions U30 and U12. We notice that this last equation is exactly

the same as in the case U21 = 0. For this equation, we found that a physically relevant

closure with φ = φ̃(Y/S20). This corresponds to having an entropy-like Casimir invariant
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which is independent of Πx and it corresponds to the Casimir invariant found in the one-

dimensional case. The question is then: Are there other closure functions U30 and U12 for

which φ(Πx, S20, Y ) = φ̃(Y/S20) is a solution of Eq. (33)? This equation becomes

3∂z

(
φ̃′
U12

S20

)
− S2

20φ̃
′∂z
U12

S3
20

+
2Y

S2
20

φ̃′∂zΠx = 0.

By looking at the terms in ∂zΠx, we have

∂U12

∂Πx

= − Y

S20

,

and by looking at the terms in ∂zS20 and ∂zY , we conclude that the function (φ̃′)3/2U12 is

independent of S20 and Y . By combining these two observations, we conclude that the only

possible solution is

U12 =
Y

S20

(α− Πx),

together with

φ̃(x) = 3κx1/3,

as in the case U21 = 0. We notice that this provides an expression for U21 and U03 given by

U21 = κ−1S
1/3
20 Y

2/3,

U03 = ΨS
2/3
20 Y

4/3 + κ−1S
−2/3
20 Y 5/3.

Inserting this closure in Eq. (28) gives an expression for U30:

U30 = −(Πx − α)2 − S20

Πx − α
− Y 1/3S

−4/3
20

3κ2(Πx − α)
+

2Ψ

9κ(Πx − α)
.

These expressions do not satisfy Eq. (25). We can check that this closure does not satisfy

the Jacobi identity.

Of course, we cannot rule out possible Hamiltonian closures which do not have any

Casimir invariants of the form
∫

dzρφ̃(Y/S20), but we argue that these closures are less

relevant. In any case, as stated above, the closures with U21 6= 0 would not correspond to

generalizations of the purely longitudinal case.
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IV. HAMILTONIAN WARM-FLUID MODEL: POISSON BRACKET,

HAMILTONIAN, EQUATIONS OF MOTION AND LINEARIZATION

AROUND HOMOGENEOUS EQUILIBRIA

In summary, the only possible Hamiltonian models resulting from the closure of the third

order moments are given by the following Poisson bracket

{F,G} =

∫
dz

[(
∂

∂z

δF

δρ
− 4πq

δF

δEz

)
δG

δPz

− δF

δPz

(
∂

∂z

δG

δρ
− 4πq

δG

δEz

)
+4π

(
c
∂

∂z

δF

δBy

+ q
δF

δPx

)
δG

δEx

− 4π
δF

δEx

(
c
∂

∂z

δG

δBy

+ q
δG

δPx

)
−
(
qBy

c
+
∂Px

∂z

)
1

ρ

[
δF

δPx

δG

δPz

− δF

δPz

δG

δPx

+ 2
S20

ρ

(
δF

δS20

δG

δS11

− δF

δS11

δG

δS20

)
+4

S11

ρ

(
δF

δS20

δG

δS02

− δF

δS02

δG

δS20

)
+ 2

S02

ρ

(
δF

δS11

δG

δS02

− δF

δS02

δG

δS11

)]
+
∂

∂z

(
1

ρ

δF

δPx

)(
S20

δG

δS11

+ 2S11
δG

δS02

)
− 1

ρ

(
S20

δF

δS11

+ 2S11
δF

δS02

)
∂

∂z

(
1

ρ

δG

δPx

)
+
δF

δPz

1

ρ

(
∂S20

∂z

δG

δS20

+
∂S11

∂z

δG

δS11

+
∂S02

∂z

δG

δS02

)
−1

ρ

(
∂S20

∂z

δF

δS20

+
∂S11

∂z

δF

δS11

+
∂S02

∂z

δF

δS02

)
δG

δPz

]
+ {F,G}c ,

where {F,G}c is given by

{F,G}c =

∫
dz

1

ρ

[
S30

(
∂

∂z

(
1

ρ

δF

δS20

)
δG

δS11

− δF

δS11

∂

∂z

(
1

ρ

δG

δS20

))
+ 2S21

(
∂

∂z

(
1

ρ

δF

δS20

)
δG

δS02

− δF

δS02

∂

∂z

(
1

ρ

δG

δS20

))
+ S12

(
∂

∂z

(
1

ρ

δF

δS02

)
δG

δS11

− δF

δS11

∂

∂z

(
1

ρ

δG

δS02

))
+ 2S03

(
∂

∂z

(
1

ρ

δF

δS02

)
δG

δS02

− δF

δS02

∂

∂z

(
1

ρ

δG

δS02

))
+ S21

(
∂

∂z

(
1

ρ

δF

δS11

)
δG

δS11

− δF

δS11

∂

∂z

(
1

ρ

δG

δS11

))
+2S12

(
∂

∂z

(
1

ρ

δF

δS11

)
δG

δS02

− δF

δS02

∂

∂z

(
1

ρ

δG

δS11

))]
.
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Here the closure functions are given by

S30 = S20(α− Πx)− S2
20

α− Πx

,

S21 = S11(α− Πx)− S20S11

α− Πx

,

S12 = S02 (α− Πx)− S2
11

α− Πx

,

S03 =
S11

S20

(
3S02 − 2

S2
11

S20

)
(α− Πx)− S3

11

S20(α− Πx)

+

(
S02 −

S2
11

S20

)4/3

Φ

((
S02 −

S2
11

S20

)1/3
(Πx − α)2 + S20

S20

)
,

where Φ is an arbitrary function and α an arbitrary constant. In the expressions of the

closure functions, Πx = Px + (q/c)
∫

dzBy is the canonical momentum.

In the non-relativistic case, the kinetic Hamiltonian, given by

H =

∫
dzdpxdpz f

p2
x + p2

z

2m
+

∫
dz

E2
x + E2

z +B2
y

8π
,

becomes

H =

∫
dz

[
ρ
P 2
x + P 2

z

2m
+

ρ

2m

(
S20 + ρ2S02

)
+
E2

x + E2
z +B2

y

8π

]
, (34)

without any approximations. In other words, there is no reduction of the Hamiltonian, given

that H only depends on the variables ρ, Px, Pz, S20, S11, S02, and the fields Ex, Ez and By.

Hamiltonian (34) with the bracket (6) lead to the following equations of motion:

ρ̇ = −∂z
(
ρ
Pz

m

)
, (35)

Ṗx = −Pz

m
∂zPx + qEx −

qPzBy

mc
− 1

ρ
∂z

(
ρ2S11

m

)
, (36)

Ṗz = −Pz

m
∂zPz + qEz +

qPxBy

mc
− 1

ρ
∂z

(
ρ3S02

m

)
, (37)

Ṡ20 = −Pz

m
∂zS20 −

2ρS11

m

(
qBy

c
+ ∂zPx

)
− 1

ρ
∂z

(
ρ2S21

m

)
, (38)

Ṡ11 = −Pz

m
∂zS11 +

qByS20

ρmc
− ρS02

m

(
qBy

c
+ ∂zPx

)
− 1

ρ2
∂z

(
ρ3S12

m

)
, (39)

Ṡ02 = −Pz

m
∂zS02 +

2qByS11

ρmc
− 1

ρ3
∂z

(
ρ4S03

m

)
, (40)

Ėx = −c∂zBy −
4πqρPx

m
, (41)

Ėz = −4πqρPz

m
, (42)

Ḃy = −c∂zEx. (43)
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These equations depend on the choice of one constant α and one scalar function of one

variable Φ. The equations of motion (35-43) possess conserved quantities given by Eqs. (23)

and (24).

A simpler model is obtained by considering that Φ is a constant, i.e., Φ(x) = λ (and hence

there exist a Casimir invariant of the entropy type which is independent of the momenta),

leading to a Hamiltonian warm fluid model defined by two arbitrary constants, α and λ.

Depending on the values of the parameters α and λ, the resulting model might exhibit very

different dynamics, even qualitatively. The choice of these parameters are guided by some of

the features we would like to have reproduced from the kinetic model. This is the advantage

of having parameters in the closure. Here we look at the linearization of these Hamiltonian

reduced models near homogeneous equilibria. More precisely, we consider the transverse

momenta and fields and investigate the conditions under which these homogeneous equilibria

are unstable for small wavelengths31:

ρ(z, t) = ρ0,

Px(z, t) = δPxei(kz−ωt),

Pz(z, t) = 0,

S20(z, t) = mT20 + δS20ei(kz−ωt),

S11(z, t) = δS11eikz,

S02(z, t) = ρ−2
0 mT02 + δS02ei(kz−ωt),

Ex(z, t) = δExei(kz−ωt),

Ez(z, t) = 0,

By(z, t) = δBye
i(kz−ωt).

The dispersion relation ω(k) = ωpX(k) (where ωp =
√

4πρ0q2/m is the plasma frequency)

is given by

X5 +κτ0X
4−X3(1 +κ2 +β2κ2)−X2κτ0(1 +κ2) +Xκ2(β2(1 +κ2)− τ2)−κ3τ0τ2 = 0, (44)
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where κ = ck/ωp is the rescaled wavelength, and

τ0 =
4λ

3

( ρ0

mc

)1/3
(
T02

mc2

)1/3

,

τ2 =
T20

mc2
,

β =
3α2T02

m2c2T20

.

Here we have fixed a gauge such that Ax(z, t) = δAxei(kz−ωt). The condition for a good choice

of parameters (α, λ) is that the small-k are unstable. We expand the dispersion relation for

small ck/ωp:

ω(k) = ckX0 +O(k3),

where X0 solution of

X3
0 + τ0X

2
0 −X0(β2 − τ2) + τ0τ2 = 0.

The discriminant of this polynomial should be negative to have unstable modes. This

happens if τ0 is large enough (or equivalently if λ is large enough). More precisely, the

condition is

8
τ 2

0

τ2

≥ β̄(β̄3 + (β̄2 + 8)3/2)− 20β̄ − 8,

where β̄ = β/
√
τ2. We notice that for β̄ ≤ 1, all values of τ0 ≥ 0 lead to unstable modes for

small c k/ωp. In Fig. 1, we represent the set of parameters (β, τ0) for which these modes are

unstable.

FIG. 1. Set of parameters (β, τ0) for which the small-k modes are unstable. The black cross

indicates the chosen parameters for the solutions of the dispersion relation (44) depicted in Fig. 2.
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Figure 2 shows the solutions of Eq. (44) compared with solutions of the corresponding

dispersion relation for the Gaussian closure and to discrete mode of the linearized Vlasov–

Maxwell system. The real and imaginary parts of the solution corresponding to the unstable

mode are shown in panels (a) and (b), respectively for the Hamiltonian (red) and Gaussian

(blue) closures. The growth rate of the unstable mode of the linearized Vlasov-Maxwell

system (green) is purely imaginary. The parameters are τ2 = 1.25 × 10−3, β/
√
τ2 = 1.05,

τ0/
√
τ2 = 0.08 and a temperature anisotropy

√
T20/T02 = 1.25. In terms of the parameters

of the Hamiltonian fluid closure, these parameters give

α

mc
≈ 0.14,

λ
( ρ0

mc

)1/3

≈ 2.29× 10−3.

The first equation is compatible with the assumption that the model is non-relativistic in

the whole range of Px where the Hamiltonian model is non-singular.

Panel (b) shows the bifurcation of the unstable mode into a pair of real solutions when

k exceeds a critical value for the Hamiltonian (magenta) and Gaussian (cyan) closures. In

addition, panel (b) shows a purely real solution of Eq. (44) (black) that is absent from the

Gaussian closure. Shown in panel (c) is the high-frequency solution to Eq. (44) (red) and

the corresponding solution of the dispersion relation of the Gaussian closure (blue). The

Vlasov-Maxwell system has a very weakly damped solution with a nearly identical value of

ωr (not shown).

V. CONCLUSION

We derived Hamiltonian fluid models based on the closure of the 1.5D Vlasov-Maxwell

equations. These reduced models were obtained by solving the Jacobi identity for the clo-

sure functions. They possess two key ingredients: First, they depend on some parameters

which allow the fluid model to be adjusted to reproduce quantitatively some features of the

corresponding kinetic equations. Second, they exhibit singularities which indicate a region

of phase space where the fluid reduction fails. We notice that another way to derive the

closures for the reduced fluid model to be Hamiltonian is to require that the fluid model

possesses a Casimir invariant of the entropy-form. This generalizes a result found in the

one-dimensional case16.
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FIG. 2. Solutions of the dispersion relation (44) for τ2 = 1.25× 10−3, β/
√
τ2 = 1.05 and τ0/

√
τ2 =

0.08. The temperature anisotropy is
√
T20/T02 = 1.25.

For a wide range of parameters, the Hamiltonian fluid models exhibit unstable transverse

electromagnetic modes in the presence of anisotropy in the velocity distribution, in agree-

ment with the kinetic model.
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