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Introduction.

Local times of Lévy processes not only have wide applications in various fields; see [START_REF] Barndorff-Nielsen | Lévy Processes: Theory and Applications[END_REF][START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications: Introductory Lectures[END_REF], but they also have been studied in depth with abundant of interesting results obtained, e.g. various constructions (see [START_REF] Barlow | Two uniform intrinsic constructions for the local time of a class of Lévy processes[END_REF][START_REF] Dellacherie | Séminaire de Probabilités[END_REF][START_REF] Protter | Stochastic Integration and Differential Equations[END_REF]), Hilbert transform (see [START_REF] Bertoin | On the Hilbert transform of the local times of a Lévy process[END_REF][START_REF] Fitzsimmons | Limit theorems and variation properties for fractional derivatives of the local time of a stable process[END_REF]), Hölder regularity (see [START_REF] Barlow | Necessary and sufficient conditions for the continuity of local time of Lévy processes[END_REF][START_REF] Boylan | Local times for a class of Markoff processes[END_REF][START_REF] Forman | Uniform control of local times of spectrally positive stable processes[END_REF]) and so on. We refer to [START_REF] Bertoin | Lévy Processes[END_REF][START_REF] Geman | Occupation densities[END_REF][START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] for survey on local times and their applications. In particular, to understand thoroughly the dependence of Brownian local times in the space variable, Ray [START_REF] Ray | Sojourn times of diffusion processes[END_REF] and Knight [START_REF] Knight | Random walks and a sojourn density process of Brownian motion[END_REF] independently proved the well-known Ray-Knight theorem that links Brownian local times to Bessel processes. Later, the Ray-Knight theorem was generalized in [START_REF] Eisenbaum | A Ray-Knight theorem for symmetric Markov processes[END_REF][START_REF] Sabot | Inverting Ray-Knight identity[END_REF] to strongly symmetric Markov processes with finite 1-potential densities. For a general spectrally positive Lévy process, Le Gall and Le Jan [START_REF] Le Gall | Branching processes in Lévy processes: the exploration process[END_REF][START_REF] Le Gall | Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses[END_REF] considered the reflected processes of its time-reversed processes. Associated to the local times at 0, they introduced an exploration process to describe the genealogy of a continuous-state branching process (CB-process) and generalized an analogue of the Ray-Knight theorem for a functional of local times of the Lévy process; see also [START_REF] Duquesne | Random Trees, Lévy Processes and Spatial Branching Processes[END_REF][START_REF] Le Gall | Spatial Branching Processes, Random Snakes and Partial Differential Equations[END_REF] for details.

Because of the lack of Markovianity; see [START_REF] Eisenbaum | A necessary and sufficient condition for the Markov property of the local time process[END_REF], local times (not their funtionals) of general spectrally positive Lévy processes are quite untractable. Their microstructure and evolution mechanism have received considerable attention in recent years. Specifically, Lambert [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF] connected a compound Poisson process with unit negative drift and killed upon hitting 0 to the jumping chronological contour processes of a splitting tree, and then showed that its local times are equal in distribution to a homogeneous, binary Crump-Mode-Jagers branching process (CMJ-process). For a general spectrally positive Lévy process, Lambert and Simatos [START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF] explored the genealogical structure of their local times preliminarily via an approximating sequence consisting of rescaled binary CMJ-processes. Later, a detailed genealogical interpretation was given in [START_REF] Lambert | Totally ordered measured trees and splitting trees with infinite variation[END_REF] by considering the corresponding totally ordered measured tree that satisfies the splitting property. Meanwhile, Forman et al. [START_REF] Forman | Uniform control of local times of spectrally positive stable processes[END_REF] established a locally uniform approximation for the local times of a driftless spectrally positive stable process by endowing each jump with a random graph. Up to now, the genealogical structure of local times of general spectrally positive Lévy processes seems to be fairly clear. However, their macroevolution mechanisms, by contrast, are still incomprehensible.

The purpose of this work is to establish stochastic equations for the local times of spectrally positive stable processes and study their macroevolution mechanisms in the spatial direction. In contrast to the genealogical interpretations given in the aforementioned literature, stochastic equations have many advantages including • They provide an intuitive description for the evolution of local times in the spatial direction as well as a detailed interpretation of their perturbations caused by each jump of stable processes.

• They allow us to study the local times by using tools and methods from the modern probability theory, e.g., stochastic integral inequalities, stochastic Fubini theorem and extreme value theory.

• They offer a kind of novel non-Markovian models and a convenient way of numerical analysis, which will benefit greatly the related fields, e.g., processor-sharing queues and stochastic volatility models.

1.1. Overview of main results. Let ξ := {ξ(t) : t ≥ 0} be a one-dimensional spectrally positive stable process with index 1 + α ∈ (1, 2) and Laplace exponent Φ(λ) := bλ + cλ α+1 = bλ + ∞ 0 e -λy -1 + λy ν α (dy), λ ≥ 0, (1.1) where b ≥ 0, c > 0 and ν α (dy), known as the Lévy measure, is a σ-finite measure on (0, ∞) given by ν α (dy) := cα(α + 1)

Γ(1 -α) • y -α-2 • dy. (1.2)
It is recurrent or drifts to -∞ according as b = 0 or > 0. Let W be the scale function of ξ and να (x) := ν α ([x, ∞)) the tail function of ν α . Let L ξ := {L ξ (x, t) : x ∈ R, t ≥ 0} be the local times of ξ, where L ξ (x, t) is usually interpreted as the amount of time that ξ spends at level x up to time t. Denote by τ L ξ (ζ) the first time that the amount of local time accumulated at level 0 exceeds a given value ζ > 0; more accurate definitions can be found in Section 2.1 and [START_REF] Bertoin | Lévy Processes[END_REF][START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications: Introductory Lectures[END_REF]. ∇ y W (x -s) N α (ds, dy, dz), x ≥ 0, (1.3) where ∇ y W (x) := W (x) -W (x -y), N 0 (dy, dz) is a Poisson random measure (PRM) on (0, ∞) 2 with intensity να (y)dydz, N α (ds, dy, dz) is a compensated PRM on (0, ∞) 3 with intensity dsν α (dy)dz and independent of N 0 (dy, dz). The first stochastic integral in (1.3) represents the contribution of jumps up-crossing 0 to the local time at level x and the second stochastic integral, known as stochastic Volterra integral (SVI), can be interpreted as the perturbations caused by jumps with initial positions above 0. Since the convolution kernel delays the relaxation of its perturbations, the PRM N α (ds, dy, dz) changes the local times continuously in the spatial variable. This stands in striking contrast to the jumps in Itô's stochastic differential equations (Itô's S-DEs) driven by PRM. Additionally, because of the joint impact of relative level x -s and jump-size y on the convolution kernel, the SVE (1.3) cannot be written into the form of SVEs in [START_REF] Abi Jaber | Weak existence and uniqueness for affine stochastic Volterra equations with L 1 -kernels[END_REF][START_REF] Abi Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF][START_REF] Abi Jaber | Affine Volterra processes[END_REF][START_REF] Pardoux | Stochastic Volterra equations with anticipating coefficients[END_REF][START_REF] Protter | Volterra equations driven by semimartingales[END_REF].

Based on the SVE (1.3), in the second main result we use stochastic integral inequalities to provide a simple proof for the Hölder continuity of L ξ ζ and the finiteness of all moments of the Hölder coefficient given in [START_REF] Barlow | Necessary and sufficient conditions for the continuity of local time of Lévy processes[END_REF][START_REF] Boylan | Local times for a class of Markoff processes[END_REF][START_REF] Forman | Uniform control of local times of spectrally positive stable processes[END_REF]. As the novelty, we also establish a uniform upper bound for all moments of the Hölder coefficient and a maximal inequality for the local times in the spatial variable. With the crucial assistance from the SVE (1.3), 1 A continuous process with distribution P is called a weak solution of (1.3) if there exists a stochastic basis, a PRM N0(dy, dz) on (0, ∞) 2 with intensity να(y)dydz, a PRM Nα(ds, dy, dz) on (0, ∞) 3 independent of N0(dy, dz) with intensity dsνα(dy)dz and a continuous process L ξ ζ with distribution P such that (1.3) holds almost surely. We say the weak uniqueness holds if any two weak solutions are equal in distribution.

in the third main result we extend the method of duality developed in [START_REF] Abi Jaber | Affine Volterra processes[END_REF] to provide an explicit representation of the Laplace functional E[exp{-λ • L ξ ζ (x) -g * L ξ ζ (x)}] with λ ≥ 0 and g ∈ L ∞ (R + ; R + ). It states that the Laplace exponent can be written as an affine functional of the initial state, in terms of the unique solution of the nonlinear Volterra integral equation (nonlinear-VIE) v g λ (x) = λW (x) + g -V α • v g λ * W (x), x > 0, (1.4) where W is the derivative of W and V α is a nonlinear operator acting on a locally integrable function f by

V α • f (x) := ∞ 0 exp - x (x-y) + f (r)dr -1 + x (x-y) + f (r)dr ν α (dy), x ≥ 0. (1.5)
Finally, we provide an alternative fractional integration and differential equation for the process L ξ ζ and its Laplace exponent. In contrast to the SVE (1.3), the alternative equation takes it a step further and extracts the impact of drift b on the local times from that of jumps. It also uncovers the remarkable similarity between L ξ ζ and CB-processes in the evolution mechanism, which, together with the genealogical interpretations in [START_REF] Forman | Uniform control of local times of spectrally positive stable processes[END_REF][START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF][START_REF] Lambert | Totally ordered measured trees and splitting trees with infinite variation[END_REF], tells that the SVE (1.3) defines a novel non-Markovian CB-process.

To illustrate the strength of these results, we use the SVE (1.3) to establish a stochastic equation for the heavytraffic limit of recaled queue-length processes of M/G/1 processor-sharing queues with unit service capacity, heavy-tailed service distribution and stopped upon becoming empty. It can be seen as a continuation of [START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF], where the weak convergence of rescaled queue-length processes was proved. In a sense, this helps to partially answer Problem 2 stated by Zwart in [START_REF] Zwart | Conjectures on symmetric queues in heavy traffic[END_REF] about the heavy-traffic limit of heavy-tailed processor-sharing queues; readers may refer to the references of Zwart and his coauthors for details. enlightened by the self-exciting property observed in the SVE (1.3), in the forthcoming preprint [START_REF] Horst | The microstructure of rough volatility models with self-excited sharpraises[END_REF] we use the evolution mechanism of local times of stable processes to model the sharp-raise clusters in rough volatilities and introduce a novel fractional stochastic volatility model with self-excited sharp-raises.

1.2. Methodologies. We start the construction of the SVE (1.3) from the result that the local times of nearly recurrent compound Poisson processes with unit negative drift, Pareto-distributed jumps are equal in distribution to a class of nearly critical binary CMJ-processes, which converge weakly to the process L ξ ζ after rescaling; see [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF][START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF]. Enlightened by the Hawkes representation of general branching particle systems established in [START_REF] Horst | Functional limit theorems for marked Hawkes point measures[END_REF][START_REF] Xu | Diffusion approximations for self-excited systems with applications to general branching processes[END_REF], we reconstruct the binary CMJ-processes as the intensity processes of nearly unstable marked Hawkes point measures (MHPs) by translating the birth time, life-length and survival state of each individual into the arrival time, random mark and kernel of an event respectively. Furthermore, we write each intensity process into a SVE driven by an infinite-dimensional martingale in which the integrand is a functional of the resolvent function related to the life-length distribution. Consequently, it suffices to prove the weak convergence of these SVEs after rescaling to the desired SVE (1.3). Unfortunately, the Pareto-distributed life-length gives raise to long-range dependence in the pre-limit SVEs, which derives a series of challenges and difficulties in the proof including • Along with the inseparable impact of time and life-length on the convolution kernel, the infinite-dimensional driving noises not only lead to the failure of the approximation method and the integral-derivative method developed in [START_REF] Abi Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF][START_REF] Abi Jaber | Affine Volterra processes[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes[END_REF], but also make it hard to seek an approximation for the pre-limit SVEs.

• The resolvent function fluctuates drastically and explodes around 0 after rescaling. This leads to the sharp swings in the cumulative impact of infinite short-lived events on the pre-limit SVEs and also makes the uniform control on the error processes challengeable.

• The resolvent function inherits long-range dependence from the life-length distribution. It prevents us from transforming the pre-limit SVEs into the form of Itô's SDEs and obtaining the weak convergence similarly as in [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF][START_REF] Xu | Diffusion approximations for self-excited systems with applications to general branching processes[END_REF] by using the weak convergence results established in [START_REF] Kurtz | Weak limit theorems for stochastic integrals and stochastic differential equations[END_REF][START_REF] Kurtz | Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case[END_REF] for Itô's SDEs.

To overcome the first two difficulties, we start by analyzing in depth the direct and indirect impact of each event on the pre-limit SVEs. Our analyses show that the cumulative direct impact of all events can be asymptotically ignored and a suitably rescaled version of their indirect impact asymptotically behaves as the backward difference of scale function. This motivates us to approximate the SVIs in the pre-limit SVEs by replacing the integrands with the backward difference of scale function. For the uniform control on the error processes, we first split them into several parts according to the source and then prove the finite-dimensional convergence of each part to 0 separately. Based on a deep analysis about the backward difference of scale function, we prove the C-tightness2 of the approximating processes, which, together with the C-tightness result given in [START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF] for the local times of nearly recurrent compound Poisson processes, yields the tightness of error processes. To overcome the third difficulty, we establish a weak convergence result for SVIs with respect to infinite-dimensional martingales, whose tightness and finite-dimensional convergence are obtained from the foregoing tightness results and the weak convergence of the related Itô's stochastic integrals respectively. More precisely, for a given finite sequence of time points, we first introduce a sequence of Itô's stochastic integrals with respective to infinite-dimensional martingale satisfying that their finite-dimensional distributions at the given time points are equal to those of the corresponding SVIs, and then prove their weak convergence to a limit process whose finite-dimensional distribution at the given time points is equal to that of the desired limit SVI.

In the proof of existence and uniqueness of solutions of the nonlinear-VIE (1.4), the next two main difficulties steam from the nonlinear operator V α and the singularity of the function W at the origin • The interplay between the singularity of W and V α makes the existence of local solutions of (1.4) around 0 quite difficult.

• Since V α is path-dependent and does not satisfy the Lipschitz condition, it is difficult to identify the nonexplosion of local solutions and extend them into global solutions.

To bypass the first difficulty, we first prejudge the behavior of solutions near the origin with the help of an upper bound estimate of V α and the expansion given in [START_REF] Callegaro | Fast hybrid schemes for fractional Riccati equations (rough is not so tough)[END_REF] for solutions of fractional Riccati equations. In a specified closed set in some Lebesgue space, we then find a local solution of (1.4) successfully by using Banach's fixed point theorem. To overcome the second difficulty, associated with a fractional differential equation related to V α we first provide an upper bound estimate for a functional of each local solution, and then, along with the comparison principle for fractional differential equations, establish a uniform control on the local solutions.

1.3. Related Literature. Let us comment on the relationship between the present work and the existing literature. Firstly, based on the Markov property, Brownian local times were linked to Bessel processes via their transition semigroups in [START_REF] Knight | Random walks and a sojourn density process of Brownian motion[END_REF][START_REF] Ray | Sojourn times of diffusion processes[END_REF] or their infinitesimal generators in [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF][START_REF] Li | A limit theorem for discrete Galton-Watson branching processes with immigration[END_REF]. However, the lack of Markovianity of L ξ ζ makes it impossible to establish the SVE (1.4) similarly as in the preceding references. Even if it could be established successfully, the SVE (1.4) is beyond the scope of all existing literature [START_REF] Abi Jaber | Weak existence and uniqueness for affine stochastic Volterra equations with L 1 -kernels[END_REF][START_REF] Abi Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF][START_REF] Abi Jaber | Affine Volterra processes[END_REF][START_REF] Pardoux | Stochastic Volterra equations with anticipating coefficients[END_REF][START_REF] Protter | Volterra equations driven by semimartingales[END_REF] and the existence of its solutions seems to be quite difficult to be proved in the standard way. On the other hand, the present work establishes the well-posedness of the novel SVE (1.4). Secondly, the main results, as mentioned above, are obtained by establishing a weak convergence result for the corresponding long-range dependent MHPs. The first scaling limit theorem for Hawkes processes was established by Jaisson and Rosenbaum [START_REF] Jaisson | Limit theorems for nearly unstable Hawkes processes[END_REF] in the study of the asymptotic behavior of Hawkes-based price-volatility models in the context of high-frequency trading. Their results state that under the short-memory condition, the rescaled intensity processes of nearly unstable Hawkes processes converge weakly to the well-known CIR-model. The analogous scaling limits were established for multivariate (marked) Hawkes processes in [START_REF] El Euch | The microstructural foundations of leverage effect and rough volatility[END_REF][START_REF] Xu | Diffusion approximations for self-excited systems with applications to general branching processes[END_REF] and a jump-diffusion limit was given in [START_REF] Horst | The microstructure of stochastic volatility models with self-exciting jump dynamics[END_REF] for MHPs with exponential kernel. When the kernel is heavy-tailed, Jaisson and Rosenbaum [START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes[END_REF] proved the weak convergence of the integral of rescaled intensity process to the integral of a fractional diffusion process, see also [START_REF] El Euch | The microstructural foundations of leverage effect and rough volatility[END_REF][START_REF] Rosenbaum | From microscopic price dynamics to multidimensional rough volatility models[END_REF] for the multivariate case. Because of many difficulties deriving from long-range dependence, they left the weak convergence of rescaled intensity processes as an open problem. However, we stress that the weak convergence result in this work is established for the intensity processes of MHPs. As the final remark, we need to point out that different to the analogous version in [START_REF] Le Gall | Branching processes in Lévy processes: the exploration process[END_REF][START_REF] Le Gall | Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses[END_REF], the Ray-Knight theorem in this work is established for the local times rather than their functionals.

Organization of this paper. In Section 2, we first introduce general notation and properties of spectrally positive stable processes, and then formulate the main results. In Section 3, we introduce some elementary results and a SVE for the local times of a compound Poisson process with negative drift by linking them to a MHP. Section 4 is devoted to proving that L ξ ζ solves the SVE (1.3). Its Hölder continuity is proved in Section 5. In Section 6, we prove the exponential-affine transform formula as well as the existence and uniqueness of solutions of the nonlinear-VIE (1.4). The proof for the alternative representation of L ξ ζ are given in Section 7. Applications to processor-sharing queues are given in Section 8. Additional proofs and supporting results are presented in the Appendices.

Notation. For any x ∈ R, let x + := x ∨ 0, x -:= x ∧ 0 and [x] be the integer part of x. For a Banach space V with a norm • V , let D([0, ∞), V) be the space of all cádlág V-valued functions endowed with the Skorokhod topology and C([0, ∞), V) the space of all continuous V-valued functions endowed with the uniform topology. For any T ⊂ [0, ∞) and p ∈ (0, ∞], let L p (T ; V) be the space of V-valued measurable functions f on T satisfying that f p

L p T := T f (x) p V dx < ∞. We also write f L p T for f L p [0,T ] and f L p for f L p ∞ .
We make the conventions that for x, y ∈ R with y ≥ x,

y x = - x y = (x,y] , y- x- = [x,y) and ∞ x = (x,∞) .
Denote by f * g the convolution of two functions f, g on R + . Let ∆ h and ∇ h be the forward and backward difference operators with step size h > 0, i.e., ∆ h f (x For a probability measure µ on R, denote by P µ and E µ the law and expectation of the underlying process with initial state distributed as µ. When µ is a Dirac measure at point x ∈ R, we write P x for P µ and E x for E µ . For simplicity, we also write P for P 0 and E for E 0 . For two σ-finite measures µ 1 , µ 2 on R, we say

) := f (x + h) -f (x) and ∇ h f (x) := f (x) -f (x - h). Let
µ 1 ≤ µ 2 if for any non-negative function f on R, R f (x)µ 1 (dx) ≤ R f (x)µ 2 (dx).
We use C to denote a positive constant whose value might change from line to line.
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Preliminaries and main results.

2.1. Spectrally positive stable processes. Suppose that the spectrally positive stable process ξ is defined on a complete probability space (Ω, F , P) endowed with a filtration {F t } t≥0 satisfying the usual hypotheses. For every t ≥ 0, let µ ξ,t (dy) be the occupation measure of ξ on the time interval [0, t] given for every non-negative and measurable function f on R by

t 0 f ξ(s) ds a.s. = R f (y)µ ξ,t (dy).
The measure µ ξ,t is absolutely continuous with respect to the Lebesgue measure and the density, denoted by {L ξ (x, t) : x ∈ R}, is square integrable; see Theorem 1 in [9, p.126]. The quantity L ξ (x, t) is called the local time of ξ at level x and time t. The two-parameter process L ξ := {L ξ (x, t) : x ∈ R, t ≥ 0} is jointly continuous and satisfies the occupation density formula

t 0 f (ξ(r))dr a.s. = R f (x)L ξ (x, t)dx, t ≥ 0, (2.1)
see Theorem 15 in [9,p.149]. Moreover, for any (F t )-stopping time τ , it is easy to identify that

inf x ≥ 0 : L ξ (x, τ ) = 0 a.s. = sup ξ(t) : t ∈ [0, τ ] . (2.2)
The process {L ξ (0, t) : t ≥ 0} is continuous and non-decreasing. This allows us to define the inverse local time [9, p.130], the process τ L ξ is a subordinator, killed at an independent exponential time if ξ is transient (b > 0), and its Laplace transform is of the form

τ L ξ := {τ L ξ (ζ) : ζ ≥ 0} at level 0 by τ L ξ (ζ) = ∞ if ζ > L ξ (0, ∞) and τ L ξ (ζ) := inf s ≥ 0 : L ξ (0, s) ≥ ζ , if ζ ∈ [0, L ξ (0, ∞)]. From Proposition 4 in
E exp -λ • τ L ξ (ζ) = exp -ζ/u λ (0) , λ > 0, ζ ≥ 0, (2.3) 
where u λ := {u λ (y) : y ∈ R} is the density of the λ-resolvent kernel of ξ. When b = 0, we have L ξ (0, ∞)

a.s. = ∞ and τ L ξ (ζ) < ∞ a.
s. When b > 0, the potential density u 0 is well-defined as the limit case λ = 0 for u λ . In this case, we consider the limit case λ → 0+ for (2.3) to get 

P L ξ (0, ∞) ≥ ζ = 1 -P τ L ξ (ζ) = ∞ = exp -ζ/u 0 (0) , which induces that L ξ (0, ∞) is
L a•ξ(θ•) a.s. = (aθ) -1 • L ξ (x/a, θt) : x ∈ R, t ≥ 0 and τ L a•ξ(θ•) (ζ) a.s. = θ -1 • τ L ξ (aθζ), ζ ≥ 0. (2.4)
Let {W (x) : x ∈ R} be the scale function of ξ, which is identically zero on (-∞, 0) and characterized on [0, ∞) as a strictly increasing function whose Laplace transform is given by

∞ 0 e -λx W (x)dx = 1 Φ(λ) , λ > 0. (2.5)
The scale function W is continuous on R and differentiable on (0, ∞) with derivative denoted as W ; see Theorem 8 in [9, p.194]. Applying the integration by parts to (2.5), we have

∞ 0 e -λx W (x)dx = ∞ 0 λe -λx W (x)dx = 1 b + cλ α , λ > 0. (2.6)
The Laplace transform of Mittag-Leffler function 4 yields that W has the representation

W (x) = c -1 x α-1 • E α,α -b/c • x α , x > 0.
3 Actually, these two equivalences hold for any Lévy process. 4 The Mittag-Leffler function Eα,α on R+ is defined by Eα,α(x) := ∞ n=0 x n Γ(α(n+1)) ; see [START_REF] Haubold | Mittag-Leffler functions and their applications[END_REF] for a precise definition and a survey of its properties, e.g.,

∞ 0 e -λx ax α-1 Eα,α(-a • x α )dx = a a + λ α , a, λ ≥ 0.
The smoothness of E α,α induces that W is infinitely differentiable on (0, ∞). When b = 0, we have E α,α (0) = 1/Γ(α) and

W (x) = x α c • Γ(α + 1) , W (x) = x α-1 c • Γ(α) , W (x) = (α -1)x α-2 c • Γ(α) , x > 0. (2.7)
When b > 0, the function bW is a Mittag-Leffler density function and 1-bW (x) → 0 as x → ∞. The properties of Mittag-Leffler distribution/density function; see [START_REF] Haubold | Mittag-Leffler functions and their applications[END_REF][START_REF] Mainardi | On some properties of the Mittag-Leffler function E α (-t α ), completely monotone for t > 0 with 0 < α < 1[END_REF][START_REF] Mathai | Special functions for applied scientists[END_REF], yield that the scale function W is Hölder continuous with index α. Moreover,

W (x) ∼ x α c • Γ(α + 1) , W (x) ∼ x α-1 c • Γ(α) , W (x) ∼ (α -1)x α-2 c • Γ(α) , as x → 0+, and 
W (x) ∼ 1 b - c • x -α b 2 • Γ(1 -α) , W (x) ∼ cα • x -α-1 b 2 • Γ(1 -α) , W (x) ∼ - cα(α + 1) • x -α-2 b 2 • Γ(1 -α) as x → ∞.
A direct consequence of these asymptotic properties and (2.7) is that uniformly in x > 0,

W (x) ≤ C • x α , |W (x)| ≤ C • x α-1 and |W (x)| ≤ C • x α-2 . (2.8)
By the mean-value theorem, it is easy to identify that uniformly in x, y > 0,

|∇ y W (x)| = |∆ y W (x -y)| ≤ C • x α ∧ |(x -y) + | α-1 y . (2.9)
In addition to the scale function, we will also need a Sonine pair (K, L K ) on (0, ∞) defined by

K(x) := x α-1 c • Γ(α) and L K (x) := c • x -α Γ(1 -α) , x > 0, (2.10) 
which satisfies the Sonine equation, i.e.,

K * L K = L K * K ≡ 1. (2.11)
In the theory of Volterra equations; see [START_REF] Gripenberg | Volterra Integral and Functional Equations[END_REF], the function L K is also said to be the resolvent of the first kind related to K and vice versa. When b > 0, a simple calculation shows that the function bW is the resolvent of the second kind corresponding to bK, which is usually introduced by means of the resolvent equation bW = bK -(bK) * (bW ).

(2.12)

The function bK is usually referred as the resolvent associated to bW . Convolving both sides of (2.12) by L K and then dividing them by b, we have

L K * W = W * L K = 1 -bW. (2.13)
Actually, this equality also holds when b = 0, since W = K in this case; see (2.7) and (2.10).

Main results

. We now formulate the main results for the local times of ξ at the stopping time τ L ξ (ζ) for a given value ζ > 0. For convenience, we write L ξ ζ for the process

{L ξ (x, τ L ξ (ζ)) : x ≥ 0} under P( • |τ L ξ (ζ) < ∞). Since τ L ξ (ζ) < ∞ a.
s. when b = 0, this conditional probability law turns to be P. When b > 0, the stopping time τ L ξ (L ξ (0, ∞)) is finite almost surely and equal to the last time that ξ hits 0. In this case, we are also interested in the process

L ξ ∞ := L ξ (x, ∞) : x ≥ 0 a.s. = L ξ x, τ L ξ (L ξ (0, ∞)) : x ≥ 0 , (2.14) 
under P. Let be an exponential random variable with mean u 0 (0), independent of N α (ds, dy, dz) and N 0 (dy, dz). Our first main theorem establishes SVEs for L ξ ζ and L ξ ∞ .

THEOREM 2.1. We have the following:

(1) For each ζ ≥ 0, the process L ξ ζ is a weak solution of (1.3).

(2) If b > 0, the process L ξ ∞ is a weak solution of (1.3) with ζ = .

(3) The weak uniqueness of non-negative solutions holds for (1.3).

REMARK 2.2. By the change of variables and Proposition A.1 with p = 2, there exists a constant C > 0 such that for any x ≥ 0,

x 0 ds ∞ 0 ∇ y W (x -s) 2 ν α (dy) = x 0 ds ∞ 0 ∇ y W (s) 2 ν α (dy) ≤ C • x α .
Taking expectations on both sides of (1.3) and then using Fubini's theorem along with (2.13), we have

E L ξ ζ (x) = E ∞ 0 ζ 0 ∇ y W (x)N 0 (dy, dz) = ζ ∞ 0 ∇ y W (x)ν α (y)dy = ζ ∞ 0 να (y)dy x (x-y) + W (s)ds = ζ • W * L K (x) = ζ 1 -bW (x) ≤ ζ, x ≥ 0. (2.15)
The SVI in (1.3) has finite quadratic variation and is well defined as an Itô integral; see [35, p.59-63].

REMARK 2.3. By the exponential formula for PRMs; see [9, p.8], we have for any λ ≥ 0,

E exp -λ ∞ 0 ζ 0 ∇ y W (x)N 0 (dy, dz) = exp -ζ ∞ 0 (1 -e -λ∇yW (x) )ν α (y)dy .
From (2.15) and the fact that ∇ y W (x) → 0 uniformly in y as x → 0, we have

E exp -λ ∞ 0 ζ 0 ∇ y W (x)N 0 (dy, dz) ∼ exp -ζλ ∞ 0 ∇ y W (x)ν α (y)dy → e -ζλ .
Thus the first term on the right side of (1.3) converges to ζ a.s. as x → 0+. We make the convention that it is equal to ζ a.s. when x = 0, which is consistent with the fact that L ξ ζ (0) a.s.

= ζ.

REMARK 2.4. By (2.15), the SVE (1.3) can be written as

L ξ ζ (x) = ζ 1 -bW (x) + ∞ 0 ζ 0 ∇ y W (x) N 0 (dy, dz) + x 0 ∞ 0 L ξ ζ (s) 0 ∇ y W (x -s) N α (ds, dy, dz), x ≥ 0, (2.16)
where N 0 (dy, dz) := N 0 (dy, dz) -να (y)dydz. Here the first term on the right side of this equality represents the average local time at level x. The second term can be interpreted as the perturbations caused by jumps up-crossing 0; the third term can be translated into the perturbations caused by jumps with initial positions above 0 but below x. More precisely, the convolution kernel ∇ y W (x -s) describes the impact of a jump with initial position s and size y on the local time at level x. Notice that ∇ y W (x -s) increases when x ∈ [s, s + y] and decreases as x → ∞. It would be sensible to consider the jump size of each jump as its life-length/residuallife during which it perturbs the local times directly. This interpretation is consistent with the genealogical interpretations in [START_REF] Forman | Uniform control of local times of spectrally positive stable processes[END_REF][START_REF] Lambert | Totally ordered measured trees and splitting trees with infinite variation[END_REF]. REMARK 2.5. Because of the delayed and smooth relaxation of its perturbations, the PRM N α (ds, dy, dz) fails to make solutions of (1.3) jump. This phenomena cannot be observed in Ito's SDEs driven by PRM, since the PRM releases its perturbations instantaneously that give raise to jumps in the solutions. Consequently, the continuity of driving noises is a necessary condition for the continuity of solutions of Ito's SDEs; see [35, Chapter III-IV] and [59, Chapter II-V].

REMARK 2.6. It is necessary to specify that the SVE (1.3) is beyond the scope of the existing literature, e.g. [START_REF] Abi Jaber | Weak existence and uniqueness for affine stochastic Volterra equations with L 1 -kernels[END_REF][START_REF] Abi Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF][START_REF] Abi Jaber | Affine Volterra processes[END_REF][START_REF] El Euch | The microstructural foundations of leverage effect and rough volatility[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes[END_REF][START_REF] Pardoux | Stochastic Volterra equations with anticipating coefficients[END_REF][START_REF] Protter | Volterra equations driven by semimartingales[END_REF]. More precisely, all SVEs studied in these literature are driven by finite-dimensional semimartingale and always can be written as

X(t) = H(t) + t 0 K(t, s, X s )dZ(t), t ≥ 0, (2.17)
where H is a given function, K is a d×k matrix-valued convolution kernel on R 2 + ×R and Z is a k-dimensional Itô's semimartingale whose differential characteristics are functions of X. Differently, the SVI in (1.3) is driven by an infinite-dimensional martingale; see [START_REF] Kurtz | Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case[END_REF] and Appendix C. Since the impact of time t on the convolution kernel ∇ y W (t) is tightly intertwined with that of mark y, one cannot write (1.3) into the form of (2.17). Consequently, it is difficult to prove the existence of solutions of (1.3) by using the approximation method used in [START_REF] Abi Jaber | Weak existence and uniqueness for affine stochastic Volterra equations with L 1 -kernels[END_REF][START_REF] Abi Jaber | Affine Volterra processes[END_REF] or the martingale problem theory developed in [START_REF] Abi Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF]. REMARK 2.7. Ito's SDEs with non-negative solutions have been widely studied in [START_REF] Bass | Stochastic differential equations driven by symmetric stable processes[END_REF][START_REF] Bertoin | Stochastic flows associated to coalescent processes. III. Limit theorems[END_REF][START_REF] Dawson | Skew convolution semigroups and affine Markov processes[END_REF][START_REF] Dawson | Stochastic equations, flows and measure-valued processes[END_REF][START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF] under two key conditions: (i) when solutions hit 0, the diffusion vanishes and the drift turns to be non-negative; (ii) solutions cannot jump into the negative half-line. In particular, it is the strong Markovianity that turns the state 0 to be a tripper or a reflecting boundary, which results in the existence of non-negative solutions. However, the convolution kernel in (1.3) results in the lack of (strong) Markovianity of the solutions and makes the standard stopping time method fail to prove the existence of non-negative solutions. Fortunately, thanks to Theorem 2.1, the existence of non-negative solutions of (1.3) follows directly from the non-negativity of L ξ ζ .

REMARK 2.8. The point 0 is an absorbing state 5 for the process L ξ ζ (and also L ξ ∞ ), i.e., once it hits 0, it will stay at 0 forever. Indeed, the equivalence (2.2) shows that conditioned on τ L ξ (ζ) < ∞,

τ 0 := inf x ≥ 0 : L ξ ζ (x) = 0 < ∞, a.s. and L ξ ζ (τ 0 + x) a.s. = 0, x ≥ 0.
Usually, the lack of Markovianity makes it difficult to obtain this property from the SVE (1.3). Even for the SVE (2.17), the absorbing states and polarity are also unclear up to now.

The SVE (1.3) makes it possible to study the local times of ξ by using tools and methods from stochastic analysis, e.g., stochastic integral inequalities, stochastic Fubini theorem and martingale problem theory. To illustrate this, the next main theorem proves the Hölder continuity of L ξ ζ by using the Kolmogorov continuity theorem and also provides a uniform upper bound for all moments of the Hölder coefficients by using the Garsia-Rodemich-Rumsey inequality. For κ ∈ (0, 1] and x > 0, the κ-Hölder coefficient of a Hölder continuous function f on [0, x] is defined by

f C 0,κ x := sup 0≤y<z≤x |f (y) -f (z)| |y -z| κ .
THEOREM 2.9 (Hölder continuity). For each ζ ≥ 0, we have the following:

(1) The process L ξ ζ is Hölder-continuous of any order strictly less than α/2. (2) For each κ ∈ (0, α/2) and p ≥ 0, there exists a constant C > 0 such that for any x ≥ 0,

E L ξ ζ p C 0,κ x ≤ C • (1 + x) p(α-κ) .
5 Although the two terminologies absorbing state and polarity are initially introduced for Markov processes, it is sensible to use them to describe the analogous phenomena in other stochastic processes. Precisely, a state in a process is said to be an absorbing state if once it is entered, it is impossible to leave. A set is said to be a polar set for a process if it cannot be entered in finite time.

As a direct consequence of this theorem, we can establish a maximal inequality for L ξ ζ . In detail, for each κ ∈ (0, α/2) and p ≥ 0, we have uniformly in x ≥ 0, sup

y∈[0,x] |L ξ ζ (y) -L ξ ζ (0)| p ≤ L ξ ζ p C 0,κ x • x pκ , a.s.
By the power mean inequality 6 and Theorem 2.9,

E sup y∈[0,x] |L ξ ζ (y)| p ≤ C • ζ p + C • E sup y∈[0,x] |L ξ ζ (y) -L ξ ζ (0)| p ≤ C • ζ p + C • E L ξ ζ p C 0,κ x • x pκ ,
for some constant C depending only on p. This yields the following corollary immediately.

COROLLARY 2.10 (Maximal inequality). For each ζ > 0 and p ≥ 0, there exists a constant C > 0 such that for any x ≥ 0,

E sup y∈[0,x] L ξ ζ (y) p ≤ C • (1 + x) pα .
REMARK 2.11. By applying the discretization technique to the occupation measures of stable Lévy processes, Boylan [START_REF] Boylan | Local times for a class of Markoff processes[END_REF] proved the uniform Hölder regularity of their local times in both the time and spatial directions. Later, Barlow [4] constructed the explicit modulus of continuity and gave the optimal Hölder exponent. Recently, Forman et al. [START_REF] Forman | Uniform control of local times of spectrally positive stable processes[END_REF] proved the finiteness of all moments of the Hölder coefficient in the case of b = 0. The novelties of our results are in the uniform upper bound for all moments of the Hölder coefficient and the maximal inequality for the local times in the spatial direction.

Because of the Markovanity and martingale property, Brownian local times are tractable and their Laplace transform can be written as an exponential affine function of the initial state, in terms of the solution of a Riccati equation. By contrast, the lack of Markovanity and martingale property makes the local times of stable processes quite intractable. As another example that illustrates the strength of the SVE (1.3), the third main theorem establishes an explicit representation of Laplace functionals of L ξ ζ . Let A ∞ be the space of all functions f on (0, ∞) satisfying that sup x∈(0,T ] x 1-α |f (x)| < ∞ for any T > 0. A continuous function v g λ on (0, ∞) is said to be a A-global solution of the nonlinear-VIE (1.4) if v g λ ∈ A ∞ and satisfies (1.4) on (0, ∞).

THEOREM 2.12 (Laplace functionals). For each λ ≥ 0 and g ∈ L ∞ (R + ; R + ), we have for x ≥ 0,

E exp -λ • L ξ ζ (x) -g * L ξ ζ (x) = exp -ζ ∞ 0 1 -exp - x (x-y) + v g λ (s)ds να (y)dy , (2.18)
where v g λ is the unique A-global solution of (1.4).

REMARK 2.13. By comparing (2.18) with (2.1) in [START_REF] Dawson | Skew convolution semigroups and affine Markov processes[END_REF] or (2.2) in [START_REF] Duffie | Affine processes and applications in finance[END_REF], we see that the process L ξ ζ enjoys the analogue of the affine property of affine Markov processes. In addition, this property also has been observed in the rough Heston model that is defined by a SVE driven by Brownian motion; see [START_REF] El Euch | The characteristic function of rough Heston models[END_REF]. Later, Abi Jaber et al. [START_REF] Abi Jaber | Weak existence and uniqueness for affine stochastic Volterra equations with L 1 -kernels[END_REF][START_REF] Abi Jaber | Affine Volterra processes[END_REF] considered a class of SVEs of the form (2.17) with solutions being affine and also named them affine Volterra processes. By using the resolvent equations (2.12) and (2.13), the last main result in this work provides equivalent representations of the SVE (1.3) and the nonlinear-VIE (1.4), which help a lot to clarify the similarities and differences between the process L ξ ζ and CB-processes; we refer to [START_REF] Li | Continuous-state branching processes with immigration[END_REF] for a review on CB-processes.

THEOREM 2.14. The SVE (1.3) is equivalent to

L ξ ζ (x) = ζ -b • K * L ξ ζ (x) + ∞ 0 ζ 0 x (x-y) + K(r)dr N 0 (dy, dz) + x 0 ∞ 0 L ξ ζ (s) 0 x-s (x-s-y) + K(r)dr N α (ds, dy, dz), x ≥ 0, (2.19)
and the nonlinear-VIE (1.4) is equivalent to

v g λ (x) = λK(x) + g * K(x) -b • v g λ + V α • v g λ * K(x), x > 0. (2.20)
By (2.10) and the Sonine equation (2.11), the nonlinear-VIE (2.20) can be written into a fractional differential equation. Indeed, denote by I α c and D α c the Riemann-Liouville fractional integral and derivative operators of order α modified by the constant c > 0 respectively. They act on a measurable function f according to

I α c f (x) := x 0 (x -s) α-1 c • Γ(α) f (s)ds and D α c f (x) := d dx x 0 c(x -s) -α Γ(1 -α) f (s)ds, x ≥ 0.
Convolving both sides of (2.20) by L K and then using (2.11), we have

L K * v g λ (x) = λ + x 0 g(s)ds - x 0 b • v g λ + V α • v g λ (s)ds, x ≥ 0.
Notice that

I α c f = K * f and D α c v g λ = d dx (L K * v g λ ).
A simple calculation yields the next corollary.

COROLLARY 2.15. The nonlinear-VIE (1.4) is equivalent to 

D α c v g λ = g -b • v g λ -V α • v g λ with I 1-α c v g λ (0) = λ. (2.
∂ ∂t v λ = -av λ - ς 2 2 |v λ | 2 - ∞ 0 e -yvλ -1 + yv λ ν 1 (dy) with v λ (0) = λ;
see [16, Section 3], we see that the processes L ξ ζ not only owns an evolution mechanism similar to that of Y ζ , but also enjoys, formally at least, the striking analogue 8 of the branching property. Moreover, it is same to Y ζ that the point 0 is an absorbing state for L ξ ζ ; see Remark 2.8. In conclusion, the SVE (1.3) defines a fully novel non-Markov CB-process whose degree of Hölder regularity is less than that of Feller branching diffusion; see Theorem 2.9. Drawing from [START_REF] El Euch | The characteristic function of rough Heston models[END_REF][START_REF] Jaisson | Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes[END_REF], we may refer L ξ ζ as a rough CB-process.

REMARK 2.17. The CB-process defined by (2.22) can be reconstructed as the scaling limit of discrete Galton-Watson branching processes. The life-length of individuals uniformly tends to 0 after rescaling and jumps in (2.22) result from the simultaneous births of infinite offsprings; readers may refer to [START_REF] Li | Continuous-state branching processes with immigration[END_REF] for details. In contrast, the variable y in (1.3) is positive and can be interpreted as the life-length of each individual during which it gives birth to its children randomly. This slows down the extinction of the population. In detail, the survival probability of the CB-process Y ζ deceases to 0 at an exponential rate when a > 0, i.e., P(Y ζ (t) > 0) ∼ C • e -at as t → ∞. While, the survival probability of the rough CB-process L ξ ζ decreases to 0 at a power rate when b > 0; see the supplementary material [START_REF] Xu | Asymptotic results for rough continuous-state branching processes[END_REF]. 7 Here a ∈ R, ς ≥ 0, B1(ds, dz) is a Gaussian white noise on (0, ∞) 2 with intensity dsdz, N1(ds, dy, dz) is a PRM on (0, ∞) 3 with intensity dsν1(dy)dz and ν1(dy) is a σ-finite measure on (0, ∞) satisfying that

∞ 0 (1 ∧ y 2 )ν1(dy) < ∞. 8 For ζ1, ζ2 > 0, assume L ξ ζ 1 and L ξ ζ 2 are two independent solutions of (1.3) with ζ = ζ1 and ζ = ζ2 respectively, we have L ξ ζ 1 + L ξ ζ 2
is the unique weak non-negative solution of (1.3) with ζ = ζ1 + ζ2.

Local times of compound Poisson processes.

In this section, we first introduce some properties of local times of compound Poisson processes with negative drift and then establish a SVE for them. The proofs are elementary and will be merely sketched.

For two constants β, γ > 0 and a probability law ν(dx) on (0, ∞) with finite mean m ν , let Y := {Y (t) : t ≥ 0} be a compound Poisson process on (Ω, F , F t , P) with a drift -β, arrival rate γ and jump-size distribution ν. It is a Lévy process with bounded variation and Lévy measure γ • ν(dx). Its Laplace exponent is of the form

ϕ(λ) := βλ + γ ∞ 0 (e -λx -1)ν(dx) = λ β -γ ∞ 0 e -λx ν(x)dx , λ ≥ 0, where ν(x) := ν([x, ∞))
is the tail distribution of ν. The function ϕ is zero at zero and tends to ∞ at infinity. Moreover, it is infinitely differentiable and strictly convex on (0, ∞). In particular, 

ϕ (0) = -E[Y (1)] = β -γ • m ν and hence ϕ is increasing on [0, ∞) if ϕ (0) ≥ 0. The process Y drifts to -∞, ∞ or is recurrent according as ϕ (0) > 0, < 0 or = 0. Denote by τ + Y the first passage time of Y in [0, ∞), i.e., τ + Y := inf t > 0 : Y (t) ≥ 0 . Actually,
ν * (dx) := 1 {x>0} • ν(x) m ν • dx. PROPOSITION 3.1. If ϕ (0) ≥ 0, then Y (τ + Y ) under P( • |τ + Y < ∞) is distributed as ν * . Let L Y := {L Y (x, t) : x ∈ R, t ≥ 0}
β : k = 1, 2, • • • } and L Y a.s. = β -1 • #{s ∈ (0, t] : Y (s) = x} : x ∈ R, t ≥ 0 . We write L Y k/β and L Y, * k/β for the process {L Y (x, τ L Y (k/β)) : x ≥ 0} under P( • |τ L Y (k/β) < ∞) and P ν * ( • |τ L Y (k/β) < ∞) respectively. Notice that sample paths on [0, τ + Y ] make no contribution to the local times {L Y (x, τ L Y (k/β)) : x ≥ 0, k ≥ 1}.
The next proposition can be proved immediately by using Proposition 3.2, the strong Markov property and independent, stationary increments of Y .

PROPOSITION 3.3. If ϕ (0) ≥ 0, then L Y k/β d = L Y, * k/β d = k i=1 L Y, * 1/β,i for any k ≥ 1, where {L Y, * 1/β,i : i = 1, 2, • • • } is a sequence of i.i.d. copies of L Y, * 1/β .
3.1. Branching representation. Lambert [START_REF] Lambert | The contour of splitting trees is a Lévy process[END_REF] established a one-to-one correspondence between the local times of compound Poisson processes with drift -1 and homogeneous, binary CMJ-processes. More precisely, he observed that the jumping contour process of a homogeneous, binary CMJ-tree starting from one ancestor is a compound Poisson process with a drift -1; conversely, the local times on R + of a compound Poisson process with drift -1 stopped upon hitting 0 are equal in distribution to a homogeneous, binary CMJ-process starting from one ancestor. In this section, we extend this connection slightly to the case of compound Poisson processes with arbitrary negative drift.

Recall the triple (β, γ, ν) with β > 0. We consider a binary CMJ-process on (Ω, F , F t , P) defined by the following three properties: (P1) There are k ∈ Z + ancestors at time 0 with residual life distributed as ν * .

(P2) Offsprings have a common life-length distribution ν.

(P3) Each individual gives birth to its children according to a Poisson process with rate γ/β.

Denote by I k the collection of all individuals in the population. Each individual x ∈ I k is endowed with a pair (σ x , x ) that represents its birth time and life length. For convention, if x is an ancestor, we assume σ x = 0 and x equals to its residual life. For t ≥ 0, let I k (t) := {x ∈ I k : 0 ≤ t -σ x < x } and #I k (t) be the collection and number of all individuals alive at time t respectively.

LEMMA 3.4. If ϕ (0) ≥ 0, then the process L Y k/β is equal in distribution to {β -1 • #I k (βt) : t ≥ 0}. PROOF. Let Y β := {Y (t/β) : t ≥ 0}, which is a compound Poisson process with a triple (1, γ/β, ν), local times L Yβ and the right-inverse local time τ L Yβ at level 0. Let L Yβ k be the process {L Yβ (x, τ L Yβ (k)) : x ≥ 0} under P( • |τ L Yβ (k) < ∞). Theorem 3.2 in [46] asserts that L Yβ k d = #I k . By (2.4
) and Proposition 3.3, we have

L Y k/β d = β -1 • L Yβ k (β•) d = β -1 • #I k (β•).

Stochastic Volterra representation.

In this section, we establish a SVE for the process L Y k/β by linking the preceding CMJ-process to a MHP; see Appendix B. It also can be obtained by using the connection between general branching processes and multivariate MHPs established in [START_REF] Xu | Diffusion approximations for self-excited systems with applications to general branching processes[END_REF]Section 4].

As a preparation, we first clarify the genealogy of the CMJ-process. Denote by 0,j the residual life of the j-th ancestor at time 0, which is distributed as ν * . We sort all offsprings by their birth times. Associated to the sequence {(σ i , i

) : i = 1, 2, • • • } we define a (F t )-random point measure N ν (ds, dy) on (0, ∞) 2 by N ν (ds, dy) := ∞ i=1 1 {σi∈ds, i∈dy} .
By the branching mechanism, a child will be born at time t at the rate γ/β • #I k (t-). Thus the random point measure N ν (ds, dy) has a

(F t )-intensity γ/β • #I k (s-) • ds • ν(dy). Notice that #I k has the representation #I k (t) = k j=1 1 { 0,j >t} + σi≤t 1 { i>t-σi} , t ≥ 0.
Here the two sums on the right side of this equality represent the numbers of ancestors and offsprings alive at time t respectively. Similarly as in Appendix B, we can write the foregoing equation into

#I k (t) = k j=1 1 { 0,j >t} + t 0 ∞ 0 1 {y>t-s} N ν (ds, dy), t ≥ 0. (3.1)
Hence N ν (ds, du) is a MHP on (0, ∞) 2 . Before applying Proposition B.1 to establish a SVE for the process L Y k/β , we need to introduce two important quantities related to the triple (β, γ, ν). Let R ν be the resolvent associated to the function γ/β • ν defined by the unique solution of

R ν = γ β • ν + γ β • ν * R ν . (3.2)
Actually, the function R ν can be interpreted as the mean reproduction rate of an individual and its descents. In addition, we introduce a two-parameter function on

R 2 + R(t, y) = 1 {y>t} + t 0 R ν (t -s) • 1 {y>s} ds, t, y ≥ 0, (3.3)
to describe the mean reproduction rate of an individual with life-length y and its descents; we refer to [65, Section 2] for more detailed explanations. THEOREM 3.5. If ϕ (0) ≥ 0, we have for k ≥ 1, the process L Y k/β is equal in distribution to the unique solution of the SVE

Z k (t) = 1 β k j=1 1 { 0,j >βt} + t 0 R Λ β(t -s) k j=1 1 { 0,j >βs} ds + t 0 ∞ 0 Zk(s-) 0 1 β R β(t -s), y N (ds, dy, dz), t ≥ 0, (3.4)
where N (ds, dy, dz) is a compensated PRM on (0, ∞) 3 with intensity βγ • dsν(dy)dz.

PROOF. From (3.1) and Proposition B.1, the population process

#I k (•) is the unique solution of #I k (t) = k j=1 1 { 0,j >t} + t 0 R ν (t -s) k j=1 1 { 0,j >s} ds + t 0 ∞ 0 #Ik(s-) 0 R(t -s, y) N ν (ds, dy, dz),
where N ν (ds, dy, dz) is compensated PRM on (0, ∞) 3 with intensity γ/β • dsν(dy)dz. By the change of variables, the process β -1 • #I k (β•) is the unique solution to (3.4) with N (ds, dy, dz) = N ν (β • ds, dy, β • dz) and the desired result follows directly from Lemma 3.4.

Stochastic Volterra equation for L ξ

ζ . In this section, we prove the first two claims in Theorem 2.1.

By the self-similarity of stable processes and their local times; see (2.4), the next lemma shows that it suffices to prove them for a subclass of spectrally positive stable processes. It will help a lot to simplify our proofs. 

∈ (0, 1) × [0, ∞) × {c 0 }, then it holds for all ξ with (α, b, c) ∈ (0, 1) × [0, ∞) × (0, ∞).
PROOF. For any ξ with parameters (α, b, c) ∈ (0, 1) × [0, ∞) × (0, ∞), its self-similarity induces that aξ with a = (c 0 /c) 1/(1+α) is a spectrally positive stable process with parameters (α, ab, c 0 ) and Lévy measure

ν α (a -1 • dy) = c 0 /c • ν α (dy). For ζ > 0, by Theorem 2.1(1) the process L aξ ζ is a weak solution to L aξ ζ (x) = ∞ 0 ζ 0 ∇ y W a (x)N 0,a (dy, dz) + x 0 ∞ 0 L aξ ζ (s) 0 ∇ y W a (x -s) N a (ds, dy, dz), x ≥ 0,
where W a is the scale function of aξ, N 0,a (dy, dz) is PRM on (0, ∞) 2 with intensity c 0 /c • να (y)dydz and N a (ds, dy, dz) is a compensated PRM on (0, ∞) 3 with intensity c 0 /c • dsν α (dy)dz. By (2.5) as well as the continuity of W and W a , we have W (x) = aW a (ax) for any x ∈ R. Application of (2.4) gives that L ξ ζ a.s.

=

aL aξ ζ/a (a•). Taking these back into the preceding SVE and then using the change of variables,

L ξ ζ (x) = ∞ 0 ζ 0 ∇ y W (x)N 0,a (a • dy, a -1 • dz) + x 0 ∞ 0 L ξ ζ (s) 0 ∇ y W (x -s) N a (a • ds, a • dy, a -1 • dz).
Notice that ν α (a • dy) = a -α-1 ν α (dy); see (1.2). The PRM N 0,a (a • dy, a -1 • dz) has intensity να (y)dydz and the compensated PRM N a (a • ds, a • dy, a -1 • dz) has intensity dsν α (dy)dz. Thus L ξ ζ is a weak solution of (1.3) and Theorem 2.1(1) holds for ξ. Let us consider a sequence of compound Poisson processes with negative drift and positive jumps, whose local times give a good approximation for the process L ξ ζ . Denote by Λ the Pareto-II distribution on R + with location 0 and shape α + 1, i.e.,

Λ(dx) := (α + 1)(1 + x) -α-2 dx with tail-distribution Λ(x) = (1 + x) -α-1 , x ≥ 0. (4.1)
For n ≥ 1, let {Y (n) (t) : t ≥ 0} be a compound Poisson process with a drift -1, arrival rate γ n ∈ (0, α), jumpsize distribution Λ, Laplace exponent ϕ (n) and local times L Y (n) . We now consider the behavior of Y (n) and L Y (n) at a large time scale under the following condition.

CONDITION 4.2. Assume that n α (1 -γ n /α) → b as n → ∞.
A routine computation, along with this condition, induces that the rescaled Laplace exponent

Φ (n) := {n 1+α ϕ (n) (λ/n) : λ ≥ 0} converges locally uniformly to Φ on R + as n → ∞. By Corollary 4.3 in [36, p.440], the rescaled compound Poisson process ξ (n) := {n -1 • Y (n) (n 1+α t) : t ≥ 0} converges weakly to ξ in D([0, ∞); R) as n → ∞. Let L ξ (n)
be the local times of ξ (n) satisfying (2.1) and τ L ξ (n) the right-inverse local time at level 0. Similarly, we also write

L ξ (n) ζ for the process {L ξ (n) (x, τ L ξ (n) (ζ)) : x ≥ 0} under P( • |τ L ξ (n) (ζ) < ∞).
The following convergence result comes from Theorem 2.4 in [START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF].

LEMMA 4.3. For ζ > 0, we have L ξ (n) ζ → L ξ ζ weakly in D([0, ∞); R + ) as n → ∞.
For n ≥ 1, let Z 

L ξ (n) ζ a.s. = n -α • L Y (n) [n α ζ] (nx) : x ≥ 0 d = n -α • Z (n) [n α ζ] (nt) : t ≥ 0 =: X (n) ζ (4.2)
and hence

X (n) ζ → L ξ ζ weakly in D([0, ∞); R + ) as n → ∞; see Lemma 4.3.
Clearly, Theorem 2.1(1) can be proved by characterizing the cluster points of {X

(n) ζ } n≥1 as weak solutions of (1.3). Let R (n) Λ and R (n) be the resolvent associated to the tail-distribution Λ defined as in (3.2)-(3.3) with β = 1, γ = γ n and ν = Λ, i.e., R (n) Λ (t) = R (n) (t, y) = 0 if t ≤ 0 or y ≤ 0 and for t, y ≥ 0, R (n) Λ (t) = γ n Λ(t) + γ n Λ * R (n) Λ (t), (4.3) R (n) (t, y) = 1 {y>t} + t 0 R (n) Λ (t -s) • 1 {y>s} ds. (4.4)
By (4.2), Theorem 3.5 and the change of variables, the process

X (n) ζ satisfies the SVE X (n) ζ (t) = 1 n α [n α ζ] i=1 1 { 0,i>nt} + nt 0 R (n) Λ (nt -s) • 1 n α [n α ζ] i=1 1 { 0,i>s} ds + t 0 ∞ 0 X (n) ζ (s-) 0 1 n α R (n) n(t -s), ny N (n) (n • ds, n • dy, n α • dz), t ≥ 0, (4.5)
where

N (n) (n • ds, n • dy, n α • dz) is a compensated PRM on (0, ∞) 3 with intensity n 1+α γ n • ds • Λ(n • dy) • dz. Here 0,i is distributed as the size-biased distribution of Λ Λ * (dx) := α Λ(x)dx = α(1 + x) -α-1 dx with tail-distribution Λ * (x) := (1 + x) -α , x ≥ 0. (4.6)
4.2. Proofs for Theorem 2.1(1)- [START_REF] Abi Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF]. In order to make the proofs much easier to be understood, we offer an intuitive description on how to derive the convergence of the SVE (4.5) to the SVE (1.3). The following auxiliary lemmas will be proved in Section 4.3.

We start the asymptotic analysis from the first two terms on the right side of (4.5). Denote by X (n) ζ,0 (t) their sum. Let M (R + ) be the space of all σ-finite measures on R + endowed with the topology of weak convergence and

M p (R + ) ⊂ M (R + ) the space of all Radon point measures on R + . Let N (n)
ζ (dy) be a finite point measure on (0, ∞) defined by

N (n) ζ (dy) := [n α ζ] i=1 1 { 0,i/n∈dy} .
From this and the change of variables, we can write

X (n) ζ,0 into X (n) ζ,0 (t) = ∞ 0 1 {y>t} n α + t 0 n 1-α R (n) Λ (n(t -s)) • 1 {y>s} ds N (n) ζ (dy), t ≥ 0.
Obviously, the convergence of

X (n) ζ,0 relies on the asymptotic behavior of {n 1-α R (n) Λ (nt) : t ≥ 0} and N (n) ζ .
LEMMA 4.4. We have

• 0 n 1-α R (n) Λ (ns)ds u.c. → W as n → ∞.
Notice that n α P( 0,i /n ∈ dy) → αy -α-1 dy = να (y)dy vaguely in M (R + ). The next proposition follows directly from the basic convergence theorem of empirical measures; see Theorem 5.3 in [61, p.138]. PROPOSITION 4.5. We have

N (n) ζ (dy) → N ζ (dy) := N 0 (dy, [0, ζ]) weakly in M p (R + ) as n → ∞.
We start to consider the convergence of the SVI in (4.5). By (4.4),

n -α R (n) (nt, ny) = n -α 1 {y>t} + t 0 n 1-α R (n) Λ (n(t -s))1 {y>s} ds, t, y ≥ 0.
Clearly, the first term on the right side of this equality vanishes uniformly in t, y ∈ R as n → ∞. Additionally, using the change of variable to the second term,

t 0 n 1-α R (n) Λ n(t -s) 1 {y>s} ds = t (t-y) + n 1-α R (n) Λ (ns)ds.
By Lemma 4.4 and the fact that W (x) = 0 if x < 0, it can be well approximated by W (t) -W (t -y) = ∇ y W (t). Thus the SVI in (4.5) can be well approximated by

M (n) (t) := t 0 ∞ 0 X (n) ζ (s-) 0 ∇ y W (t -s) N (n) (n • ds, n • dy, n α • dz)
with the error denoted as ε (n) (t). By the preceding analysis and notation, we can write the SVE (4.5) into

X (n) ζ (t) = ε (n) (t) + X (n) ζ,0 (t) + M (n) (t), t ≥ 0. (4.7)
As the last preparation, the next two lemmas establish some convergence results for {M (n) } n≥1 and {ε (n) } n≥1 . LEMMA 4.6. The sequence

{M (n) } n≥1 is C-tight. LEMMA 4.7. We have ε (n) + X (n) ζ,0 → X ζ,0 weakly in D([0, ∞), R) as n → ∞, where X ζ,0 (t) := ∞ 0 ∇ y W (t)N ζ (dy) = ∞ 0 ζ 0 ∇ y W (t)N 0 (dy, dz), t ≥ 0. (4.8)
PROOF FOR THEOREM 2.1(1). Corollary 3.33(b) in [36, p.353], together with Lemma 4.3, 4.6 and 4.7, yields the C-tightness of the sequence {(X

(n) ζ , ε (n) + X (n) ζ,0 , M (n) )} n≥1 . Additionally, if X (n) ζ , ε (n) + X (n) ζ,0 , M (n) → X ζ , X ζ,0 , M , (4.9)
as n → ∞ in the sense of finite-dimensional distributions, where [36, p.339] and the continuous mapping theorem,

M (t) := t 0 ∞ 0 Xζ(s) 0 ∇ y W (t -s) N α (ds, dy, dz), t ≥ 0, (4.10) then Theorem 13.1 in [11, p.139] implies that (X (n) ζ , ε (n) + X (n) ζ,0 , M (n) ) converges weakly to (X ζ , X ζ,0 , M ) in D([0, ∞); R 3 ). By Proposition 2.4 in
sup t∈[0,T ] X ζ (t) -X ζ,0 (t) -M (t) d = lim n→∞ sup t∈[0,T ] X (n) ζ (t) -ε (n) (t) -X (n) ζ,0 (t) -M (n) (t) a.s. = 0, for any T ≥ 0. In conclusion, we have X ζ a.s. = X ζ,0 + M and hence X ζ is a weak solution of the SVE (1.3).
To finish this proof, it remains to prove the finite-dimensional convergence (4.9). It follows if for any d ≥ 1 and

0 ≤ t 1 < • • • < t d , the 3d-dimensional random variable Z (n) d := X (n) ζ (t 1 ), ε (n) (t 1 ) + X (n) ζ,0 (t 1 ), M (n) (t 1 ), • • • , X (n) ζ (t d ), ε (n) (t d ) + X (n) ζ,0 (t d ), M (n) (t d ) converges in distribution to Z d := (X ζ (t 1 ), X ζ,0 (t 1 ), M (t 1 ), • • • , X ζ (t d ), X ζ,0 (t d ), M (t d )). For i ∈ {1, . . . , d} and t ≥ 0, let M (n) i (t) := t 0 ∞ 0 X (n) ζ (s-) 0 ∇ y W (t i -s) N (n) (n • ds, n • dy, n α • dz), (4.11) M i (t) := t 0 ∞ 0 Xζ(s) 0 ∇ y W (t i -s) N α (ds, dy, dz). (4.12)
Similarly as in Remark 2.2, we can identify that both M (n) i and M i are well-defined and local martingales. Notice that

M (n) i (t i ) a.s. = M (n) (t i ) and M i (t i ) a.s. = M (t i ) for i = 1, • • • , d. Then Z (n) d d = X (n) ζ (t 1 ), ε (n) (t 1 ) + X (n) ζ,0 (t 1 ), M (n) 1 (t 1 ), • • • , X (n) ζ (t d ), ε (n) (t d ) + X (n) ζ,0 (t d ), M (n) d (t d ) , Z d d = X ζ (t 1 ), X ζ,0 (t 1 ), M 1 (t 1 ), • • • , X ζ (t d ), X ζ,0 (t d ), M d (t d ) .
By the continuity of W and the fact that N α ({t}, R 2 + ) a.s.

= 0 for any t > 0, the set {t ≥ 0 :

P(|Z d (t) -Z d (t-)| = 0) > 0} is null. From Proposition 3.14 in [36, p.349], we have Z (n) d d → Z d if X (n) ζ , ε (n) + X (n) ζ,0 , M (n) 1 , • • • , M (n) d → X ζ , X ζ,0 , M 1 , • • • , M d , weakly in D([0, ∞), R 2+d ). (4.13)
We start to prove (4.13) by using the weak convergence results established in [START_REF] Kurtz | Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case[END_REF] for Itô's stochastic integrals driven by infinite-dimensional semimartingale; see Appendix C. Let να (dy, dz) := ν α (dy)dz be a σ-finite measure on R 2 + and L 2 (ν α ) the collection of all functions on R 2 + that are square-integrable with respect to να .

For n ≥ 1 and t > 0, let N (n) (t) := N (n) ((0, nt], n • dy, n α • dz) and N α (t) := N α ((0, t], dy, dz), which are two standard L 2 (ν α ) # -martingales. We can write (4.11) and (4.12) into

(M (n) 1 (t), • • • , M (n) d (t)) = F (X (n) ζ , -) • N (n) (t) and (M 1 (t), • • • , M d (t)) = F (X ζ , -) • N α (t),
where the function

F : D([0, ∞); R + ) × R + → (L 2 (ν)) d is defined by F (x, s) := ∇ y W (t 1 -s), • • • , ∇ y W (t d -s) • 1 {0<z≤x(s-)} .
From Condition 4.2 and Theorem 2.7 in [START_REF] Kurtz | Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case[END_REF], we have γ n n α+1 Λ(n • dy) → ν α (dy) vaguely and hence

N (n) ⇒ N α as n → ∞.
Similarly as in the proof of Lemma 4.9 in [START_REF] Horst | The microstructure of stochastic volatility models with self-exciting jump dynamics[END_REF], we can prove that the sequence of 

L 2 (ν) # - martingales { N (n) } n≥1 is
X (n) ζ , ε (n) + X (n) ζ,0 , F (X (n) ζ , -), N (n) ⇒ X ζ , X ζ,0 , F (X ζ , -), N α .
By Theorem 4.2 or 5.5 in [START_REF] Kurtz | Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case[END_REF], there exists a filtration such that (X ζ , Ñα ) is adapted and 

X (n) ζ , ε (n) + X (n) ζ,0 , F (X (n) ζ , -), N (n) , F (X (n) ζ , -) • N (n) ⇒ X ζ , X ζ,0 , F (X ζ , -), N α , F (X ζ , -) • N α , as n → ∞,
L ξ (ζ) < ∞, the two random elements L ξ (•, τ L ξ (ζ)
) and are independent. Hence 

P L ξ (•, τ L ξ (ζ)) ∈ A, ∈ dζ|τ L ξ (ζ) < ∞ = P L ξ (•, τ L ξ (ζ)) ∈ A|τ L ξ (ζ) < ∞)P ∈ dζ|τ L ξ (ζ) < ∞ = P L ξ ζ ∈ A P ∈ dζ| > ζ .
P L ξ ∞ ∈ A = P L ξ (•, τ L ξ (L ξ (0, ∞))) ∈ A = ∞ 0 P L ξ (•, τ L ξ (ζ)) ∈ A, L ξ (0, ∞) ∈ dζ = ∞ 0 P L ξ (•, τ L ξ (ζ)) ∈ A, τ L ξ (ζ) < ∞, ∈ dζ = ∞ 0 P τ L ξ (ζ) < ∞ P L ξ (•, τ L ξ (ζ)) ∈ A, ∈ dζ|τ L ξ (ζ) < ∞ = ∞ 0 P > ζ P L ξ ζ ∈ A P ∈ dζ| > ζ = ∞ 0 P L ξ ζ ∈ A P ∈ dζ .
Hence the process L ξ ∞ is a weak solution of (1.3) with ζ = . 

∞ 0 e -λx Λ(x)dx, L Λ * (λ) := ∞ 0 e -λx Λ * (dx), L R (n) Λ (λ) := ∞ 0 e -λx R (n) Λ (x)dx, λ ≥ 0.
R (n) Λ (t) ≤ C • 1 + t α-1 . (4.15) PROOF. Let R Λ be the resolvent associated to α Λ, i.e., R Λ = α Λ + α Λ * R Λ . It is bounded and completely monotone with R Λ (0) = α. It is easy to identify that R (n) Λ and R Λ have the representations R (n) Λ = ∞ k=1 (γ n • Λ) * k and R Λ = ∞ k=1 (α • Λ) * k .
Here

f * k is the k-th convolution of f . Since γ n ≤ α, we have R (n) Λ (t) ≤ R Λ (t) uniformly in n ≥ 1 and t ≥ 0.
Let RΛ := 1 -R Λ /α for t ≥ 0, which is a distribution function on R + . Using the integration by parts,

∞ 0 e -λt d RΛ (t) = λ ∞ 0 e -λt RΛ (t)dt = λ ∞ 0 e -λt [1 -R Λ (t)/α]dt = 1 - λ α L RΛ (λ), (4.16)
where L RΛ denotes the Laplace transform of R Λ . Taking Laplace transforms of both sides of

R Λ = α Λ + α Λ * R Λ , we have L RΛ (λ) = αLΛ(λ) 1 + L RΛ (λ) and L RΛ (λ) = αLΛ(λ) 1 -αLΛ(λ) , λ > 0.
It is obvious that the numerator goes to 1 as λ → 0+. Moreover, a simple calculation with (4.1) induces that ∞ t α Λ(s)ds = (1 + t) -α for t ≥ 0. By Karamata's Tauberian theorem 9 ; see Theorem 8.1.6 in [12, p.333], we have 1 -αLΛ(λ) ∼ Γ(1 -α)λ α and L RΛ (λ) ∼ λ -α /Γ(1 -α) as λ → 0+. Taking these back into (4.16),

1 - ∞ 0 e -λt d RΛ (t) ∼ λ 1-α αΓ(1 -α) .
Using Karamata's Tauberian theorem again, we have as t → ∞,

1 -RΛ (t) ∼ t α-1 αΓ(α)Γ(1 -α) and hence R Λ (t) = α(1 -RΛ (t)) ∼ t α-1 Γ(α)Γ(1 -α) .
Consequently, there exists a constant C > 0 such that R

(n) Λ (t) ≤ R Λ (t) ≤ C(1 + t) α-1 for any t ≥ 0.
PROPOSITION 4.9. For p > 1 + α, there exists a constant C > 0 such that for any t ≥ 0 and n ≥ 1, 1) . (4.17) PROOF. By (4.4) and the power mean inequality; see footnote 5, the term on the left side of (4.17) can be bounded by the sum of the following four terms

n α+1 t 0 ds ∞ 0 n -α R (n) (ns, ny) p Λ(n • dy) ≤ C • (1 + t) α(p-
I (n) 1 (t) := C t 0 ds ∞ 0 n -α 1 {y>s} p n α+1 Λ(n • dy), I (n) 2 (t) := C t 0 s 0 n 1-α R (n) Λ (nr)dr p n α+1 Λ(ns)ds, I (n) 3 (t) := C t 0 ds s/2 0 s s-y n 1-α R (n) Λ (nr)dr p n α+1 Λ(n • dy), I (n) 4 (t) := C t 0 ds s s/2 s s-y n 1-α R (n) Λ (nr)dr p n α+1 Λ(n • dy),
for some constant C depending only on p. Notice that the inner integral in I

(n) 1 (t) equals to n (1-p)α+1 Λ(ns). By the change of variables and the fact that

Λ L 1 < ∞, sup t≥0 |I (n) 1 (t)| = Cn (1-p)α • sup t≥0 nt 0 Λ(s)ds = C Λ L 1 • n (1-p)α , which vanishes as n → ∞, since p > 1. Integrating (4.15) induces that s 0 R (n) Λ (r)dr ≤ C(1 + s) α uniformly in n ≥ 1 and s ≥ 0. Using the change of variables to I (n) 2 , I (n) 2 (t) = C n (p-1)α nt 0 s 0 R (n) Λ (r)dr p Λ(s)ds ≤ C n (p-1)α nt 0 (1 + s) (p-1)α-1 ds ≤ C • (1 + t) (p-1)α .
Here the constant C > 0 is independent of n and t. We now turn to consider I (n) 3 . Using (4.15) again, we have

n 1-α R (n) Λ (nr) ≤ C • r α-1 uniformly in n ≥ 1 and r ≥ 0. Hence uniformly in s, y ≥ 0 s (s-y) + n 1-α R (n) Λ (nr)dr ≤ C • s α ∧ (|(s -y) + | α-1 • y) . (4.18)
Plugging this back into I (n) 3 and then using the fact that n α+1 Λ(n • dy) ≤ ν α (dy), we have uniformly in n ≥ 1 and t ≥ 0,

I (n) 3 (t) ≤ C t 0 ds s/2 0 |s -y| p(α-1) • y p-α-2 dy ≤ C t 0 s p(α-1) ds s/2 0 y p-α-2 dy ≤ C • t (p-1)α .
Similarly, we also have

s s-y n 1-α R (n) Λ (nr)dr ≤ C s 0 r α-1 dr ≤ Cs α uniformly in s > y ≥ 0. Then I (n) 4 (t) ≤ C t 0 s pα ds s s/2 y -α-2 dy ≤ C t 0 s (p-1)α-1 ds ≤ C • t (p-1)α ,
uniformly in n ≥ 1 and t ≥ 0. The desired result follows by putting all estimates above together.

Moment estimates.

In this section, we provide some uniform upper bounds for all moments of the sequence {X (n) ζ } n≥1 and the impact of each ancestor on the population system. PROPOSITION 4.10. For each p ≥ 0, there exists a constant C > 0 such that for any t ≥ 0 and n ≥ 1,

E t 0 R (n) Λ (t -s) • 1 { 0,1>s} ds p ≤ C • t α•(p-1) + .
PROOF. By Jensen's inequality, (4.6) and (4.15), there exists a constant C > 0 such that for any n ≥ 1, p ∈ [0, 1] and t ≥ 0,

E t 0 R (n) Λ (t -s) • 1 { 0,1>s} ds p ≤ t 0 R (n) Λ (t -s)E[1 { 0,1>s} ]ds p ≤ C t 0 (t -s) α-1 ds s α p ≤ C.
For p > 1, by Hölder's inequality 10 and the previous upper bound,

E t 0 R (n) Λ (t -s) • 1 { 0,1>s} ds p ≤ R (n) Λ p-1 L 1 t • E t 0 R (n) Λ (t -s) • 1 { 0,1>s} ds ≤ C • R (n) Λ p-1 L 1 t .
By (4.15), we have

sup n≥1 R (n) Λ L 1
t ≤ C • t α uniformly in t ≥ 0 and the desired result follows.

PROPOSITION 4.11. For each p ≥ 0 and T ≥ 0, we have

sup n≥1 sup t∈[0,T ] E[|X (n) ζ (t)| p ] < ∞.
PROOF. It suffices to prove the case of p ∈ Z + . Taking expectations on both sides of (4.5),

E[X (n) ζ (t)] ≤ ζ + n -α [ζn α ] k=1 E nt 0 R (n) Λ (nt -s)1 { 0,k >s} ds .
From Proposition 4.10, we have E[X

(n) ζ (t)] ≤ C uniformly in t ≥ 0 and n ≥ 1.
By mathematical induction, it suffices to prove that for any p ≥ 1, the desired 2p-order moment estimate holds under the assumption that

sup n≥1 sup t∈[0,T ] E[|X (n) ζ (t)| p ] < ∞.
By the power mean inequality; see footnote 5,

E[|X (n) ζ (t)| 2p ] ≤ C • ζ 2p + CE nt 0 R (n) Λ (nt -s)n -α [ζn α ] k=1 1 { 0,k >s} ds 2p +CE t 0 ∞ 0 X (n) ζ (s-) 0 n -α R (n) (n(t -s), ny) N (n) (n • ds, n • dy, n α • dz) 2p , (4.19) 
for some constant C > 0 independent of n and t. By (D.1), the last expectation can be bounded by

C t 0 ds ∞ 0 n -α R (n) (ns, ny) 2 n α+1 Λ(n • dy) p + C t 0 ds ∞ 0 n -α R (n) (ns, ny) 2p n α+1 Λ(n • dy),
uniformly in n ≥ 1 and t ∈ [0, T ]. A simple calculation, together with (4.17), implies that these two terms can be bounded uniformly in t ≥ 0 and n ≥ 1 by C • (1 + t) αp and C • (1 + t) α(2p-1) respectively. We now consider the first expectation on the right side of (4. [START_REF] Duffie | Affine processes and applications in finance[END_REF]. Notice that

[ζn α ] k=1 nt 0 R (n) Λ (nt -s)1 { 0,k >s} ds 2p = |k (n) |=2p [ζn α ] i=1 nt 0 R (n) Λ (nt -s)1 { 0,i>s} ds ki .
Here the sum on the right side of this inequality is over all

k (n) := (k 1 , • • • , k [ζn α ] ) ∈ N [ζn α ] with |k (n) | := [ζn α ] i=1 k i = 2p
. By Proposition 4.10, we have for some constant C > 0 depending only on p,

E nt 0 R (n) H (nt -s)n -α [ζn α ] k=1 1 { 0,k >s} ds 2p ≤ C n 2pα • |k (n) |=2p (nt) α [ζn α ] i=1 (ki-1) + .
Using the multinomial distribution and then the combination formula to the last sum,

|k (n) |=2p (nt) α [ζn α ] i=1 (ki-1) + = [n α ζ]∧(2p) j=1 [n α ζ] C j • (nt) α(2p-j) ,
10 For two integrable functions g, h on [0, T ] and p > 1, we have .

Here

[n α ζ] C j := [n α ζ]!/(j!([n α ζ] -j)!) ≤ ζ j • n αj /j! for any j = 1, • • • , [n α ζ] ∧ (2p).
Thus there exists a constant C > 0 such that for any n ≥ 1 and t ∈ [0, T ], 1) .

E nt 0 R (n) H (nt -s)n -α [ζn α ] k=1 1 { 0,k >s} ds 2p ≤ C [n α ζ]∧(2p) j=1 ζ j • t α(2p-j) j! ≤ C • ζ 2p • (1 + t) α(2p-
The desired result follows by putting all estimates above together. 

L R (n) Λ (λ) = γ n LΛ(λ) 1 + L R (n) Λ (λ) and hence L R (n) Λ (λ) = γ n LΛ(λ) • (1 -γ n LΛ(λ)) -1 . By the change of variables, ∞ 0 e -λt n 1-α R (n) Λ (nt)dt = L R (n) Λ (λ/n) n α = γ n LΛ(λ/n) n α (1 -γ n LΛ(λ/n)) = γ n LΛ(λ/n) n α (1 -γn α ) + γn α • n α (1 -L Λ * (λ/n))
.

A simple calculation, along with Condition 4.2, shows that γ n LΛ(λ/n) → 1 as n → ∞. By (4.6) and Karamata's Tauberian theorem; see footnote 8, we have

n α 1 -L Λ * (λ/n) → Γ(1 -α)λ α as n → ∞ and ∞ 0 e -λt n 1-α R (n) Λ (nt)dt → 1 b + cλ α .
By (2.6), the function whose Laplace transform is equal to the last quantity is W . 4.3.4. Proof for Lemma 4.6. As a direct consequence of the continuity of ∇ y W , the process M (n) is also continuous. Let p > 2/α. By the Kolmogorov tightness criterion; see Theorem 13.5 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF], the sequence {M (n) } n≥1 is C-tight if for any T > 0, there exists a constant C ≥ 0 such that for any h ∈ [0, 1],

sup n≥1 sup t∈[0,T ] E |∆ h M (n) (t)| 2p ≤ C • h 2 . (4.20)
We start to prove (4.20) with the help of the technical results about W in Appendix A. We first split ∆ h M (n) (t) into the following five parts:

M (n) 1 (t, h) := t+h t t+h-s 0 X (n) ζ (s-) 0 ∇ y W (t + h -s) N (n) (n • ds, n • dy, n α • dz), M (n) 2 (t, h) := t+h t ∞ t+h-s X (n) ζ (s-) 0 W (t + h -s) N (n) (n • ds, n • dy, n α • dz), M (n) 3 (t, h) := t 0 t-s 0 X (n) ζ (s-) 0 ∇ y ∆ h W (t -s) N (n) (n • ds, n • dy, n α • dz), M (n) 4 (t, h) := t 0 t+h-s t-s X (n) ζ (s-) 0 ∇ y ∆ h W (t -s) N (n) (n • ds, n • dy, n α • dz), M (n) 5 (t, h) := t 0 ∞ t+h-s X (n) ζ (s-) 0 ∆ h W (t -s) N (n) (n • ds, n • dy, n α • dz).
Applying (D.1), Proposition 4. 11 andA 

.1 to E[|M (n) 1 (t, h)| 2p ], E M (n) 1 (t, h) 2p ≤ C t+h t ds t+h-s 0 |∇ y W (t + h -s)|
(n) + X (n) ζ,0 = X (n) ζ -M (n) . Notice that X (n) ζ → L ξ ζ weakly in D([0, ∞); R + );
(n) + X (n) ζ,0 } n≥1 immediately. Hence it remains to prove ε (n) + X (n) ζ,0 → X ζ,
0 in the sense of finite-dimensional distributions, which follows directly from the next two propositions. PROPOSITION 4.12. We have ε (n) → 0 in the sense of finite-dimensional distributions as n → ∞.

PROOF. It suffices to prove |ε (n) (t)|

p → 0 as n → ∞ for any t ≥ 0. By (4.4), we split ε (n) (t) into the following two parts:

ε (n) 1 (t) := t 0 ∞ 0 X (n) ζ (s-) 0 n -α • 1 {y>t-s} N (n) (n • ds, n • dy, n α • dz), ε (n) 2 (t) := t 0 ∞ 0 X (n) ζ (s-) 0 t-s (t-s-y) + n 1-α R (n) Λ (nr)dr -∇ y W (t -s) N (n) (n • ds, n • dy, n α • dz).

Applying (D.1) and Proposition 4.11 to E[|ε

(n) 1 (t)| 2 ], we have sup t≥0 E |ε (n) 1 (t)| 2 ≤ C sup t≥0 t 0 n 1-α Λ(n(t -s))ds = Cn -α ∞ 0 Λ(s)ds,
which goes to 0 as n → ∞. Similarly, we also have

sup t∈[0,T ] E |ε (n) 2 (t)| 2 ≤ C T 0 ds ∞ 0 s (s-y) + n 1-α R (n) Λ (nr)dr -∇ y W (s) 2 n α+1 Λ(ndy).
For ϑ ∈ ( 1+α 2 , 1/2 1-α ∧ 1), the preceding integral can be bounded by the multiplication of the next two terms

ε (n) 21 (T ) := sup x∈[0,T ] x 0 n 1-α R (n) Λ (nr)dr -W (x) 2(1-ϑ) , ε (n) 22 (T ) := T 0 ds ∞ 0 s (s-y) + n 1-α R (n) Λ (nr)dr -∇ y W (s) 2ϑ n α+1 Λ(n • dy).
From Lemma 4.4, we have ε 

(s -y) 2ϑ(α-1) y 2ϑ-α-2 dy ≤ C • T α(2ϑ-1) . Hence ε (n) 22 (T ) < ∞ and sup t∈[0,T ] E[|ε (n) 2 (t)| 2 ] → 0 as n → ∞.
The desired result follows by putting these estimates together. PROPOSITION 4.13. We have For any ∈ (0, t 1 /2), we can write the preceding subtraction into the sum of the following four terms

X (n) ζ,0 → X ζ,0 in the sense of finite-dimensional distributions as n → ∞. PROOF. Notice that X (n) ζ,0 (0) = [n α ζ]/n α is deterministic and converges to ζ = X ζ,0 (0) as n → ∞. For any T > 0, d ∈ Z + , 0 < t 1 < • • • < t d ≤ T and λ 1 , • • • , λ d ≥ 0, let Y (n) d (λ, y) := d i=1 λ i • 1 {y>ti} n α + ti 0 n 1-α R (n) Λ (n(t i -s)) • 1 {y>s} ds , Y d (λ, y) := d i=1 λ i ti 0 W (t i -s) • 1 {y>s} ds = d i=1 λ i • ∇ y W (t i ). It suffices to prove that E[exp{- ∞ 0 Y (n) d (λ, y)N (n) ζ (dy)}] → E[exp{- ∞ 0 Y d (λ, y)N ζ (dy)}]. By the defini- tion of N (n) ζ we have E exp - ∞ 0 Y (n) d (λ, y)N (n) ζ (dy) = E[e -Y (n) d (λ, 0,1) ] [n α ζ] = 1 - 1 n α ∞ 0 1 -e -Y (n) d (λ,y) • n α • Λ * (n • dy) [n α ζ]
ε (n) 3 := ∞ 0 1 -e -Yd(λ,y) • n α • Λ * (n • dy) -ν(y)dy , ε (n) 4 := ∞ e -Yd(λ,y) -e -Y (n) d (λ,y) • n α • Λ * (n • dy), ε (n) 5 := 0 1 -e -Y (n) d (λ,y) • n α • Λ * (n • dy), ε (n) 6 := 0 1 -e -Yd(λ,y) • n α • Λ * (n • dy).
The vague convergence of n α • Λ * (n • dy) to να (y)dy implies that |ε

(n) 3 | → 0 as n → ∞. By Lemma 4.4, we have Y (n) d (λ, y) → Y d (λ, y) uniformly in y > 0, which yields that as n → ∞, |ε (n) 4 | ≤ sup y>0 e -Yd(λ,y) -e -Y (n) d (λ,y) • n α Λ * (n ) ≤ α • -α • sup y>0 e -Yd(λ,y) -e -Y (n) d (λ,y) → 0. Notice that Y (n) d (λ, y) = d i=1 λ i y 0 n 1-α R (n) Λ (n(t i -s))ds and Y d (λ, y) = d i=1 λ i • ∇ y W (t i )
for any y ∈ (0, ). By the change of variables and (4.18),

sup n≥1 1 -e -Y (n) d (λ,y) ≤ sup n≥1 |Y (n) d (λ, y)| = sup n≥1 d i=1 λ i ti ti-y n 1-α R (n) Λ (ns)ds ≤ C • |t 1 | α-1 • y.
Plugging this back into ε 5. Hölder continuity. In this section, we prove the Hölder continuity of L ξ ζ ; see Theorem 2.9. For simplicity on exposition, we also denote by X ζ,0 and M the two terms on the right side of (1.3) respectively without ambiguity, i.e., the SVE (1.3) can be written into L ξ ζ (x) = X ζ,0 (x) + M (x) for any x ≥ 0.

LEMMA 5.1. For each p ≥ 0 and ζ > 0, the exists a constant C > 0 such that for any x ≥ 0,

E X ζ,0 (x) p ≤ C • (1 + x) α(p-1) + . (5.1)
PROOF. By (2.16), we have X ζ,0 (x) ≥ 0 a.s. and

X ζ,0 (x) = ζ 1 -bW (x) + ∞ 0 ζ 0 ∇ y W (x) N 0 (dy, dz), x ≥ 0. (5.2) When p ≤ 1, by Jensen's inequality we have E[|X ζ,0 (x)| p ] ≤ |E[X ζ,0 (x)]| p ≤ ζ p .
For p > 1, By the power mean inequality and Theorem D.1, there exits a constant C > 0 such that for any x > 0,

E X ζ,0 (x) p ≤ Cζ p + C ∞ 0 |∇ y W (x)| 2 να (y)dy p/2 + C ∞ 0 |∇ y W (x)| p να (y)dy. (5.3) By (2.8) and (2.15), ∞ 0 |∇ y W (x)| p να (y)dy ≤ ∞ 0 ∇ y W (x)ν α (y)dy • |W (x)| p-1 ≤ Cx (p-1)α .
The desired result follows by plugging this back into (5.3). LEMMA 5.2. For each p ≥ 1, there exists a constant C > 0 such that for any x 1 , x 2 ≥ 0,

E X ζ,0 (x 2 ) -X ζ,0 (x 1 ) 2p ≤ C • |x 2 -x 1 | 2pα + |x 2 -x 1 | pα .
PROOF. By the power mean inequality and (5.2), there exists a constant C > 0 such that for any

x 1 , x 2 ≥ 0, the expectation E[|X ζ,0 (x 2 ) -X ζ,0 (x 1 )| 2p ] can be bounded by C|W (x 2 ) -W (x 1 )| 2p + CE ∞ 0 ζ 0 ∇ y W (x 2 ) -∇ y W (x 1 ) N 0 (dy, dz) 2p .
By the uniform α-Hölder continuity of W on R + ; see Section 2.1, the first term can be bounded by C • |x 2x 1 | 2pα uniformly in x 1 , x 2 ≥ 0. Applying (D.1) to the second term, it can be bounded by

C ∞ 0 |∇ y W (x 2 ) -∇ y W (x 1 )| 2 ν(y)dy p + C ∞ 0 |∇ y W (x 2 ) -∇ y W (x 1 )| 2p ν(y)dy, (5.4)
for some constant C > 0 independent of x 1 , x 2 . Using the uniform α-Hölder continuity of W on (0, ∞) again, we have

|∇ y W (x 2 ) -∇ y W (x 1 )| ≤ C |x 2 -x 2 | α ∧ y α uniformly in x 1 , x 2 ,
y ≥ 0. Plugging this into (5.4), it can be bounded by

C ∞ 0 |x 2 -x 2 | α ∧ y α 2 ν(y)dy p + C ∞ 0 |x 2 -x 2 | α ∧ y α 2p ν(y)dy ≤ C • |x 2 -x 1 | pα ,
with C > 0 independent of x 1 , x 2 . The desired result follows by putting these estimates together. LEMMA 5.3. For each p ≥ 0 and ζ > 0, there exists a constant C > 0 such that for any x ≥ 0,

E |L ξ ζ (x)| p ≤ C • (1 + x) pα . (5.5)
PROOF. Here we just prove this lemma with p = 2 k and k ∈ N. The general case can be proved in the same way. When k = 0, by (2.15) we have

E[L ξ ζ (x)] ≤ ζ. For k ≥ 1
, by mathematical induction it suffices to prove (5.5) for p = 2 k under the assumption that it holds for p = 2 i with i = 0, 1, • • • , k -1. Applying the Burkholder-Davis-Gundy inequality and the power mean inequality to

E[|M (x)| 2 k ], E |M (x)| 2 k ≤ C • E x 0 ∞ 0 L ξ ζ (s) 0 ∇ y W (x -s) 2 N α (ds, dy, dz) 2 k-1 ≤ C • E x 0 ∞ 0 L ξ ζ (s) 0 ∇ y W (x -s) 2 N α (ds, dy, dz) 2 k-1 +C • E x 0 ds ∞ 0 L ξ ζ (s) ∇ y W (x -s) 2 ν α (dy) 2 k-1 ≤ C • k i=1 E x 0 ds ∞ 0 L ξ ζ (s) ∇ y W (x -s) 2 i ν α (dy) 2 k-i , (5.6)
with C > 0 depending only on k. Applying Hölder's inequality to each term in the last sum; see footnote 9,

E x 0 ds ∞ 0 L ξ ζ (s) ∇ y W (x -s) 2 i ν α (dy) 2 k-i ≤ x 0 ds ∞ 0 E |L ξ ζ (s)| 2 k-i ∇ y W (x -s) 2 i ν α (dy) × x 0 ds ∞ 0 ∇ z W (x -s) 2 i ν α (dz) 2 k-i -1 ≤ sup t∈[0,x] E |L ξ ζ (t)| 2 k-i • x 0 ds ∞ 0 ∇ y W (s) 2 i ν α (dy) 2 k-i ≤ C • 1 + x 2 k-i α • x 0 ds ∞ 0 ∇ y W (s) 2 i ν α (dy) 2 k-i
.

By Proposition A.1 with p = 2 i , the right hand of the last inequality can be bounded by C • (1 + x) pα uniformly in x ≥ 0. Taking these estimates back into (5.6), we have

E[|M (x)| p ] ≤ C • (1 + x) pα uniformly in x ≥ 0.
The desired result follows from this, (5.1) and the power mean inequality.

LEMMA 5.4. For each p ≥ 1, there exists a constant C > 0 such that for any x ≥ 0 and

x 1 , x 2 ∈ [0, x], E |M (x 1 ) -M (x 2 )| 2p ≤ C • (1 + x) pα • |x 2 -x 1 | pα .
PROOF. Without loss of generality, we assume 0 ≤ x 1 < x 2 ≤ x. Similarly as in the proof of Lemma 4.6, by the power mean inequality we have

E |M (x 1 ) -M (x 2 )| 2p ≤ 5 2p • 5 i=1 E[|M i (x 1 , x 2 )| 2p ] with M 1 (x 1 , x 2 ) := x2 x1 x2-s 0 L ξ ζ (s) 0 ∇ y W (x 2 -s) N α (ds, dy, dz), M 2 (x 1 , x 2 ) := x2 x1 ∞ x2-s L ξ ζ (s) 0 W (x 2 -s) N α (ds, dy, dz), M 3 (x 1 , x 2 ) := x1 0 ∞ x1-s L ξ ζ (s) 0 ∇ y ∆ x2-x1 W (x 1 -s) N α (ds, dy, dz), M 4 (x 1 , x 2 ) := x1 0 x2-s x1-s L ξ ζ (s) 0 ∇ y ∆ x2-x1 W (x 1 -s) N α (ds, dy, dz), M 5 (x 1 , x 2 ) := x1 0 ∞ x2-s L ξ ζ (s) 0 ∆ x2-x1 W (x 1 -s) N α (ds, dy, dz). Applying (D.1) to E[|M 1 (x 1 , x 2 )| 2p
] and then using the change of variables, there exists a constant C > 0 depending only on p such that

E[|M 1 (x 1 , x 2 )| 2p ] ≤ C sup t∈[0,x] E[|L ξ ζ (t)| p ] • x2 x1 x2-s 0 |∇ y W (x 2 -s)| 2 ν α (dy)ds p +C sup t∈[0,x] E[|L ξ ζ (t)|] • x2 x1 x2-s 0 |∇ y W (x 2 -s)| 2p ν α (dy)ds = C sup t∈[0,x] E[|L ξ ζ (t)| p ] • x2-x1 0 ds s 0 |∇ y W (s)| 2 ν α (dy) p +C sup t∈[0,x] E[|L ξ ζ (t)|] • x2-x1 0 ds s 0 |∇ y W (s)| 2p ν α (

dy).

By Proposition A.1 and Lemma 5.3, the foregoing quantities can be bounded by

C sup t∈[0,x] E[|L ξ ζ (t)| p ] • |x 2 -x 1 | pα + C sup t∈[0,x] E[|L ξ ζ (t)|] • |x 2 -x 1 | α(2p-1) ≤ C • (1 + x) pα • |x 2 -x 1 | pα , uniformly in x ≥ 0 and x 1 , x 2 ∈ [0, x].
Similarly, for i ∈ {2, 3, 4, 5}, by Proposition A.2 and A.3 we also have

E[M i (x 1 , x 2 )| 2p ] ≤ C • (1 + x) pα • |x 2 -x 1 | pα uniformly in x ≥ 0 and x 1 , x 2 ∈ [0, x].
The desired inequality follows by putting these estimates together.

PROOF FOR THEOREM 2.9. By the Kolmogorov continuity theorem along with Lemma 5.2 and 5.4, the two processes X ζ,0 and M are locally Hölder continuous of any order strictly less than α/2. Then claim (1) holds. For the second claim, it suffices to consider the case of p > 1. By the Garsia-Rodemich-Rumsey inequality; see Lemma 1.1 in [START_REF] Garsia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF] with ψ(u) = |u| p and p(u) = |u| q+1/p for q > 1/p, there exists a constant C p,q > 0 such that for any

x 2 > x 1 ≥ 0, |M (x 2 ) -M (x 1 )| p ≤ C p,q • |x 2 -x 1 | pq-1 x2 x1 dv x2 x1 |M (u) -M (v)| p
|u -v| pq+1 du, a.s.

In particular, choosing p > (α/2 -κ) -1 and q = 1/p + κ we have

M p C 0,κ x = sup 0≤x1<x2≤x |M (x 2 ) -M (x 1 )| p |x 2 -x 1 | pκ ≤ C p,q x 0 dv x 0 |M (u) -M (v)| p |u -v| pκ+2 du, a.s.
From Lemma 5.4, there exists a constant C > 0 such that for any x ≥ 0,

E M p C 0,κ x ≤ C(1 + x) pα/2 x 0 dv x 0 |u -v| pα/2-pκ-2 du ≤ C(1 + x) p(α-κ) .
Similarly, by Lemma 5.2 we also have

E X ζ,0 p C 0,κ x ≤ C(1 + x) p(α-κ) uniformly in x ≥ 0.
Then claim (2) follows from these two upper bound estimates.

6. Laplace functionals and weak uniqueness. In this section, we firstly prove the affine representation of the Laplace functionals of L ξ ζ in two steps: (i) on some finite interval, local solutions of (1.4) exist uniquely and (2.18) holds; (ii) this finite interval can be extended successfully to the whole positive real line. Then we prove the weak uniqueness holds for the SVE (1.3). As a preparation, we introduce several function spaces that will be used in the following proofs. For T, J > 0,

• A T,J : the space of functions f on (0, ∞) satisfying sup t∈(0,T ] t 1-α |f (t)| ≤ J ;

• B T,J : the space of functions f on R + satisfying f L ∞ T ≤ J .

Notice that A T,J1 ⊂ A T,J2 for any J 2 ≥ J 1 > 0. Let A T := ∪ J>0 A T,J , which collects all functions on (0, ∞)

satisfying that sup x∈(0,T ] x 1-α |f (x)| < ∞. It is obvious that A T is decreasing in T and A ∞ = ∩ T >0 A T .
6.1. Nonlinear Volterra equation. We say a pair

(v g λ , T ) ∈ A T × (0, ∞) is a A-local solution of (1.4) if v g λ
is continuous and satisfies (1.4) on (0, T ]. Moreover, for a pair (v g λ , T g λ ) with T g λ ∈ (0, ∞] and a function v g λ on [0, T g λ ), we say it is a A-noncontinuable solution 11 of (1.4) if for any T ∈ (0, T g λ ), the pair (v g λ , T ) is a A-local solution of (1.4) and lim sup

x→T g λ -|v g λ (x)| = ∞ if T g λ -< ∞.
In particular, if T g λ = ∞ the function v g λ turns to be a A-global solution of (1.4). In this section, we prove the existence and uniqueness of A-noncontinuable solutions of (1.4) with the help of the following technical estimates for the nonlinear operator V α . The next useful inequality can be proved immediately by using the mean-value theorem

(e -x -1 + x) -(e -z -1 + z) ≤ (e |x|∨|z| ) • (|x| ∨ |z|) • |x -z|, x, z ∈ R. (6.1)
PROPOSITION 6.1. There exists a constant C > 0 such that for any T, J > 0, f ∈ A T,J and t ∈ (0, T ],

sup y≥0 t (t-y) + f (r)dr ≤ J α • t α and ∞ 0 t (t-y) + f (r)dr 2 ν α (dy) ≤ C • J 2 • t α-1 . (6.2)
PROOF. The first desired inequality follows directly from a simple calculation. For the second one, we have

∞ 0 t (t-y) + f (r)dr 2 ν α (dy) ≤ f 2 L 1 t • να (t/2) + t/2 0 f 2 L 1 [t-y,t] ν α (dy). (6.3) It is easy to see that f 2 L 1 t • να (t/2) ≤ C • J 2 • t α-1 uniformly in t ∈ (0, T ] and T > 0. Since f L 1 [t-y,t] ≤ J • (t -y) α-1 • y ≤ 2J • t α-1 • y for any 0 < y < t/2 < t ≤ T , we have t/2 0 f 2 L 1 [t-y,t] ν α (dy) ≤ 4J 2 t 2α-2 t/2 0 y 2 ν α (dy) ≤ C • J 2 • t α-1 , (6.4)
with C > 0 depending only on α and c. The second desired inequality follows. PROPOSITION 6.2. There exists a constant C > 0 such that for any T, J > 0, f ∈ A T,J and t ∈ (0, T ],

V α • f (t) ≤ C • J 2 e J α •t α • t α-1 and (V α • f ) * W (t) ≤ C • J 2 e J α •t α • t 2α-1 .
PROOF. By the first inequality in (6.2) and (6.1) with z = 0, exp -

t (t-y) + f (r)dr -1 + t (t-y) + f (r)dr ≤ e J α •t α • t (t-y) + f (r)dr 2 .
Plugging this back into (1.5) and then using the second inequality in (6.2), we have

|V α • f (t)| ≤ e J α •t α ∞ 0 t (t-y) + f (r)dr 2 ν α (dy) ≤ C • J 2 e J α •t α • t α-1 .
From this and (2.8), we have uniformly in T, J ≥ 0, f ∈ A T,J and t ∈ [0, T ],

(V α • f ) * W (t) ≤ C • J 2 • e J α •t α • t 0 s α-1 (t -s) α-1 ds ≤ C • J 2 • e J α •t α • t 2α-1 .
11 The terminology "noncontinuable solution" comes from the theory of Volterra equations; see Chapter 12 in [START_REF] Gripenberg | Volterra Integral and Functional Equations[END_REF]. PROPOSITION 6.3. For θ ∈ (1, 1 1-α ), there exists a constant C > 0 such that for any T, J > 0 and f 1 , f 2 ∈ A T,J ,

(V α • f 1 -V α • f 2 ) * W L θ T ≤ C • JT α e J α •T α • f 1 -f 2 L θ T .
PROOF. Let f := f 1 -f 2 . By (1.5), (6.1) and the first inequality in (6.2),

|V α • f 1 (t) -V α • f 2 (t)| ≤ e J α •t α ∞ 0 f 1 L 1 [(t-y) + ,t] ∨ f 2 L 1 [(t-y) + ,t] f L 1 [(t-y) + ,t] ν α (dy) (6.5) and hence |(V α • f 1 -V α • f 2 ) * W (t)| ≤ e J α •t α (I 1 (t) + I 2 (t)) for any t ∈ [0, T ],
where

I 1 (t) := t 0 W (t -s)ds ∞ s/2 f 1 L 1 [(s-y) + ,s] ∨ f 2 L 1 [(s-y) + ,s] f L 1 [(s-y) + ,s] ν α (dy), I 2 (t) := t 0 W (t -s)ds s/2 0 f 1 L 1 [s-y,s] ∨ f 2 L 1 [s-y,s] f L 1 [s-y,s] ν α (dy).
By Minkowski's inequality, we have

(V α • f 1 -V α • f 2 ) * W L θ T ≤ e J α T α ( I 1 L θ T + I 2 L θ T ). Notice that I 1 (t) ≤ t 0 W (t -s) • ( f 1 L 1 s ∨ f 2 L 1 s ) • f L 1 s • να (s/2)ds.
By Hölder's inequality, we have

f L 1 s ≤ f L θ s • s 1-1/θ
. By (2.8) and the first inequality in (6.2), there exits a constant C > 0 such that for any T, J > 0 and t ∈ (0, T ],

I 1 (t) ≤ C • J • t 0 (t -s) α-1 s -1/θ f L θ s ds ≤ C • J • t α-1/θ • f L θ t and I 1 L θ T ≤ C • J • T α • f L θ T .
Noting that

f 1 L 1 (s-y,s] ∨ f 2 L 1 (s-y,s] ≤ J • (s -y) α-1
• y for any y ∈ (0, s/2), we have

s/2 0 ( f 1 L 1 [s-y,s] ∨ f 2 L 1 [s-y,s] ) f L 1 [s-y,s] ν α (dy) ≤ C • J s/2 0 (s -y) α-1 y -α-1 f L 1 [s-y,s] dy = C • J s/2 0 (s -y) α-1 y -α-1 y 0 | f (s -r)|drdy = C • J s/2 0 | f (s -y)|dy s/2 y (s -r) α-1 r -α-1 dr ≤ C • J • s α-1 s/2 0 y -α | f (s -y)|dy ≤ C • J • s α-1 s 0 (s -y) -α | f (y)|dy,
for some constant C independent of s, J , T and f . Here the two equalities follow from the change of variables and Fubini's theorem respectively. Plugging this into I 2 (t) and then using (2.8),

I 2 (t) ≤ C • J • t 0 (t -s) α-1 s α-1 ds s 0 (s -y) -α | f (y)|dy = C • J • t 0 | f (s)|ds t-s 0 (t -s -y) α-1 (y + s) α-1 y -α dy.
This equality comes from Fubini's theorem and the change of variables. Let η ∈ (0 ∨ 1-θα θ-θα , 1). Since (y + s) α-1 ≤ s (1-η)(α-1) • y η(α-1) for any y, s > 0, we have

I 2 (t) ≤ C • J • t 0 s (1-η)(α-1) | f (s)|ds t-s 0 (t -s -y) α-1 y η(α-1)-α dy ≤ C • J • t 0 (t -s) η(α-1) s (1-η)(α-1) | f (s)|ds.
By Young's convolution inequality and then Hölder's inequality,

I 2 L θ T ≤ C • J • T 0 t θη(α-1) dt 1/θ • T 0 s (1-η)(α-1) | f (s)|ds ≤ C • J • T η(α-1)+1/θ • T 0 s (1-η)(α-1) θ θ-1 ds θ-1 θ f L θ T ≤ C • J • T α • f L θ T
with C > 0 independent of T, J and f . The desired result follows by putting these estimates together.

The next two propositions can be proved similarly and their detailed proofs are omitted. PROPOSITION 6.4. There exists a constant C > 0 such that for any T, J > 0, f ∈ B T,J and t ∈ (0, T ],

|V α • f (t)| ≤ C • J 2 e Jt • t 1-α and |(V α • f ) * W (t)| ≤ C • J 2 e Jt • t.
PROPOSITION 6.5. There exists a constant C > 0 such that for any T, J > 0 and f 1 , f 2 ∈ B T,J ,

(V α • f 1 -V α • f 2 ) * W L 1 T ≤ C • JT e JT • f 1 -f 2 L 1 T .
LEMMA 6.6. For each λ ≥ 0 and g ∈ L ∞ (R + ; R + ), the nonlinear Volterre equation (1.4) has a unique A-noncontinuable solution.

PROOF. By using Banach's fixed point theorem, we prove this lemma in the following three steps.

Step 1. We first prove the existence of A-local solutions near 0. We consider the map R 0 that acts on a locally integrable function

f on R + according to R 0 • f := λW + (g -V α • f ) * W . Recall the constant θ ∈ (1, 1/(1 -α))
. By (2.8), Proposition 6.2 and 6.3, there exists a constant C 0 > 0 such that for any T, J > 0, f 1 , f 2 ∈ A T,J and t ∈ (0, T ],

R 0 • f 1 (t) ≤ C 0 |λ| + g L ∞ + J 2 • T α e J α T α • t α-1 and R 0 • f 1 -R 0 • f 2 L θ T = (V α • f 1 -V α • f 2 ) * W L θ T ≤ C 0 J • T α e J α T α f 1 -f 2 L θ T . Choosing J 0 > 2C(|λ| + g L ∞ ) and T 0 ∈ (0, 1) such that T α 0 • C 0 • J 0 e J0/α < 1/2, we have for any f 1 , f 2 ∈ A T0,K0 and t ∈ (0, T 0 ], |R 0 • f 1 (t)| ≤ J 0 • t α-1 and R 0 • f 1 -R 0 • f 2 L θ T 0 < f 1 -f 2 L θ T 0
.

Thus R 0 is a contractive map from A T0,K0 to itself. It can be easily identify that A T0,J0 is a closed, bounded and convex subset in L θ ((0, T 0 ]; R). By Banach's fixed point theorem, there exists a unique function v 0 ∈ A T0,J0 satisfying (1.4), i.e., v 0 = R 0 • v 0 almost everywhere on (0, T 0 ]. By the properties of convolution, the function

v g λ := R 0 • v 0 is continuous and equal to v 0 almost everywhere. Hence R 0 • v g λ = R 0 • v 0 = v g λ pointwisely on (0, T 0 ] and (v g λ , T 0 ) is a A-local solution of (1.4).
Step 2. We now extend the preceding A-local solution into a A-noncontinuable solution. Denote by T the collection of all T > 0 such that (1.4) has a A-local solution on (0, T ]. We assert that T is an open interval containing (0, T 0 ]. Indeed, for any t 0 ∈ T and some j 0 > 0, assume that v g λ ∈ A t0,j0 is a A-local solution of (1.4). For t ≥ 0, let

H 1 (t) := λW (t 0 + t) + W * g(t 0 + t) - t0 0 V α • v g λ (s)W (t 0 + t -s)ds. (6.6) By (2.8), we have |λW (t 0 + t)| ≤ C • t α-1 0 and |W * g(t 0 + t)| ≤ C • g L ∞ • (t 0 + t) α uniformly in t ≥ 0. From Proposition 6.2, we also have |V α • v g λ (s)| ≤ C • s α-1 uniformly in s ∈ (0, t 0 ] and hence t0 0 V α • v g λ (s)W (t 0 + t -s)ds ≤ C uniformly in t ≥ 0.
Putting these estimates together, there exists a constant C H1 > 0 such that

|H 1 (t)| ≤ C H1 for any t ∈ [0, 1]. We consider the map R 1 acting on functions f ∈ L ∞ (R + ; R) by R 1 • f := H 1 -W * (V α • f ).
Recall B T,J for T, J > 0. From Proposition 6.4 and 6.5, there exists a constant C 1 > 0 such that for any T ∈ [0, 1], J > 0, f 1 , f 2 ∈ B T,J and t ∈ [0, T ],

R 1 • f 1 (t) ≤ C 1 (C H1 + J 2 e J•T • T ) and R 1 • f 1 -R 1 • f 2 L 1 T ≤ C 1 • JT • e 2JT • f 1 -f 2 L 1 T . Choosing J 1 > 2C 1 • C H1 and T 1 ∈ [0, 1] such that T 1 • C 1 J 1 e 2J1 < 1/2, we have for any f 1 , f 2 ∈ B T1,J1 , sup t∈[0,T1] R 1 • f 1 (t) ≤ J 1 and R 1 • f 1 -R 1 • f 2 L 1 T 1 < f 1 -f 2 L 1 T 1 .
Thus R 1 is a contractive map from B T1,J1 to itself. Notice that B T1,J1 is a closed, bounded and convex subset of L 1 ([0, T 1 ]; R). Applying Banach's fixed point theorem again, there exists a unique function

v 1 ∈ B T1,J1 satisfying that v 1 = R 1 • v 1 almost everywhere. For t ∈ [0, T 1 ], let v g λ (t 0 + t) := R 1 • v 1 (t).
One can verifies that (v g λ , t 0 + T 1 ) is a A-local solution of (1.4) and hence t 0 is an interior point of T . Let T g λ := sup T and v g λ be a continuous function on (0, T g λ ) satisfying that (v g λ , T ) is a A-local solution of (1.4) for any T ∈ (0, T g λ ). To assert that (v g λ , T g λ ) is a A-noncontinuable solution, it remains to identify that lim sup

t→T g λ -|v g λ (t)| = ∞ if T g λ < ∞. Actually, if sup t∈[T0,T g λ -) |v g λ (t)| ≤ J 2 for some constant J 2 > 0, then sup t∈(0,T g λ ) t 1-α |v g λ (t)| < ∞.
Let H 2 be a function on R + defined as in (6.6) with t 0 replaced by

T g λ . Let R 2 be a map acting on functions f ∈ L ∞ (R + ; R) by R 2 • f := H 2 + W * (V α • f ).
Similarly as in the previous paragraph, there exist constants

C H2 > 0, T 2 ∈ [0, 1] and J 2 > 0 such that |H 2 (t)| ≤ C H2 for any t ∈ [0, 1]
and R 2 is a contractive map from B T2,J2 to itself. By Banach's fixed point theorem again, there exists a unique function

v 2 ∈ B T2,J2 satisfying that v 2 = R 2 •v 2 almost everywhere. For t ∈ [0, T 2 ], let v g λ (T g λ +t) := R 1 •v 2 (t). Then (v g λ , T g λ + T 2 ) is a A-local solution of (1.4
) and T g λ + T 2 ∈ T , which contradicts the assumption that T g λ = sup T . Consequently, (v g λ , T g λ ) is a A-noncontinuable solution of (1.4).

Step 3. We prove the uniqueness. Assume that (v g λ , T g λ ) and (v g λ , T g λ ) are two A-noncontinuable solutions of (1.4) with T g λ ≤ T g λ . Similarly as in Step 1, there exist two constants T 0 ∈ (0, 1) and J 0 > 0 such that v g λ , vg λ ∈ A T0,J0 and the map R 0 is contractive from A T0,J0 to itself. Then Banach's fixed point theorem induces that v g λ -vg λ L θ T 0 = 0. Their continuity yields that v g λ = vg λ on (0, T 0 ]. Similarly as in Step 2, let t 0 := inf{t > 0 : v g λ (t) = vg λ (t)}, H 1 be the function defined by (6.6), v g λ,1 (t) = v g λ (t 0 + t) and vg λ,1 (t) = vg λ (t 0 + t) for t ∈ [0, T g λ -t 0 ). We also can find some constants T 1 ∈ (0, 1) ∩ [0, T g λ -t 0 ) and J 1 > 0 such that v g λ,1 , vg λ,1 ∈ B T1,J1 and the map R 1 is contractive from B T1,J1 to itself. Again, Banach's fixed point theorem induces that

v g λ,1 -vg λ,1 L 1 T 1 = 0.
Their continuity yields that v g λ = vg λ on (0, t 0 + T 1 ], which contracts the definition of t 0 . Hence the uniqueness holds.

Laplace functionals.

For convenience, we assume that the process L ξ ζ , the PRM N α (ds, dy, dz) are defined on a filtrated probability basis (Ω, G , G r , P) satisfying the general hypotheses and N 0 (dy, dz) is G 0measurable 12 . For each λ ≥ 0 and g ∈ L ∞ (R + ; R + ), we assume that (v g λ , T ) is a A-local solution of (1.4), i.e., T > 0 and v g λ ∈ A T,J for some J > 0. For x, r ≥ 0, conditioned on G r we take expectations on both sides of (1.3) and get

E L ξ ζ (x) G r = ∞ 0 ζ 0 ∇ y W (x)N 0 (dy, dz) + x∧r 0 ∞ 0 L ξ ζ (s) 0 ∇ y W (x -s) N α (
ds, dy, dz). (6.7) PROPOSITION 6.7. For any x ∈ [0, T ], the following hold:

(1) The random variable Y x (x) := λL ξ ζ (x) + (g -V α • v g λ ) * L ξ ζ (x) is integrable, i.e., E[|Y x (x)|] < ∞. (2) The Doob martingale {Y x (t) := E[Y x (x)|G t ] : t ∈ [0, x]} has the representation Y x (t) = ∞ 0 ζ 0 x (x-y) + v g λ (s)dsN 0 (dy, dz) + t 0 ∞ 0 L ξ ζ (s) 0 x-s (x-s-y) +
v g λ (r)dr N α (ds, dy, dz).

PROOF. By Proposition 6.2, we have

V α • v g λ L 1 x ≤ C • x α . Moreover, by (2.15) we have E[|Y x (x)|] ≤ ζ • λ + g L 1 x + V α • v g λ L 1 x < ∞ and Y x (0) = ∞ 0 ζ 0 λ∇ y W (x)N 0 (dy, dz) + ∞ 0 ζ 0 ∇ y W (•)N 0 (dy, dz) * (g -V α • v g λ )(x). (6.8)
By using Proposition 6.2 and (2.15) again, we have for any > 0,

x 0 (g -V α • v g λ )(x -s) 0 ∇ y W (s)ν α (y)dyds ≤ g L 1 x + V α • v g λ L 1 x sup s∈[0,x] 0 ∇ y W (s)ν α (y)dy,
which is finite and goes to 0 as → 0+. Moreover, by Fubini's theorem,

x 0 (g -V α • v g λ )(x -s)∇ y W (s)ds = x 0 (g -V α • v g λ )(x -s) s (s-y) + W (r)drds = x (x-y) + (g -V α • v g λ ) * W (s)ds,
which can be bounded by C(1 ∧ y) uniformly in y > 0; see Proposition 6.2. Hence for any > 0,

0 x (x-y) + (g -V α • v g λ ) * W (s)ds να (y)dy ≤ C • α ,
which vanishes as → 0+. By these and the stochastic Fubini theorem; see Theorem D.2, the stochastic integral

∞ 0 ζ 0 x (x-y) + (g -V α • v g λ ) * W (s)dsN 0 (dy, dz)
is well defined and equal almost surely to the second stochastic integral on the right side of (6.8). By (1.4),

λ∇ y W (x) + x (x-y) + (g -V α • v g λ ) * W (s)ds = x (x-y) + λW (s) + (g -V α • v g λ ) * W (s) ds = x (x-y) + v g λ (s)ds.
Plugging this back into (6.8), we have

Y x (0) = ∞ 0 ζ 0 x (x-y) +
v g λ (s)dsN 0 (dy, dz). (6.9) By (6.7), we have for t

∈ [0, x], Y x (t) = ∞ 0 ζ 0 x (x-y) + v g λ (s)dsN 0 (dy, dz) + t 0 ∞ 0 L ξ ζ (s) 0 λ∇ y W (x -s) N α (ds, dy, dz) + x 0 g -V α • v g λ (x -r)dr r∧t 0 ∞ 0 L ξ ζ (s) 0
∇ y W (r -s) N α (ds, dy, dz). (6.10) Proposition 6.2, together with the assumption that

v g λ ∈ A T , implies that g -V α • v g λ ∈ A T . Then there exists a constant C > 0 such that |g(t) -V α • v g λ (t)| ≤ C • K(t) for any t ∈ (0, T ]. By Proposition A.4, x 0 g -V α • v g λ (x -r)dr r 0 ds 0 |∇ y W (r -s)| 2 ν α (dy) 1/2 ≤ C x 0 K(r)dr • x 0 ds 0 |∇ y W (s)| 2 ν α (dy) 1/2 ≤ C • x α • x 0 ds 0 |∇ y W (s)| 2 ν α (dy) 1/2
, (6.11) which goes to 0 as → 0+. Moreover, by the change of variables,

x 0 g -V α • v g λ (x -r) • 1 {0≤s<r∧t} • ∇ y W (r -s)dr = g -V α • v g λ * ∇ y W (x -s) • 1 {0≤s<t} .
By Proposition A.5, we have for > 0,

x 0 ds 0 | g -V α • v g λ * ∇ y W (x -s)| 2 ν α (dy) ≤ C x 0 ds 0 |K * ∇ y W (x -s)| 2 y α+2 dy,
which is finite and goes to 0 as → 0+. From this, (6.11) and the stochastic Fubini theorem; see Theorem D.2, the stochastic integral

t 0 ∞ 0 L ξ ζ (s) 0 g -V α • v g λ * ∇ y W (x -s) N α (ds, dy, dz)
is well defined and equal almost surely to the last stochastic integral on the right side of (6.10). Moreover, by Fubini's theorem we have for any s ∈ [0, T ] and y > 0,

λ∇ y W (s) + g -V α • v g λ * ∇ y W (s) = s (s-y) + λW (r) + (g -V α • v g λ ) * W (r) dr = s (s-y) + v g λ (r)dr.
Consequently, the sum of the last two stochastic integrals on the right side of (6.10) can be replaced by

t 0 ∞ 0 L ξ ζ (s) 0 x-s (x-s-y) 
+ v g λ (r)dr N α (ds, dy, dz)
and claim (2) holds.

Associated to v g λ , we define a stochastic process

Z x := {Z x (t) : t ∈ [0, x]} by Z x (t) := E λL ξ ζ (x) + g * L ξ ζ (x)|G t - x t V α • v g λ (x -s)E L ξ ζ (s)|G t ds.
By Proposition 6.7(2) and (6.9), the process Z x also has the following representation

Z x (t) = Y x (t) + t 0 V α • v g λ (x -s)L ξ ζ (s)ds = Y x (0) + t 0 V α • v g λ (x -s)L ξ ζ (s)ds + t 0 ∞ 0 L ξ ζ (s) 0 x-s (x-s-y) + v g λ (r)dr N α (ds, dy, dz).
Thus Z x is a (G t )-semimartingale. Applying Itô's formula to exp{-Z x (t)} and then using (1.4),

e -Zx(t) = e -Yx(0) + M x (t), t ∈ [0, x], (6.12) 
where

M x := {M x (t) : t ∈ [0, x]} is a (G r )-local martingale and M x (t) := t 0 ∞ 0 L ξ ζ (s) 0 e -Zx(s) exp - x-s (x-s-y) + v g λ (r)dr -1 N α (ds, dy, dz). (6.13)
In the next lemma, we prove the martingality of e -Zx := {e -Zx(t) : t ∈ [0, x]} and the equality (2.18) by using the method developed in [1, Lemma 6.3] and [START_REF] Abi Jaber | Affine Volterra processes[END_REF]Lemma 7.3]. LEMMA 6.8. For each x ∈ [0, T ], the local-martingale e -Zx is a true (G r )-martingale and (2.18) holds.

PROOF. For each t ≥ 0, define

U x (t) := t 0 ∞ 0 L ξ ζ (s) 0 exp - x-s (x-s-y) + v g λ (r)dr -1 N α (ds, dy, dz),
which is a uniformly square integrable (G r )-martingale, i.e., by the Burkholder-Davis-Gundy inequality, (2.15), Proposition 6.1 and the change of variables,

sup t≥0 E |U x (t)| 2 ≤ sup t≥0 t 0 E L ξ ζ (s) ds ∞ 0 exp - x-s (x-s-y) + v g λ (r)dr -1 2 ν α (dy) ≤ C x 0 ds ∞ 0 x-s (x-s-y) + v g λ (r)dr 2 ν α (dy) = C x 0 s α-1 ds ≤ Cx α .
Denote by E Ux := {E Ux (t) : t ≥ 0} the Doléan-Dade exponential of U x . By Itô's formula,

E Ux (t) = exp - t 0 ∞ 0 L ξ ζ (s) 0 x-s (x-s-y) + v g λ (r)dr N α (ds, dy, dz) - t 0 V α • v g λ (x -s)L ξ ζ (s)ds .
Notice that E Ux is a non-negative local martingale and hence a supermartingale. By Fatou's lemma, we have E[E Ux (t)] ≤ 1 and hence it suffices to identify that E[E Ux (t)] = 1 for any t ≥ 0. For each t 0 ≥ 0 and n ≥ 1, let

τ n := inf{t ≥ 0 : L ξ ζ (t) ≥ n} ∧ t 0 and E n Ux (•) := E Ux (τ n ∧ •)
. By the inequality |1 + (z -1)e z | ≤ z 2 e z for any z ∈ R and Proposition 6.1, there exists a constant C > 0 such that for any t ≥ 0,

t 0 1 {s≤τn} L ξ ζ (s)ds ∞ 0 1 -1 + x-s (x-s-y) + v g λ (r)dr exp - x-s (x-s-y) + v g λ (r)dr ν α (dy) ≤ n x 0 ds ∞ 0 x-s (x-s-y) + v g λ (r)dr 2 exp - x-s (x-s-y) 
+ v g λ (r)dr ν α (dy) ≤ C • x 0 s α-1 ds ≤ Cx α .
By Theorem IV.3 in [START_REF] Lépingle | Sur líntégrabilité uniforme des martingales exponentielles[END_REF] with y(s, z) = 1 {s≤τn} • (exp{-

x-s (x-s-y) + v g λ (r)dr} -1), the process E n Ux is a martingale for each n ≥ 1. Thus

1 = E E n Ux (t 0 ) = E E n Ux (t 0 ); τ n = t 0 + E E n Ux (t 0 ); τ n < t 0 = E E Ux (t 0 ); τ n = t 0 + E E n Ux (t 0 ); τ n < t 0 .
By the monotone convergence theorem and the fact that τ n a.s.

→ t 0 as n → ∞, we have E[E Ux (t 0 ); τ n = t 0 ] → E[E Ux (t 0 )]. Thus it suffices to prove that E[E n Ux (t 0 ); τ n < t 0 ] → 0 as n → ∞. Associate with the martingale E n Ux , we define a probability law Q n x on (Ω, G , G r ) by dQ n x dP = E n Ux (τ n ). Since E n Ux (0) a.s. 
= 1, the PRM N 0 (dy, dz) is G 0 -measurable and has the same distribution under P and Q n x . By Girsanov's theorem for random measure; see Theorem 3.17 in [36, p.170], the PRM N α (ds, dy, dz) is a random point measure under Q n

x with intensity

1 {s≤τn} • exp - x-s (x-s-y) + v g λ (r)dr dsν α (dy)dz,
and the SVE (1.3) is equal in distribution to the following SVE under

Q n x , L ξ,n ζ (t) = X ζ,0 (t) + B n (t) + M n (t), t ≥ 0,
where X ζ,0 is defined as in (4.8), M n is defined as in (4.10) with X ζ replaced by L ξ,n ζ and

B n (t) := t 0 1 {s≤τn} L ξ ζ,n (s)ds ∞ 0 ∇ y W (t -s) exp - x-s (x-s-y) + v g λ (r)dr -1 ν α (dy).
Noting that ∇ y W (t -s) = 0 when s ≥ t and

x-s (x-s-y) + v g λ (r)dr = 0 when s ≥ x, we have for any t ≥ 0,

B n (t) = x 0 1 {s≤τn} L ξ ζ,n (s)ds ∞ 0 ∇ y W (t -s) exp - x-s (x-s-y) + v g λ (r)dr -1 ν α (dy).
By the arithmetic-geometric mean inequality and Proposition 6.1, the preceding inner integral can bounded by C • ((x -s) + • (t -s) + ) (α-1)/2 uniformly in t, s, y > 0. The definition of τ n implies that

sup t≥0 |B n (t)| ≤ C • n • x 0 (x -s) α-1 ds ≤ C • n • x α , a.s. (6.14) Proposition 6.1 implies that exp{- x-s (x-s-y) + v g λ (r)dr} is uniformly bounded in s, y ≥ 0.
Similarly as in the proofs of Lemma 5.1-5.4, there exists a constant C > 0 such that for any t > 0 and t 1 , t 2 ∈ [0, t],

E Q n x X ζ,0 (t) p + L ξ,n ζ (t) p < C • (1 + t) pα and E Q n x X ζ,0 (t 1 ) -X ζ,0 (t 2 ) p + M n (t 1 ) -M n (t 2 ) p ≤ C • (1 + t) pα • |t 1 -t 2 | pα .
Here E Q n x is the expectation under Q n x . Together with these estimates, an argument similar to that in the proof of Theorem 2.9 implies that for any κ ∈ (0, α/2), both X ζ,0 and M n are locally κ-Hölder continuous under Q x n and the Hölder coefficient has finite moments of all orders. Like the argument before Corollary 2.10, we have

E Q n x [sup s∈[0,t] |X ζ,0 (s)| p ] + E Q n x [sup s∈[0,t] |M n (s)| p ] < ∞ for any t, p ≥ 0, which, together with (6.14), implies that E Q n x [sup s∈[0,t] |L ξ,n ζ (s)| p ] < ∞.
By the definition of τ n and Chebyshev's inequality, Similarly as in the proof for Proposition 6.1, we can prove that the last quantity is finite. From this and the exponential formula for PRMs; see [9, p.8],

E E n Ux (τ n ); τ n < t = Q n x τ n < t = Q n x sup s∈[0,t] L ξ,n ζ (s) ≥ n ≤ 1 n E Q n x sup s∈[0,t] L ξ,n ζ (s) 
E exp{-Y x (0)} = exp -ζ ∞ 0 1 -exp - x (x-y) + v g λ (s)ds να (y)dy < ∞.
Notice that e -Zx = e -Yx(0) E Ux on [0, x]. The standard conditional expectation argument yields that the localmartingale e -Zx is a true (G r )-martingale under P. The equality (2.18) can be obtained immediately from the facts that (0) ].

Z x (x) = λL ξ ζ (x) + g * L ξ ζ (x) ≥ 0 and E[e -Zx(x) ] = E[e -Yx

6.3.

Proof for Theorem 2.12. By Lemma 6.6 and 6.8, associated to the unique A-noncontinuable solution (v g λ , T g λ ) of (1.4) we see that Theorem 2.12 holds for any x ∈ [0, T g λ ). Thus it suffices to prove that (v g λ , T g λ ) is a A-global solution, i.e., T g λ = ∞. In the sequel, we assume for contradiction that T g λ < ∞, which implies that lim sup t→T g λ -|v g λ (t)| = ∞. With the help of the following propositions, we prove that |v g λ (t)| ≤ C • t α-1 uniformly in (0, T g λ ); see Lemma 6.14, which leads to a contradiction to the preceding assumption, PROPOSITION 6.9. If T g λ < ∞, there exists a constant C > 0 such that for any t ∈ [0, T g λ ] and y > 0,

t (t-y) + v g λ (r)dr ≤ C and |V α • v g λ (t)| ≤ C ∞ 0 t (t-y) + v g λ (r)dr 2 ν α (dy). (6.15)
PROOF. Notice that e -x -1 + x ≥ 0 for any x ∈ R. By (1.4), we have v g λ (t) ≤ λW (t) + g * W (t) ≤ Ct α-1 and hence t (t-y) + v g λ (r)dr ≤ C uniformly in t ∈ [0, T g λ ] and y > 0. We now prove t (t-y) + v g λ (r)dr ≥ -C uniformly in t ∈ [0, T g λ ] and y > 0. If not, the fact that v g λ ∈ A T for any T ∈ (0, T g λ ) yields that for any y > 0,

T g λ (T g λ -y) + v g λ (r)dr = -∞.
Moreover, by the inequality 1 -e -x ≤ x for any x ∈ R, Lemma 6.8 and (2.18), we have for any t ∈ (0,

T g λ ), 0 ≤ ∞ 0 1 -exp - t (t-y) + v g λ (s)ds να (y)dy ≤ ∞ 0 να (y)dy t (t-y) + v g λ (s)ds.
The continuity of v g λ on (0, T g λ ) implies that the last integral tends to -∞ as t increases to T g λ , which leads to a contradiction and hence the first desired inequality holds. The second one can be proved similarly as in the proof of Proposition 6.2.

Recall the constant θ ∈ (1, 1 1-α ) defined in Proposition 6.3. We need the next two constants in the follows

η ∈ 1 θ - 1 + α 2 2 + , 1 2θ and ∈ 1 + α 2 , η + 1 -1/θ 1 -α ∧ 1 . (6.16)
The first inequality in Proposition 6.2, together with 0 < θη < 1/2 and θ(α -1) + 1 > 0, implies that the following function is well defined on [0, T g λ ),

H(t) := t 0 s -θη • V α • v g λ (t -s) θ ds.
PROPOSITION 6.10. If T g λ < ∞, there exists a constant C > 0 such that for any t ∈ (0, T g λ ),

V α • v g λ (t) ≤ Ct α-1 + C|H(t)| 2/θ • t α+2η+1-2/θ + Ct 2(α+η-+1-1/θ) t 0 |H(t -s)| 2/θ s α+2-2
ds. (6.17) PROOF. For y > 0, integrating both sides of (1.4) over ((t -y) + , t] and then using Fubini's theorem,

t (t-y) + v g λ (s)ds = λ • ∇ y W (t) + g -V α • v g λ * ∇ y W (t).
Plugging this into the second inequality in (6.15) and then using the Cauchy-Schwarz inequality, we have

|V α • v g λ (t)| ≤ C J 1 (t) + J 2 (t) + J 3 (t) uniformly in t ∈ (0, T g λ ),
where

J 1 (t) := λ 2 ∞ 0 ∇ y W (t) 2 ν α (dy), J 2 (t) := ∞ 0 |g * ∇ y W (t)| 2 ν α (dy), J 3 (t) := ∞ 0 (V α • v g λ ) * ∇ y W (t) 2 ν α (dy).
Similarly as in (6.3)-(6.4), we have J 1 (t) ≤ C • t α-1 uniformly in t ∈ (0, T g λ ). By Hölder's inequality, we

have |g * ∇ y W (t)| ≤ g L ∞ • ∇ y W L 1 t ≤ g L ∞ • t 1/2 • ∇ y W L 2 t .
Plugging this into J 2 (t) and then using Proposition A.1 with p = 2 as well as Fubini's theorem, we have uniformly in t ∈ [0, T g λ ),

J 2 (t) ≤ C • t • ∞ 0 ∇ y W 2 L 2 t ν α (dy) = C • t • t 0 dr ∞ 0 |∇ y W (r)| 2 ν α (dy) ≤ C • t α+1 .
We now turn to analyze J 3 (t). Splitting the interval of integration and then using the Cauchy-Schwarz inequality, we have J 

|V α • v g λ | * W (t) = t 0 s -η |V α • v g λ (t -s)| • s η W (s)ds ≤ H(t) 1/θ • t 0 s η W (s) θ/(θ-1) ds 1-1/θ ≤ C • H(t) 1/θ • t α+η+1-1/θ and hence J 31 (t) ≤ C • |H(t)| 2/θ • t α+2η+1-2/θ uniformly in t ∈ (0, T g λ ).
Similarly, we also have 

t t-y |V α • v g λ (s)|W (t -s)ds = y 0 s -η |V α • v g λ (t -s)| • s η W (s)ds ≤ y 0 s -ηθ |V α • v g λ (t -s)| θ ds 1/θ • y 0 s η W (s) θ/(θ-
|V α • v g λ (s)∇ x W (t -s)|ds = t y (s -y) -η |V α • v g λ (t -s)| • (s -y) η ∇ y W (s)ds ≤ t y (s -y) -ηθ |V α • v g λ (t -s)| θ ds 1/θ • t y (s -y) η ∇ y W (s) θ θ-1 ds 1-1/θ . (6.18)
By the change of variables, the first term on the right side of this inequality equals to |H(t -y)| 1/θ . Recall the constant in (6.16). By (2.9), we have

|∇ y W (s)| ≤ C • s α(1-) • (s -y) (α-1) • y uniformly in s > y > 0.
Plugging this into the second term on the right side of the inequality in (6.18), it can be bounded by

Ct α(1-) • t y (s -y) (η+(α-1) ) θ θ-1 ds θ-1 θ • y ≤ C • t α+η-+1-1/θ • y .
uniformly in t ∈ [0, T g λ ) and y ∈ (0, t). Taking these two estimates back into (6.18) and then J 33 (t), we have

J 33 (t) ≤ C • t 2(α+η-+1-1/θ) • t 0 H(t -y) 2/θ • y 2 -α-2 dy.
Here the constant C > 0 is independent of t. Then (6.17) follows by putting all estimates above together. PROPOSITION 6.11. If T g λ < ∞, there exists a constant C * > 0 such that for any t ∈ (0, T g λ ),

H(t) ≤ C * t -ηθ + C * t 0 (t -s) -ηθ • |H(s)| 2 dt. (6.19)
PROOF. Raising both sides of the inequality (6.17) to the θ power and then using the power mean inequality, we have for some constant C > 0 independent of t,

|V α • v g λ (t)| θ ≤ Ct θ(α-1) + C|H(t)| 2 • t θ(α+2η+1)-2 + Ct 2θ(α+η-+1)-2 t 0 |H(t -s)| 2/θ s α+2-2 ds θ .
Convolving both sides of this inequality by the power function s -θη ,

H(t) ≤ C t 0 (t -s) -ηθ • s θ(α-1) ds + C t 0 (t -s) -ηθ • |H(s)| 2 • s θ(α+2η+1)-2 ds +C t 0 (t -s) -ηθ • s 2θ(α+η-+1)-2 s 0 |H(s -r)| 2/θ r α+2-2 dr θ ds. (6.20)
Notice that ηθ < 1/2, θ(α -1) + 1 > 0 and θ(α + 2η + 1) -2 > 0. A simple calculation shows that uniformly in t ∈ (0, T g λ ), the first term on the right side of the above inequality can be bounded by C • t -ηθ and the second term can be bounded by

C • t θ(α+2η+1)-2 t 0 (t -s) -ηθ • |H(s)| 2 ds. (6.21)
Using Hölder's inequality and the fact that 2 -α -1 > 0, we have

s 0 |H(s -r)| 2/θ r α+2-2 dr θ = s 0 |H(s -r)| 2/θ r (α+2-2 )/θ • r (1-1/θ))(2 -α-2) dr θ ≤ s 0 z 2 -α-2 dz θ-1 s 0 |H(s -r)| 2 r α+2-2 dr = s (θ-1)(2 -α-1) |2 -α -1| θ-1 s 0 |H(s -r)| 2 r α+2-2 dr.
Plugging this into the third term on the right side of (6.20), it can be bounded uniformly in t ∈ (0, T g λ ) by

C t 0 (t -s) -ηθ • s 2θ(α+η-+1)-2+(θ-1)(2 -α-1) • s 0 |H(s -r)| 2 r α+2-2 drds ≤ Ct θ(α+2η+1)-2-(2 -α-1) • t 0 (t -s) -ηθ • s 0 |H(s -r)| 2 r α+2-2 drds = C • t θ(α+2η+1)-2-(2 -α-1) • t 0 |H(s)| 2 t-s 0 (t -s -r) -ηθ r α+2-2 drds.
Here the inequality comes from the fact that 2θ(α + η -+ 1) -2 > 0 as well as (θ -1)(2 -α -1) > 0, and the equality comes from Fubini's theorem. Noting that 2 -α -1 > 0 and ηθ < 1/2, a simple calculation induces that uniformly in t ≥ s > 0,

t-s 0 (t -s -r) -ηθ r α+2-2 dr ≤ C • (t -s) -ηθ+2 -α-1 ≤ C • t 2 -α-1 • (t -s) -ηθ
Consequently, the third term on the right side of (6.20) can be bounded uniformly in t ∈ (0, T g λ ) by

C • t θ(α+2η+1)-2 • t 0 (t -s) -ηθ |H(s)| 2 ds,
which can be merged with (6.21). Then (6.19) follows by putting these estimates together. PROPOSITION 6.12. For any C * > 0, there exists a unique continuous and non-negative solution of

ψ(t) = C * t -ηθ + C * t 0 (t -s) -ηθ • |ψ(s)| 2 ds, t > 0. (6.22)
Moreover, for any T > 0, there exists a constant C > 0 such that ψ(t) ≤ C • t -ηθ for any t ∈ (0, T ]. PROOF. By Theorem 6.1(ii) in [START_REF] Abi Jaber | Affine Volterra processes[END_REF] and 0 < ηθ < 1/2, there exists a unique solution ψ ∈ L 2 loc (R + ; R + ) of (6.22). Let ψ(t) := C * t -ηθ + C * t 0 (t -s) -ηθ • | ψ(s)| 2 ds for t > 0. By the properties of convolution, it is easy to identify that ψ is continuous on (0, ∞) and equal to ψ almost everywhere. Thus ψ is the unique continuous and non-negative solution of (6.22). By Theorem 2.a in [START_REF] Callegaro | Fast hybrid schemes for fractional Riccati equations (rough is not so tough)[END_REF], there exist two constants C ψ , r ψ > 0 such that ψ(t) ≤ C ψ t -ηθ uniformly on t ∈ (0, r ψ ]. For T > r ψ , the continuity of ψ yields that ψ(t) ≤ C • t -ηθ for any t ∈ (0, T ] and some C > 0. PROPOSITION 6.13. If T g λ < ∞, there exists a constant C > 0 such that H(t) ≤ C •t -ηθ for any t ∈ (0, T g λ ).

PROOF. Choosing the two constants C * > C * > 0 such that the inequality (6.19) turns to be strict. It is easy to identify that both t ηθ H(t) and t ηθ ψ(t) are continuous on [0, T g λ ). By Theorem 2.1 in [START_REF] Denton | Fractional integral inequalities and applications[END_REF] 13 , the function H can be uniformly bounded by ψ on (0, T g λ ) and the desired result follows directly from Proposition 6.12. LEMMA 6.14. If T g λ < ∞, there exists a constant C > 0 such that |v g λ (t)| ≤ C • t α-1 for any t ∈ (0, T g λ ).

PROOF. Plugging Proposition 6.13 into (6.17), we have

|V α • v g λ (t)| ≤ Ct α-1 + Ct α+1-2/θ + Ct 2(α+η-+1-1/θ) t 0 (t -s) -2η s α+2-2 ds. Notice that α + 1 -2/θ ∈ (α -1, 1 -α), η < 1/2 and α + 2 -2 < 1, we have |V α • v g λ (t)| ≤ C • t α-1 uniformly in t ∈ [0, T g λ ).
Taking this back into (1.4), we can get the desired result immediately.

6.4. Proof for Theorem 2.1 [START_REF] Abi Jaber | Affine Volterra processes[END_REF]. Assume that L ξ ζ,1 and L ξ ζ,2 are two weak solutions of (1.3). For any x, z ≥ 0 and g ∈ L ∞ (R + ; R + ), let v g 0 be the unique A-global solution of (1.4) with λ = 0. By Theorem 2.12,

E e -z•g * L ξ ζ,1 (x) = exp -ζ ∞ 0 1 -exp - x (x-y) + v g 0 (s)ds να (y)dy = E e -z•g * L ξ ζ,2 (x) .
The one-to-one correspondence between non-negative random variables and their Laplace transforms yields that the two non-negative random variables g * L ξ ζ,1 (x) and g * L ξ ζ,2 (x) are equal in distribution. Hence the two solutions L ξ ζ,1 and L ξ ζ,2 have the same probability law on L 1 ([0, x]; R + ) and also on C([0, x]; R + ). By the arbitrariness of x, the weak uniqueness of non-negative solutions holds for (1.3).

Fractional integral representations.

In this section we prove the two equivalences in Theorem 2.14.

When b = 0, they follow directly from (2.7). We now prove them with b > 0. The equivalence between (1.4) and (2.20) follows from the resolvent equation (2.12). Indeed, by Theorem 4.6 14 in [30, p.48] and (2.12) we have v g λ solves (2.20) if and only if

v g λ = λK + (g -V α • v g λ ) * K -bW * λK + (g -V α • v g λ ) * K = λ(K -bW * K) + (g -V α • v g λ ) * (K -bW * K).
Multiplying both sides by b and then using (2.12) again, we have

bv g λ = λ(bK -bW * bK) + (g -V α • v g λ ) * (bK -bW * bK) = λbW + (g -V α • v g λ ) * bW , which is equivalent to (1.4).
The equivalence between (1.3) and (2.19) can be proved in the same way. For convenience, we assume 

K(x) = 0 if x ≤ 0. Notice that s s-y K(r)dr = s 0 ∇ y K(r)
L ξ ζ (x) = ζ -ζ • bW (x) + ∞ 0 ζ 0 x 0 ∇ y K(r)dr N 0 (dy, dz) - x 0 bW (x -t)dt ∞ 0 ζ 0 t 0 ∇ y K(r)
dr N 0 (dy, dz) 13 For T > 0 and ρ ∈ (0, 1), let f1, f2 be two functions on (0, T ] satisfying that t ρ fi(t) ∈ C([0, T ]; R) with i = 1, 2. If f1(t) < C1t -ρ + C1 t 0 (t -s) -ρ f1(s)ds and f2(t) = C2t -ρ + C2 t 0 (t -s) -ρ f2(s)ds with C1 < C2, then f1 < f2 on (0, T ]. 14 For two function f, k ∈ L 1 loc (R+; R), we have

x = f + k * x if and only if x = f + R k * f , where R k is the unique solution of R k = k + k * R k . + x 0 ∞ 0 L ξ ζ (s) 0 x-s 0 ∇ y K(r)dr N α (ds, dy, dz) - x 0 bW (x -t)dt t 0 ∞ 0 L ξ ζ (s) 0 t-s 0 ∇ y K(r)dr N α (ds, dy, dz). (7.1)
By the change of variables and Proposition A.4,

x 0 bW (x -t) t 0 ds 0 t-s 0 ∇ y K(r)dr 2 ν α (dy) 1/2 dt ≤ C • W (x) • x 0 ds 0 | s 0 ∇ y K(r)dr| 2 y α+2 dy 1/2 , (7.2)
which goes to 0 as → 0+. By the change of variables and Fubini's theorem,

x 0 bW (x -t) t-s t-s-y K(r)dr • 1 {0≤s<t} dt = x-s 0 bW (x -s -t) s 0 ∇ y K(r)drdt = x-s 0 ∇ y K(t) x-s t bW (x -s -r)drdt = x-s 0 ∇ y K(t)bW (x -s -t)drdt = bW * ∇ y K(x -s).
By the change of variables and Proposition A.6, we have for > 0,

x 0 ds 0 |bW * ∇ y K(x -s)| 2 ν α (dy) ≤ C x 0 ds 0 |W * ∇ y K(s)| 2 y α+2 dy,
which is finite and goes to 0 as → 0+. From this, (7.2) and the stochastic Fubini theorem; see Theorem D.2, the stochastic integral

x 0 ∞ 0 L ξ ζ (s) 0 bW * ∇ y K(x -s) N α (ds, dy, dz)
is well defined and equal almost surely to the last stochastic integral on the right side of (7.1). Moreover, by Fubini's theorem and (2.13),

x-s

0 ∇ y K(r)dr -bW * ∇ y K(x -s) = 1 -bW * ∇ y K(x -s) = W * L K * ∇ y K(x -s) = ∇ y W (x -s).
Thus the subtraction of the last two terms on the right side of (7.1) is equal almost surely to

x 0 ∞ 0 L ξ ζ (s) 0 ∇ y W (x -s) N α (ds, dy, dz).
Similarly, the following stochastic integral

∞ 0 ζ 0 x 0 bW (x -t) t 0 ∇ y K(r)drdt N 0 (dy, dz)
is also well defined and equal almost surely to the second stochastic integral on the right side of (7.1). Moreover,

x 0 ∇ y K(r)dr - x 0 bW (x -t) t 0 ∇ y K(r)drdt = x 0 ∇ y W (r)dy = ∇ y W (x).
The subtraction of the first two integrals on the right side of (7.1) is equal almost surely to

∞ 0 ζ 0 ∇ y W (x) N 0 (dy, dz).
Putting these results together, we see that (7.1) turns into (2.16) and hence (2.19) is equivalent to (1.3).

8. Application to M/G/1 processor-sharing queues. As the continuation of [START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF], we use the preceding results to establish a SVE for the heavy-traffic limit of heavy-tailed M/G/1 processor sharing queues. Recall the sequence {γ n } n≥1 and the Pareto distribution Λ defined in Section 4.1. In the n-th processor-sharing queue, the arrival of customers to the system is described by a Poisson process with rate γ n > 0 and the amount of processing time that each customer requires from the server is distributed as Λ. Additionally, there are z n initial customers in the system at time 0, whose residual service times are independent and identically distributed with common distribution Λ * . Here we are interest in the heavy-traffic limit of the queue-length process before the queue becoming empty. More precisely, let q (n) := {q (n) (t) : t ≥ 0} be the queue-length process and τ (n) the first time that the queue becomes empty, i.e. τ (n) := inf{t > 0 : q (n) (t) = 0}. We write Q (n) for the rescaled queue-length process {n -α/(1+α) • q

(n) (nt) : t ∈ [0, τ (n) ]} under P( • |τ (n) < ∞).
Denote by E the set of all positive excursions with finite length. For each f ∈ E, let e f be the right end point of f and

I f (t) := t 0 f (s)ds, t ≥ 0. (8.1)
It is obvious that I f is a continuous and non-decreasing function on R + , which allows us to define its rightinverse function

I -1 f by I -1 f (t) = e f if t > I f (∞) and I -1 f (t) := inf{s ≥ 0 : I f (s) ≥ t} if t ∈ [0, I f (∞)].
Let L be the Lamperti transformation on E, which is a map acting on an excursion f ∈ E by L • f (t) := f (I -1 f (t)) for t ≥ 0. The next corollary is a direct consequence of Theorem 6.5 in [START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF] 

/n α/(1+α) → ζ > 0 as n → ∞, we have Q (n) → Q ζ weakly in D([0, ∞), R + ), where the limit process Q ζ ∈ E is the unique weak solution of Q ζ (t) = ζ -b t 0 I -1 Qζ (t) -I -1 Qζ (s) α-1 Γ(α)Γ(1 -α) ds + ∞ 0 ζ 0 I -1 Q ζ (t) (I -1 Q ζ (t)-y) + r α-1 dr Γ(α)Γ(1 -α) N Q,0 (dy, dz) + t 0 ∞ 0 I -1 Q ζ (t)-I -1 Q ζ (s) (I -1 Q ζ (t)-I -1 Q ζ (s)-y) + r α-1 dr Γ(α)Γ(1 -α) N Q (ds, dy), t ≥ 0, (8.2)
where ν α (dy) is given by (1.2) with c = Γ(1 -α), N Q,0 (dy, dz) and N Q (ds, dy) are two compensated PRMs on (0, ∞) 2 with intensity να (y)dydz and dsν α (dy), respectively.

PROOF. Let L ξ

ζ be the unique weak solution of (2.19) with c = Γ(1 -α). From Theorem 6.5 in [START_REF] Lambert | Asymptotic behavior of local times of compound Poisson processes with drift in the infinite variance case[END_REF], we have Q

(n) → L • L ξ ζ ∈ E weakly in D([0, ∞), R + ). By (2.19
) and the change of variables,

L • L ξ ζ (t) = ζ -b I -1 L ξ ζ (t) 0 (I -1 L ξ ζ (t) -s) α-1 Γ(α)Γ(1 -α) L ξ ζ (s)ds + ∞ 0 ζ 0 I -1 L ξ ζ (t) (I -1 L ξ ζ (t)-y) + r α-1 dr Γ(α)Γ(1 -α) N 0 (dy, dz) + I -1 L ξ ζ (t) 0 ∞ 0 L ξ ζ (s) 0 I -1 L ξ ζ (t)-s (I -1 L ξ ζ (t)-s-y) + r α-1 dr Γ(α)Γ(1 -α) N α (ds, dy, dz) = ζ -b t 0 (I -1 L ξ ζ (t) -I -1 L ξ ζ (s)) α-1 Γ(α)Γ(1 -α) L ξ ζ (I -1 L ξ ζ (s))dI -1 L ξ ζ (s) + ∞ 0 ζ 0 I -1 L ξ ζ (t) (I -1 L ξ ζ (t)-y) + r α-1 dr Γ(α)Γ(1 -α) N 0 (dy, dz) + t 0 ∞ 0 L ξ ζ (I -1 L ξ ζ (s)) 0 I -1 L ξ ζ (t)-I -1 L ξ ζ (s) (I -1 L ξ ζ (t)-I -1 L ξ ζ (s)-y) + r α-1 dr Γ(α)Γ(1 -α) N α (dI -1 L ξ ζ (s), dy, dz) = ζ -b t 0 (I -1 L ξ ζ (t) -I -1 L ξ ζ (s)) α-1 Γ(α)Γ(1 -α) L • L ξ ζ (s)dI -1 L ξ ζ (s) + ∞ 0 ζ 0 I -1 L ξ ζ (t) (I -1 L ξ ζ (t)-y) + r α-1 dr Γ(α)Γ(1 -α) N 0 (dy, dz) + t 0 ∞ 0 I -1 L ξ ζ (t)-I -1 L ξ ζ (s) (I -1 L ξ ζ (t)-I -1 L ξ ζ (s)-y) + r α-1 dr Γ(α)Γ(1 -α) N α (dI -1 L ξ ζ (s), dy, (0, L • L ξ ζ (s)]). (8.3) For any s ∈ [0, I L ξ ζ (∞)], by (8.1) we have s = I L ξ ζ (I -1 L ξ ζ (s)) = I -1 L ξ ζ (s) 0 L ξ ζ (r)dr = s 0 L ξ ζ (I -1 L ξ ζ (r))dI -1 L ξ ζ (r) = s 0 L • L ξ ζ (r)dI -1 L ξ ζ (r).
Differentiating both sides of this equality and then moving L • L ξ ζ to the left side of the first equality, ds

L • L ξ ζ (s) = dI -1 L ξ ζ (s).
Integrating both side of this equality over [0, t], we have

I -1 L ξ ζ (t) = t 0 ds L • L ξ ζ (s) = I -1 L •L ξ ζ (t).
Plugging these back into the terms on the right side of the last equality in (8.3) yields that

L • L ξ ζ (t) = ζ -b t 0 I -1 L •L ξ ζ (t) -I -1 L •L ξ ζ (s) α-1 Γ(α)Γ(1 -α) ds + ∞ 0 ζ 0 I -1 L •L ξ ζ (t) (I -1 L •L ξ ζ (t)-y) + r α-1 dr Γ(α)Γ(1 -α) N Q,0 (dy, dz) + t 0 ∞ 0 I -1 L •L ξ ζ (t)-I -1 L •L ξ ζ (s) (I -1 L •L ξ ζ (t)-I -1 L •L ξ ζ (s)-y) + r α-1 dr Γ(α)Γ(1 -α) N Q (ds, dy),
where N Q,0 (dy, dz) := N 0 (dy, dz) and N Q (ds, dy) := N α (dI -1

L ξ ζ (s), dy, (0, L • L ξ ζ (s)]). It is easy to identi- fy that N Q (ds, dy) is a compensated PRM on (0, ∞) 2 with intensity L • L ξ ζ (s)dI -1 L ξ ζ (s)ν α (dy) = dsν α (dy).
Consequently, the limit process L • L ξ ζ is a weak solution of (8.2). The weak uniqueness of solutions of (8.2) follows directly from Theorem 2.1.

APPENDIX A: SOME TECHNICAL RESULTS ABOUT THE SCALE FUNCTION PROPOSITION A.1. For p > 1 + α, there exists a constant C > 0 such that for any h ≥ 0,

∞ 0 |∆ h W (s)| p (s + h) α+1 ds + h 0 ds ∞ 0 |∇ y W (s)| p y α+2 dy ≤ Ch (p-1)α .
PROOF. From (2.9), there exists a constant C > 0 such that for any h ≥ 0,

∞ 0 |∆ h W (s)| p (s + h) α+1 ds ≤ C h 0 (s + h) pα-α-1 ds + C ∞ h h p s p(α-1) (s + h) α+1 ds ≤ C • h (p-1)α .
Similarly, there exists a constant C > 0 such that for any h ≥ 0,

h 0 ds s 0 |∇ y W (s)| p y -α-2 dy ≤ C h 0 ds s/2 0 (s -y) p(α-1) y α+2-p dy + C h 0 ds ∞ s/2 s pα y α+2 dy ≤ C h 0 s p(α-1) ds s/2 0 y p-α-2 dy + C h 0 s pα-α-1 ds ≤ C • h (p-1)α .
PROPOSITION A.2. For p ≥ 2, there exists a constant C > 0 such that for any h ≥ 0,

∞ 0 ds s 0 |∇ y ∆ h W (s)| p y α+2 dy ≤ Ch (p-1)α . (A.1)
PROOF. We first split the double integral in (A.1) into the following four parts:

J 1 (h) := 4h 0 ds s 0 |∇ y ∆ h W (s)| p y α+2 dy, J 2 (h) := ∞ 4h ds s s-h |∇ y ∆ h W (s)| p y α+2 dy, J 3 (h) := ∞ 4h ds s-h s/2 |∇ y ∆ h W (s)| p y α+2 dy, J 4 (h) := ∞ 4h ds s/2 0 |∇ y ∆ h W (s)| p y α+2 dy.
The power mean inequality, along with the equality Hence

∇ y ∆ h W (s) = ∇ y W (s + h) -∇ y W (s), implies that uniformly in h ≥ 0, J 1 (h) ≤ C
J 1 (h) ≤ C • h (p-1)α uniformly in h ≥ 0. Similarly, notice that ∇ y ∆ h W (s) = ∆ h ∇ y W (s) = ∆ h W (s) - ∆ h W (s -y)
, by the power mean inequality we have uniformly in h ≥ 0,

J 2 (h) ≤ C • ∞ 4h ds s s-h |∆ h W (s)| p y α+2 dy + C • ∞ 4h ds h 0 |∆ h W (y)| p (s -y) α+2 dy.
Here the change of variables is also used to get the second integral. From (2.9) we have

|∆ h W (s)| ≤ Cs α-1 h for any s ≥ h ≥ 0 and |∆ h W (y)| ≤ Ch α for any y ∈ (0, h]. Thus J 2 (h) ≤ Ch p ∞ 4h s p(α-1) ds s s-h dy y α+2 + Ch pα+1 ∞ 4h ds (s -h) α+2 ≤ Ch p+1 ∞ 4h s p(α-1) (s -h) α+2 ds + Ch pα+1 ∞ 3h s -α-2 ds ≤ Ch (p-1)α .
We now turn to consider J 3 (h) and J 4 (h). By (2.8), we have uniformly in h ≥ 0 and s ≥ y > 0,

|∇ y ∆ h W (s)| = y 0 dỹ h 0 W (s + h -ỹ)d h ≤ C y 0 dỹ h 0 |s + h -ỹ| α-2 d h ≤ Ch • |s -y| ∧ y (s -y) 2-α .
Plugging this into J 3 (h) and J 4 (h) yields that uniformly in h ≥ 0, PROOF. We split the preceding double integral into the following three parts: Hence J 1 (h) ≤ C • h (p-1)α uniformly in h ≥ 0. We turn to consider J 2 (h). Notice that ∇ y W (s + h) -W (s) = ∆ h W (s) -W (s + h -y) for any y ∈ [h, s + h]. By the power mean inequality, The first double integral on the right side of this inequality can be bounded by Ch -α-1 h 0 (s + h) pα ds ≤ Ch (p-1)α . Using the change of variables and then Fubini's theorem to the second double integral, PROOF. Here we just prove the convergence of the first integral to 0. The second one can be prove in the same way. For convenience, we assume x ≥ ≥ 0. By Fubini's theorem and the fact that W (s -y) = 0 for y ≥ s, we can split the targeted integral into two parts on (0, ∞) × U. We say N H (ds, du) is a marked Hawkes point measure (MHP) on (0, ∞) × U if it has a (F t )-intensity Z(s-)dsν H (du) with the intensity process Z := {Z(t) : t ≥ 0} given by

J 3 (h) ≤ Ch p ∞ 4h ds s-h s/2 (s -y) p(α-1) y α+2 dy ≤ Ch pα
Z(t) = µ(t) + NH (t) k=1 φ(t -σ k , η k ), t ≥ 0,
for some kernel φ : R + × U → [0, ∞) and some F 0 -measurable, non-negative functional-valued random variable {µ(t) : t ≥ 0}. We usually interpret φ(•, u) and µ as the impacts of an event with mark u and all events prior to time 0 on the arrival of future events respectively. Following the argument in [35, p.93]; see also Section 2 in [START_REF] Horst | Functional limit theorems for marked Hawkes point measures[END_REF], on an extension of the original probability space we can define a time-homogeneous PRM N (ds, du, dz) on (0, ∞) × U × R + with intensity dsν H (du)dz such that Denote by φ H := {φ H (t) : t ≥ 0} the mean impacts of an event on the arrival of future events with φ H (t) := U φ(t, u)ν H (du). We assume φ H is locally integrable. Let R H := {R H (t) : t ≥ 0} be the resolvent of φ H defined as the unique solution to R H = φ H + φ H * R H . It is usual to interpret R H as the mean impacts of an event and its triggered events on the arrivals of future events. In addition, we introduce a two-parameter function R(t, u) = φ(t, u) + R H * φ(t, u) on R + × U to describe the mean impacts of an event with mark u on the arrivals of future events. An argument similar to the one used in Section 2 in [START_REF] Horst | Functional limit theorems for marked Hawkes point measures[END_REF] induces the following proposition immediately. 

APPENDIX C: STOCHASTIC INTEGRALS WITH RESPECT TO H # -SEMIMARTINGALE

In this section we give a brief introduction to the stochastic integrals with respect to infinite-dimensional semimartingales; readers may refer to [START_REF] Kurtz | Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case[END_REF] for more details. Let H be a separable Banach space endowed with a norm • H . We now give the definition of H # -semimartingales. DEFINITION C.1. We say Y is a (F t )-adapted H # -semimartingale, if it is a stochastic process indexed by H × R + such that • For each f ∈ H, Y (f ) := {Y (f, t) : t ≥ 0} is a cádlág (F t )-semimartingale with Y (f, 0) a.s. = 0;

• For each t ≥ 0, α 1 , • • • , α m ∈ R and f 1 , • • • , f m ∈ H, Y ( m k=1 α k f k , t) a.s. = m k=1 α k Y (f k , t).
Let H 0 be a dense subset of H and S 0 the collection of H-valued stochastic processes of the form

X(t) := m k=1 ξ k (t)ϕ k with ξ k (t) := ∞ i=0 η k i • 1 [τ k i ,τ k i+1 ) (t),
where m ≥ 1, ϕ In addition, we also write (X n , Y n ) ⇒ (X, Y ) if

(X n , Y n (f 1 ), • • • , Y n (f m )) d → (X, Y (f 1 ), • • • , Y (f m )) in D([0, ∞), H × R m ).

APPENDIX D: STOCHASTIC INTEGRALS WITH RESPECT TO POISSON RANDOM MEASURE

Let N 1 (ds, dy, dz) be a compensated (F t )-PRM on (0, ∞) 3 with intensity dsν 1 (dy)dz, where ν 1 (dy) is a σ-finite measure on R + such that ν 1 (x, ∞) < ∞ for any x > 0. Let {X(t) : t ≥ 0} be a (F t )-predictable and non-negative process. 

0 ∇

 0 Let L ξ ζ be the process {L ξ (x, τ L ξ (ζ)) : x ≥ 0} conditioned on τ L ξ (ζ) < ∞. The first main result states that L ξ ζ is the unique weak solution 1 of the following stochastic Volterra equation (SVE) y W (x)N 0 (dy, dz) +

→=

  be the uniform convergence on compacts, almost sure convergence, convergence in distribution and convergence in probability respectively. We also use a.s. to denote almost sure equality, equality in distribution and equality in probability respectively.

  exponentially distributed with mean u 0 (0) and P τ L ξ (ζ) = ∞ > 0 for any ζ > 0. For a, θ > 0, let a • ξ(θ•) := {aξ(θt) : t ≥ 0}. The equality (2.1), along with the change of variables, implies the following two equivalences3 

1

 1 (ds, dy, dz), (2.22) and then comparing (2.21) with the Riccati equation for the Laplace exponent of Y ζ

  the process Y always moves from the negative half line into the positive half line by jumping, i.e., Y (τ + Y -) < 0 and Y (τ + Y ) > 0 a.s. The next proposition comes from Theorem 17(ii) in [9, p.204]. Let ν * (dx) be the size-biased distribution of ν given by

PROPOSITION 3 . 2 .

 32 be the local times of Y satisfying the occupation density formula (2.1). The local time L Y (x, ∞) is infinite almost surely for some and hence all x ∈ R if and only if ϕ (0) = 0. Denote by τ L Y := {τ L Y (ζ) : ζ ≥ 0} the right-inverse local time at level 0. When β = 1, the local time L Y (x, t) equals to the times that Y hits x in the time interval (0, t], i.e., L Y a.s. = #{s ∈ (0, t] : Y (s) = x} : x ∈ R, t ≥ 0 and τ L Y only jumps at positive integer points. The next proposition follows directly from (2.4). If β > 0, the process τ L Y only jumps at points {k/

LEMMA 4 . 1 .

 41 Let c 0 > 0. If Theorem 2.1(1) holds for any ξ with (α, b, c)

4. 1 .

 1 Compound Poisson approximation. Based on Lemma 4.1, we start to prove Theorem 2.1(1) for any ξ with α ∈ (0, 1), b ≥ 0, c ≡ Γ(1 -α), ν α (dy) = α(α + 1)y -α-2 dy and να (y) = αy -α-1 .

  α ζ] be the unique solution of (3.4) with k = [n α ζ], β = 1, γ = γ n and ν = Λ. By (2.4) and Theorem 3.5,

(4. 14 )

 14 Notice that the event {L ξ (0, ∞) ∈ dζ} occurs if and only if {τ L ξ (ζ) < ∞, ∈ dζ}. By (2.14) and (4.14), we have for any Borel set A of C([0, ∞), R + ),

4. 3 .

 3 Proofs for auxiliary lemmas. In this section we provide the detailed proofs for the auxiliary lemmas in the last section. Denote by LΛ, L Λ * and L R (n) Λ the Laplace transforms of Λ, Λ * and R (n) Λ respectively, i.e., LΛ(λ) :=

4. 3 . 1 .

 31 Upper bounds for resolvents. As a preparation, we first give some upper bound estimates for the resolvent R (n) Λ and R(n) , which will play an important role in the following proofs and analyses. Notice that Λ is a complete monotone function. Theorem 5.3.1 in[30, p.148] tells that R (n) Λ is also completely monotone and R (n) Λ L ∞ < ∞ . The next proposition gives a uniform upper bound estimate for {R (n) Λ } n≥1 . PROPOSITION 4.8. There exists a constant C > 0 such that for any t ≥ 0 and n ≥ 1,

  )||h(s)| 1/p • |h(s)| 1-1/p ds p ≤ T 0 |g(s)| p |h(s)|ds • T 0 |h(s)|ds p-1

4. 3 . 3 .

 33 Proof for Lemma 4.4. The desired convergence is obtained by showing that the Laplace transform of the measure with density n 1-α R (n) Λ (n•) converges toward the Laplace transform of the measure with density W . Taking the Laplace transforms of both sides of (4.3), we have

  → 0 as n → ∞. It remains to prove that ε (n) 22 (T ) is bounded. By the power mean inequality and the fact that n α+1 Λ(n • dy) ≤ ν α (dy), in n ≥ 1. By Proposition A.1, the first integral on the right side of (4.21) can be bounded by C • T α(2ϑ-1) . Plugging (4.18) into the second integral on the right side of (4.21), it can be bounded by C

, and this converges as n → ∞ to exp -ζ ∞ 0 ( 1 - 0 Y 1 - 0 ( 1 -

 010101 e -Yd(λ,y) )ν α (y)dy = E exp -∞ d (λ, y)N ζ (dy) , if and only if ∞ 0 e -Y (n) d (λ,y) • n α • Λ * (n • dy) -∞ e -Yd(λ,y) )ν α (y)dy → 0. (4.22)

y

  using the fact that n α • Λ * (n • dy) ≤ ν(y)dy, -α dy ≤ C 1-α , which goes to 0 as → 0+. Similarly, we also can prove that sup n≥1 |ε (n) 6 | → 0 as → 0+. The convergence (4.22) follows directly by putting these estimates together.

,

  which vanishes as n → ∞. Hence E[E Ux (t 0 )] = 1 and E Ux is a (G r )-martingale under P. By Proposition 6.1, dr να (y)dy.

00

  |∇ y W (s)| p y α+2 dy. By Proposition A.1, the second term on the right side of this inequality can be bounded by Ch (p-1)α uniformly in h ≥ 0. Applying the change of variables to the first term and then using Proposition A.1 again, it can be bounded uniformly in h ≥ 0 by C |∇ y W (s)| p y α+2 dy ≤ Ch (p-1)α .

∞s

  4h -α-1 ds ≤ Ch (p-1)α and J 4 (h) ≤ Ch p α-2 dy ≤ Ch (p-1)α .The desired result follows immediately by putting these estimates together. PROPOSITION A.3. For p ≥ 2, there exists a constant C > 0 such that for any h ≥ 0, y W (s + h) -W (s)| p y α+2 dy ≤ Ch (p-1)α .

J 1 (J 1 ( 0 s pθ-α-2 ds s 0 ( 0 s

 11000 y W (s + h) -W (s)| p y α+2 dy, J 3 (h) := ∞ h ds s+h s |∇ y W (s + h) -W (s)| p y α+2 dy.By the power mean inequality, we have uniformly in h ≥ 0, p y α+2 dy.Since W (s) ≤ Cs α uniformly in s ≥ 0; see (2.8), the second term on the right side of this inequality can be bounded byC h 0 s pα-α-1 ds ≤ C • h (p-1)α uniformly in h ∈ [0, 1].For the first term, choosing a positive constant θ satisfying that 1 + α < pθ < (1 -α) -1 ∧ p, by (2.9) we have∇ y W (s + h) = |∇ y W (s + h)| 1-θ • |∇ y W (s + h)| θ ≤ C(s + h) (1-θ)α (s + h -y) θ(α-1) y θ , uniformly in h ≥ s ≥ 0 and y ∈ [h, s + h]. Then h 0 ds h s |∇ y W (s + h)| p y α+2 dy ≤ C h) (1-θ)pα (s + h -y) pθ(α-1) y pθ-α-2 dy ≤ C • h (1-θ)pα h -y) pθ(α-1) y pθ-α-2 dy ≤ C • h (1-θ)pα h y + h -s) pθ(α-1) dy ≤ C • h (1-θ)pα+pθ(α-1)+1h pθ-α-2 ds ≤ Ch (p-1)α .

J 2 (

 2 h -y)| p y α+2dy,uniformly in h ≥ 0. Since |∆ h W (s)| ≤ C(s + h) α and W (s + h -y) ≤ C(s + h -y) α uniformly in s, h ≥ 0 and y ∈ [0, s + h],there exists a constant C > 0 such that for any h ≥ 0,J 2 (h) ≤ C h 0 ds s+h h (s + h) pα y α+2 dy + C h 0 ds s+h h (s + h -y) pα y α+2dy.

3 (

 3 s) pα (s + h) α+2 dy ≤ C • h (p-1)α and hence J 2 (h) ≤ C • h (p-1)α uniformly in h ≥ 0. Similarly, we also haveJ h -y) pα y α+2dy.The first term on the right side of the second inequality can be bounded byC • h p ∞ h s p(α-1)-α-1 ds ≤ C • h (p-1)α uniformly in h ≥ 0.By the change of variables, the second term equals toC ∞ h ds h 0 (h -y) pα (y + s) α+2 dy ≤ C ∞ h ds h 0 y pα s α+2 dy ≤ C • h (p-1)αand J 3 (h) ≤ Ch (p-1)α uniformly in h ≥ 0. The desired result follows by putting these estimates together. PROPOSITION A.4. For any x ≥ 0, we have as → 0+,

I 1 (

 1 y W (s)| 2 y α+2 ds. By (2.8), we have y 0 |W (s)| 2 ds ≤ C • y 2α+1 uniformly in y ≥ 0 and henceI 1 ( ) ≤ C • α → 0 as → 0+. Let ϑ ∈ (α + 1, (1 -α) -1 ∧ 2). Using (2.9), we have uniformly in s ≥ y ≥ 0,∇ y W (s) 2 = ∇ y W (s) ϑ • ∇ y W (s) 2-ϑ ≤ C • y θ (s -y) ϑ(α-1) • s (2-ϑ)α .Plugging this into I 2 ( ) implies thatI 2 ( ) ≤ C • y) ϑ(α-1) y α+2-ϑ • s (2-ϑ)α ds ≤ C • x (2-ϑ)α 0 (x -y) ϑ(α-1)+1 y α+2-ϑ dy ≤ C • ϑ-α-1 ,which goes to 0 as → 0+. The desired result follows by putting these estimates together.PROPOSITION A.5. For any x ≥ 0, we have as → 0+, y W (s)| 2 y α+2 dy → 0.PROOF. We still assume x ≥ ≥ 0 and then split the targeted double integral into the following two parts I 3 ( ) := 0 dy y 0 |K * W (s)| 2 y α+2 ds and I 4 ( ) := 0 dy x y |K * ∇ y W (s)| 2 y α+2 ds.

N 0 N

 0 H (ds, du) = Z(s-) (ds, du, dz) and hence the intensity process at time t can be rewritten intoZ(t) = µ(t) + t 0 U Z(s-) 0 φ(t -s, u)N (ds, du, dz).

PROPOSITION B. 1 . 0 R

 10 The intensity process Z satisfies the following SVE Z(t) = µ(t) + t H (t -s)µ(s)ds + -s, u) N (ds, du, dz), t ≥ 0 where N (ds, du, dz) := N (ds, du, dz) -dsν H (du)dz.

For

  any H-valued cádlág process X and standard H # -semimartingale Y , we can find a sequence {X } >0 ⊂ S 0 such that as → 0,sup t∈[0,T ] X (t) -X(t) H a.s. → 0 and X -• Y := lim →0+ X -• Y exists a.s. in the sense that sup t∈[0,T ] |X -• Y (t) -X -• Y (t)| p → 0. Moreover, the limit process X -• Y is cádlág, independent of {X } >0 and called the stochastic integral of X with respect to Y . For any (F t )-stopping time σ, we have X -• Y (t ∧ σ) = X σ -• Y with X σ -(t) := X -(t)1 [0,σ) (t) for t ≥ 0. DEFINITION C.3. A sequence of H # -semimartingales {Y n } n≥1 is uniformly tight if {H n,t } n≥1 is uniformly stochastically bounded for any t ≥ 0, where H n,t is defined by (C.1) with Y replaced by Y n . We say Y n converges weakly to Y and write Y n⇒ Y if for any m ≥ 1 and f 1 , • • • , f m ∈ H, (Y n (f 1 ), • • • , Y n (f m )) d → (Y (f 1 ), • • • , Y (f m )) in D([0, ∞), R m ).

THEOREM D. 1 (ff 1 (f

 11 Maximal inequality). For p ≥ 1 and T > 0, let f be a measurable function on R 2 + satisfyingT 0 ds ∞ 0 |f (s, y)| 2p ν 1 (dy) < ∞. If sup t∈[0,T ] E[|X(t)| p ] < ∞,then there exists a constant C > 0 depending only on p such that (s, y) N 1 (ds, dy, dz) , y)| 2p ν 1 (dy)ds. (D.1) PROOF. By the maximal inequality established in [55, Theorem 1, p.297] for purely discontinuous martingales, there exists a constant C > 0 depending only on p such that E sup t∈[0,T ] (s, y) N 1 (ds, dy, dz) 2p Here the two stochastic integrals with respect to N 1 (ds, dy, dz) on the right side of the first and second equality are finite sums. Thus the difference between the two integrals in (D.2) can be bounded by |A 1 ( )| + |A 2 ( )| uniformly in ∈ (0, 1] with A (v)g(v, s, y)m(dv) N 1 (ds, dy, dz). It suffices to prove that |A 1 ( )| + |A 2 ( )| p → 0 as → 0+. For any η > 0 and J > 0, we have P(|A 1( )| ≥ η) ≤ P(|A 1 ( )| ≥ η, X L ∞ T ≤ J) + P( X L ∞ T > J). Since X L ∞ T < ∞ a.s., then P( X L ∞ T > J) → 0 as J → ∞. Notice that P(|A 1 ( )| ≥ η, X L ∞ T ≤ J) ≤ P V f (v)m(dv) , s, y) N 1 (ds, dy, dz) ≥ η .By Chebyshev's inequality and then Fubini's theorem,P(|A 1 ( )| ≥ η, X L ∞ T ≤ J) ≤ 1 η V |f(v)|m(dv)E , s, y) N 1 (ds, dy, dz) . By (D.1) with p = 1/2 and then Jensen's inequality, the last expectation can be bounded by E , s, y)| 2 N 1 (ds, dy, dz) , s, y)| 2 N 1 (ds, dy, dz) 0 as → 0+. Putting these estimates together, we have P(|A 1 ( )| ≥ η) → 0 and hence |A 1 ( )| p → 0 as → 0+. Similarly, we also can prove that |A 2 ( )| p → 0 as → 0+.

  uniformly tight. By Example 5.3 in [41], the function F satisfies Condition C.2 and also Condition C.1 in [42, p.248-249], which induces that

  which implies (4.13) immediately. The whole proof has been finished. PROOF FOR THEOREM 2.1[START_REF] Abi Jaber | A weak solution theory for stochastic Volterra equations of convolution type[END_REF]. From (2.3), the inverse local time τ L ζ is a subordinator killed at an independent exponential time . For any ζ > 0, we have τ L

ξ (ζ) < ∞ if and only if > ζ. Moreover, the independent increments of ξ and the memorylessness of yield that conditioned on τ

  Ch pα ≤ Ch 2 uniformly in n ≥ 1, t ∈ [0, T ] and h ∈ [0, 1]. With the help of Proposition A.2 and A.3, we also can prove the similar results for other terms. The inequality (4.20) follows by putting them together and the power mean inequality; see footnote 5.

	+C ≤ C	0	t+h h t ds	ds ∞ 0	t+h-s |∇ y W (s)| 2 |∇ y W (t + h -s)| 2p y α+2 0 y α+2 dy p + C h 0 ds dy 0	∞	|∇ y W (s)| 2p y α+2	dy,
	which can be bounded by 4.3.5. Proof for Lemma 4.7. From (4.7), we have ε			
					2	p		
					y α+2	dy		

  see Lemma 4.3 and (4.2). By the continuity of L ξ ζ , the sequence {X Together with this and Lemma 4.6, Corollary 3.33 in [36, p.353] yields the C-tightness of the sequence {ε

	(n) ζ } n≥1 is C-
	tight.

  • |H(t)| 1/θ • y α+η+1-1/θ . Taking this back into J 32 (t), we have J 32 (t) ≤ C|H(t)| 2/θ • t α+2η+1-1/θ uniformly in t ∈ [0, T g λ ).For J 33 (t), we first consider its inner integral. Like the preceding argument, by Hölder's inequality we have

	1) ds	1-1/θ	,
	which can be bounded by C t-y		
	0		

  dr for any s, y ≥ 0. By Theorem 4.6 in [30, p.48] and (2.12) again, the process L ξ ζ is a solution of (2.19) if and only if it solves

  and Theorem 2.14. COROLLARY 8.1. If Condition 4.2 holds and z n

  1 , • • • , ϕ m ∈ H 0 , {τ k i } i≥0 is a sequence of non-decreasing (F t )-stopping times and η k i ∈ R d is F τ k i -measurable. For any X ∈ S 0 , define X -• Y (t) = (s-)dY (ϕ k , t), t ≥ 0. DEFINITION C.2. The H # -semimartingale Y is standard if H

		m	t		
	(C.1)	k=1	0	ξ k s≤t	X(s) H ≤ 1
	is stochastically bounded for each t ≥ 0.				

t := sup s≤t |X -• Y (s)| : X ∈ S 0 , sup

Readers may refer to Definition

3.25 in [36, p.351] for the definition of C-tightness.

For any p > 0,k ≥ 2 and x1, • • • , x k ∈ R, by Jensen's inequality we have |x1 + • • • + x k | p ≤ k (p-1) + (|x1| p + • • • + |x k | p ).

Let F be a probability distribution function on R+ with Laplace transformLF . If (1 -F (tx))/(1 -F (t)) → x -α or (1 -LF (1/(tλ)))/(1 -LF (1/t)) → x -α as t → ∞ for some α ∈ (0, 1), then 1 -LF (1/t) ∼ Γ(1 -α)(1 -F (t)) as t → ∞.

Otherwise, by the definition of weak solutions of (1.3); see footnote 1, a realization of L ξ L , N0(dy, dz) and Nα(ds, dy, dz) can be found on some filtrated probability basis such that (1.3) holds.

By (2.8) and the fact that

for s > y > r > 0, there exists a constant C > 0 such that for any x ≥ y ≥ 0,

Plugging this back into I 41 ( ), we have

. By (2.9), we have

Taking this back into I 42 ( ), we have

The desired result follows by putting all results above together. PROPOSITION A.6. For any x ≥ 0, we have as → 0+,

which goes to 0 as → 0+; see Proposition A.4.

APPENDIX B: MARKED HAWKES POINT MEASURES

Let U be a Lusin topological space endowed with the Borel σ-algebra U . Let {σ k : k = 1, 2 • • • } be a sequence of increasing, (F t )-adapted random times and {η k : k = 1, 2, • • • } be a sequence of i.i.d. U-valued random variables with distribution ν H (du). We assume that η k is independent of {σ j : j = 1, • • • , k} for any k ≥ 0. In terms of these two sequences we define the (F t )-random point measure

By Hölder's inequality; see footnote 9, the first expectation on the right side of the second inequality can be bounded by

p . The desired result holds.

THEOREM D.2 (Stochastic Fubini theorem). Let (V, V , m) be a measurable space. For T ≥ 0, let f be a measurable function on V and g, h two measurable functions on

PROOF. Here we just prove the first the equality (D.2) and the second one can be proved in the same way. It is easy to identify that the two integrals in (D.2) are well-defined. We now show they are equal almost surely. For any ∈ (0, 1], by the assumption that ν 1 ( , ∞) < ∞ and Fubini's theorem,