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STOCHASTIC VOLTERRA EQUATIONS FOR THE LOCAL TIMES OF SPECTRALLY
POSITIVE STABLE PROCESSES

BY WEI XU

Department of Mathematics, Humboldt-Universität zu Berlin, xuwei@math.hu-berlin.de, xuwei.math@gmail.com

This paper is concerned with the macroevolution mechanism of local times of a spectrally positive
stable process in the spatial direction. The main results state that conditioned on the finiteness of the
first time at which the local time at zero exceeds a given value, the local times at positive half line
are equal in distribution to the unique solution of a stochastic Volterra equation driven by a Poisson
random measure whose intensity coincides with the Lévy measure. This helps us to provide not only
a simple proof for the Hölder regularity, but also a uniform upper bound for all moments of the
Hölder coefficient as well as a maximal inequality for the local times. Moreover, in collaboration
with the stochastic Volterra equation, we extend the method of duality to establish an exponential-
affine representation of the Laplace functional in terms of the unique solution of a nonlinear Volterra
integral equation associated with the Laplace exponent of the stable process.

1. Introduction. Local times of Lévy processes not only have wide applications in various fields; see
[6, 43], but they also have been studied in depth with abundant of interesting results obtained, e.g. various
constructions (see [5, 17, 59]), Hilbert transform (see [8, 25]), Hölder regularity (see [4, 13, 26]) and so on.
We refer to [9, 29, 62] for survey on local times and their applications. In particular, to understand thoroughly
the dependence of Brownian local times in the space variable, Ray [60] and Knight [40] independently proved
the well-known Ray-Knight theorem that links Brownian local times to Bessel processes. Later, the Ray-Knight
theorem was generalized in [22, 64] to strongly symmetric Markov processes with finite 1-potential densities.
For a general spectrally positive Lévy process, Le Gall and Le Jan [49, 50] considered the reflected processes
of its time-reversed processes. Associated to the local times at 0, they introduced an exploration process to
describe the genealogy of a continuous-state branching process (CB-process) and generalized an analogue of
the Ray-Knight theorem for a functional of local times of the Lévy process; see also [20, 48] for details.

Because of the lack of Markovianity; see [21], local times (not their funtionals) of general spectrally positive
Lévy processes are quite untractable. Their microstructure and evolution mechanism have received considerable
attention in recent years. Specifically, Lambert [44] connected a compound Poisson process with unit negative
drift and killed upon hitting 0 to the jumping chronological contour processes of a splitting tree, and then
showed that its local times are equal in distribution to a homogeneous, binary Crump-Mode-Jagers branching
process (CMJ-process). For a general spectrally positive Lévy process, Lambert and Simatos [45] explored the
genealogical structure of their local times preliminarily via an approximating sequence consisting of rescaled
binary CMJ-processes. Later, a detailed genealogical interpretation was given in [47] by considering the cor-
responding totally ordered measured tree that satisfies the splitting property. Meanwhile, Forman et al. [26]
established a locally uniform approximation for the local times of a driftless spectrally positive stable process
by endowing each jump with a random graph. Up to now, the genealogical structure of local times of gener-
al spectrally positive Lévy processes seems to be fairly clear. However, their macroevolution mechanisms, by
contrast, are still incomprehensible.
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The purpose of this work is to establish stochastic equations for the local times of spectrally positive stable
processes and study their macroevolution mechanisms in the spatial direction. In contrast to the genealogical
interpretations given in the aforementioned literature, stochastic equations have many advantages including

• They provide an intuitive description for the evolution of local times in the spatial direction as well as a
detailed interpretation of their perturbations caused by each jump of stable processes.

• They allow us to study the local times by using tools and methods from the modern probability theory, e.g.,
stochastic integral inequalities, stochastic Fubini theorem and extreme value theory.

• They offer a kind of novel non-Markovian models and a convenient way of numerical analysis, which will
benefit greatly the related fields, e.g., processor-sharing queues and stochastic volatility models.

1.1. Overview of main results. Let ξ := {ξ(t) : t ≥ 0} be a one-dimensional spectrally positive stable
process with index 1 + α ∈ (1,2) and Laplace exponent

Φ(λ) := bλ+ cλα+1 = bλ+

∫ ∞
0

(
e−λy − 1 + λy

)
να(dy), λ≥ 0,(1.1)

where b≥ 0, c > 0 and να(dy), known as the Lévy measure, is a σ-finite measure on (0,∞) given by

να(dy) :=
cα(α+ 1)

Γ(1− α)
· y−α−2 · dy.(1.2)

It is recurrent or drifts to −∞ according as b = 0 or > 0. Let W be the scale function of ξ and ν̄α(x) :=

να([x,∞)) the tail function of να. Let Lξ := {Lξ(x, t) : x ∈R, t≥ 0} be the local times of ξ, where Lξ(x, t) is
usually interpreted as the amount of time that ξ spends at level x up to time t. Denote by τLξ (ζ) the first time
that the amount of local time accumulated at level 0 exceeds a given value ζ > 0; more accurate definitions can
be found in Section 2.1 and [9, 43].

Let Lξζ be the process {Lξ(x, τLξ (ζ)) : x≥ 0} conditioned on τLξ (ζ)<∞. The first main result states that Lξζ
is the unique weak solution1 of the following stochastic Volterra equation (SVE)

Lξζ(x) =

∫ ∞
0

∫ ζ

0
∇yW (x)N0(dy, dz) +

∫ x

0

∫ ∞
0

∫ Lξζ(s)

0
∇yW (x− s)Ñα(ds, dy, dz), x≥ 0,(1.3)

where∇yW (x) :=W (x)−W (x−y), N0(dy, dz) is a Poisson random measure (PRM) on (0,∞)2 with inten-
sity ν̄α(y)dydz, Ñα(ds, dy, dz) is a compensated PRM on (0,∞)3 with intensity dsνα(dy)dz and independent
of N0(dy, dz). The first stochastic integral in (1.3) represents the contribution of jumps up-crossing 0 to the
local time at level x and the second stochastic integral, known as stochastic Volterra integral (SVI), can be
interpreted as the perturbations caused by jumps with initial positions above 0. Since the convolution kernel
delays the relaxation of its perturbations, the PRM Nα(ds, dy, dz) changes the local times continuously in the
spatial variable. This stands in striking contrast to the jumps in Itô’s stochastic differential equations (Itô’s S-
DEs) driven by PRM. Additionally, because of the joint impact of relative level x− s and jump-size y on the
convolution kernel, the SVE (1.3) cannot be written into the form of SVEs in [1, 2, 3, 57, 58].

Based on the SVE (1.3), in the second main result we use stochastic integral inequalities to provide a simple
proof for the Hölder continuity of Lξζ and the finiteness of all moments of the Hölder coefficient given in [4,
13, 26]. As the novelty, we also establish a uniform upper bound for all moments of the Hölder coefficient and
a maximal inequality for the local times in the spatial variable. With the crucial assistance from the SVE (1.3),

1 A continuous process with distribution P is called a weak solution of (1.3) if there exists a stochastic basis, a PRM N0(dy, dz)

on (0,∞)2 with intensity ν̄α(y)dydz, a PRM Nα(ds, dy, dz) on (0,∞)3 independent of N0(dy, dz) with intensity dsνα(dy)dz and
a continuous process Lξζ with distribution P such that (1.3) holds almost surely. We say the weak uniqueness holds if any two weak
solutions are equal in distribution.
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in the third main result we extend the method of duality developed in [3] to provide an explicit representation
of the Laplace functional E[exp{−λ ·Lξζ(x)− g ∗Lξζ(x)}] with λ≥ 0 and g ∈ L∞(R+;R+). It states that the
Laplace exponent can be written as an affine functional of the initial state, in terms of the unique solution of the
nonlinear Volterra integral equation (nonlinear-VIE)

vgλ(x) = λW ′(x) +
(
g−Vα ◦ vgλ

)
∗W ′(x), x > 0,(1.4)

where W ′ is the derivative of W and Vα is a nonlinear operator acting on a locally integrable function f by

Vα ◦ f(x) :=

∫ ∞
0

(
exp

{
−
∫ x

(x−y)+

f(r)dr
}
− 1 +

∫ x

(x−y)+

f(r)dr
)
να(dy), x≥ 0.(1.5)

Finally, we provide an alternative fractional integration and differential equation for the process Lξζ and its
Laplace exponent. In contrast to the SVE (1.3), the alternative equation takes it a step further and extracts the
impact of drift b on the local times from that of jumps. It also uncovers the remarkable similarity between Lξζ and
CB-processes in the evolution mechanism, which, together with the genealogical interpretations in [26, 44, 47],
tells that the SVE (1.3) defines a novel non-Markovian CB-process.

To illustrate the strength of these results, we use the SVE (1.3) to establish a stochastic equation for the heavy-
traffic limit of recaled queue-length processes of M/G/1 processor-sharing queues with unit service capacity,
heavy-tailed service distribution and stopped upon becoming empty. It can be seen as a continuation of [45],
where the weak convergence of rescaled queue-length processes was proved. In a sense, this helps to partially
answer Problem 2 stated by Zwart in [67] about the heavy-traffic limit of heavy-tailed processor-sharing queues;
readers may refer to the references of Zwart and his coauthors for details. enlightened by the self-exciting
property observed in the SVE (1.3), in the forthcoming preprint [34] we use the evolution mechanism of local
times of stable processes to model the sharp-raise clusters in rough volatilities and introduce a novel fractional
stochastic volatility model with self-excited sharp-raises.

1.2. Methodologies. We start the construction of the SVE (1.3) from the result that the local times of
nearly recurrent compound Poisson processes with unit negative drift, Pareto-distributed jumps are equal in
distribution to a class of nearly critical binary CMJ-processes, which converge weakly to the process Lξζ after
rescaling; see [44, 45]. Enlightened by the Hawkes representation of general branching particle systems estab-
lished in [32, 65], we reconstruct the binary CMJ-processes as the intensity processes of nearly unstable marked
Hawkes point measures (MHPs) by translating the birth time, life-length and survival state of each individual
into the arrival time, random mark and kernel of an event respectively. Furthermore, we write each intensity
process into a SVE driven by an infinite-dimensional martingale in which the integrand is a functional of the
resolvent function related to the life-length distribution. Consequently, it suffices to prove the weak convergence
of these SVEs after rescaling to the desired SVE (1.3). Unfortunately, the Pareto-distributed life-length gives
raise to long-range dependence in the pre-limit SVEs, which derives a series of challenges and difficulties in
the proof including

• Along with the inseparable impact of time and life-length on the convolution kernel, the infinite-dimensional
driving noises not only lead to the failure of the approximation method and the integral-derivative method
developed in [2, 3, 38], but also make it hard to seek an approximation for the pre-limit SVEs.

• The resolvent function fluctuates drastically and explodes around 0 after rescaling. This leads to the sharp
swings in the cumulative impact of infinite short-lived events on the pre-limit SVEs and also makes the
uniform control on the error processes challengeable.

• The resolvent function inherits long-range dependence from the life-length distribution. It prevents us from
transforming the pre-limit SVEs into the form of Itô’s SDEs and obtaining the weak convergence similarly
as in [37, 65] by using the weak convergence results established in [41, 42] for Itô’s SDEs.
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To overcome the first two difficulties, we start by analyzing in depth the direct and indirect impact of each event
on the pre-limit SVEs. Our analyses show that the cumulative direct impact of all events can be asymptoti-
cally ignored and a suitably rescaled version of their indirect impact asymptotically behaves as the backward
difference of scale function. This motivates us to approximate the SVIs in the pre-limit SVEs by replacing the
integrands with the backward difference of scale function. For the uniform control on the error processes, we
first split them into several parts according to the source and then prove the finite-dimensional convergence of
each part to 0 separately. Based on a deep analysis about the backward difference of scale function, we prove
the C-tightness2 of the approximating processes, which, together with the C-tightness result given in [45] for
the local times of nearly recurrent compound Poisson processes, yields the tightness of error processes. To over-
come the third difficulty, we establish a weak convergence result for SVIs with respect to infinite-dimensional
martingales, whose tightness and finite-dimensional convergence are obtained from the foregoing tightness
results and the weak convergence of the related Itô’s stochastic integrals respectively. More precisely, for a
given finite sequence of time points, we first introduce a sequence of Itô’s stochastic integrals with respective
to infinite-dimensional martingale satisfying that their finite-dimensional distributions at the given time points
are equal to those of the corresponding SVIs, and then prove their weak convergence to a limit process whose
finite-dimensional distribution at the given time points is equal to that of the desired limit SVI.

In the proof of existence and uniqueness of solutions of the nonlinear-VIE (1.4), the next two main difficulties
steam from the nonlinear operator Vα and the singularity of the function W ′ at the origin

• The interplay between the singularity of W ′ and Vα makes the existence of local solutions of (1.4) around 0

quite difficult.

• Since Vα is path-dependent and does not satisfy the Lipschitz condition, it is difficult to identify the non-
explosion of local solutions and extend them into global solutions.

To bypass the first difficulty, we first prejudge the behavior of solutions near the origin with the help of an upper
bound estimate of Vα and the expansion given in [14] for solutions of fractional Riccati equations. In a specified
closed set in some Lebesgue space, we then find a local solution of (1.4) successfully by using Banach’s fixed
point theorem. To overcome the second difficulty, associated with a fractional differential equation related to
Vα we first provide an upper bound estimate for a functional of each local solution, and then, along with the
comparison principle for fractional differential equations, establish a uniform control on the local solutions.

1.3. Related Literature. Let us comment on the relationship between the present work and the existing
literature. Firstly, based on the Markov property, Brownian local times were linked to Bessel processes via their
transition semigroups in [40, 60] or their infinitesimal generators in [39, 52]. However, the lack of Markovianity
of Lξζ makes it impossible to establish the SVE (1.4) similarly as in the preceding references. Even if it could
be established successfully, the SVE (1.4) is beyond the scope of all existing literature [1, 2, 3, 57, 58] and the
existence of its solutions seems to be quite difficult to be proved in the standard way. On the other hand, the
present work establishes the well-posedness of the novel SVE (1.4). Secondly, the main results, as mentioned
above, are obtained by establishing a weak convergence result for the corresponding long-range dependent
MHPs. The first scaling limit theorem for Hawkes processes was established by Jaisson and Rosenbaum [37] in
the study of the asymptotic behavior of Hawkes-based price-volatility models in the context of high-frequency
trading. Their results state that under the short-memory condition, the rescaled intensity processes of nearly
unstable Hawkes processes converge weakly to the well-known CIR-model. The analogous scaling limits were
established for multivariate (marked) Hawkes processes in [23, 65] and a jump-diffusion limit was given in [33]
for MHPs with exponential kernel. When the kernel is heavy-tailed, Jaisson and Rosenbaum [38] proved the
weak convergence of the integral of rescaled intensity process to the integral of a fractional diffusion process,

2Readers may refer to Definition 3.25 in [36, p.351] for the definition of C-tightness.
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see also [23, 63] for the multivariate case. Because of many difficulties deriving from long-range dependence,
they left the weak convergence of rescaled intensity processes as an open problem. However, we stress that the
weak convergence result in this work is established for the intensity processes of MHPs. As the final remark,
we need to point out that different to the analogous version in [49, 50], the Ray-Knight theorem in this work is
established for the local times rather than their functionals.

Organization of this paper. In Section 2, we first introduce general notation and properties of spectrally
positive stable processes, and then formulate the main results. In Section 3, we introduce some elementary
results and a SVE for the local times of a compound Poisson process with negative drift by linking them to a
MHP. Section 4 is devoted to proving that Lξζ solves the SVE (1.3). Its Hölder continuity is proved in Section 5.
In Section 6, we prove the exponential-affine transform formula as well as the existence and uniqueness of
solutions of the nonlinear-VIE (1.4). The proof for the alternative representation of Lξζ are given in Section 7.
Applications to processor-sharing queues are given in Section 8. Additional proofs and supporting results are
presented in the Appendices.

Notation. For any x ∈R, let x+ := x∨0, x− := x∧0 and [x] be the integer part of x. For a Banach space V
with a norm ‖ · ‖V, let D([0,∞),V) be the space of all cádlág V-valued functions endowed with the Skorokhod
topology and C([0,∞),V) the space of all continuous V-valued functions endowed with the uniform topology.
For any T ⊂ [0,∞) and p ∈ (0,∞], let Lp(T ;V) be the space of V-valued measurable functions f on T
satisfying that ‖f‖pLpT :=

∫
T ‖f(x)‖pVdx <∞. We also write ‖f‖LpT for ‖f‖Lp[0,T ]

and ‖f‖Lp for ‖f‖Lp∞ . We
make the conventions that for x, y ∈R with y ≥ x,∫ y

x
=−

∫ x

y
=

∫
(x,y]

,

∫ y−

x−
=

∫
[x,y)

and
∫ ∞
x

=

∫
(x,∞)

.

Denote by f ∗ g the convolution of two functions f, g on R+. Let ∆h and ∇h be the forward and backward
difference operators with step size h > 0, i.e., ∆hf(x) := f(x + h) − f(x) and ∇hf(x) := f(x) − f(x −
h). Let u.c.→ , a.s.→, d→ and

p→ be the uniform convergence on compacts, almost sure convergence, convergence

in distribution and convergence in probability respectively. We also use a.s.
= , d

= and
p
= to denote almost sure

equality, equality in distribution and equality in probability respectively.

For a probability measure µ on R, denote by Pµ and Eµ the law and expectation of the underlying process
with initial state distributed as µ. When µ is a Dirac measure at point x ∈R, we write Px for Pµ and Ex for Eµ.
For simplicity, we also write P for P0 and E for E0. For two σ-finite measures µ1, µ2 on R, we say µ1 ≤ µ2 if
for any non-negative function f on R,∫

R
f(x)µ1(dx)≤

∫
R
f(x)µ2(dx).

We use C to denote a positive constant whose value might change from line to line.

Acknowledgements. The author is grateful to Matthias Winkel who noticed the inaccuracy on the Hölder
continuity and recommended several helpful references. The author also like to thank the three professional ref-
erees for their careful and insightful reading of the paper, and for comments, which led to many improvements.

2. Preliminaries and main results.

2.1. Spectrally positive stable processes. Suppose that the spectrally positive stable process ξ is defined on
a complete probability space (Ω,F ,P) endowed with a filtration {Ft}t≥0 satisfying the usual hypotheses. For
every t≥ 0, let µξ,t(dy) be the occupation measure of ξ on the time interval [0, t] given for every non-negative
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and measurable function f on R by ∫ t

0
f
(
ξ(s)

)
ds

a.s.
=

∫
R
f(y)µξ,t(dy).

The measure µξ,t is absolutely continuous with respect to the Lebesgue measure and the density, denoted by
{Lξ(x, t) : x ∈ R}, is square integrable; see Theorem 1 in [9, p.126]. The quantity Lξ(x, t) is called the local
time of ξ at level x and time t. The two-parameter process Lξ := {Lξ(x, t) : x ∈R, t≥ 0} is jointly continuous
and satisfies the occupation density formula∫ t

0
f(ξ(r))dr

a.s.
=

∫
R
f(x)Lξ(x, t)dx, t≥ 0,(2.1)

see Theorem 15 in [9, p.149]. Moreover, for any (Ft)-stopping time τ , it is easy to identify that

inf
{
x≥ 0 : Lξ(x, τ) = 0

} a.s.
= sup

{
ξ(t) : t ∈ [0, τ ]

}
.(2.2)

The process {Lξ(0, t) : t≥ 0} is continuous and non-decreasing. This allows us to define the inverse local time
τLξ := {τLξ (ζ) : ζ ≥ 0} at level 0 by τLξ (ζ) =∞ if ζ > Lξ(0,∞) and

τLξ (ζ) := inf
{
s≥ 0 : Lξ(0, s)≥ ζ

}
, if ζ ∈ [0,Lξ(0,∞)].

From Proposition 4 in [9, p.130], the process τLξ is a subordinator, killed at an independent exponential time if
ξ is transient (b > 0), and its Laplace transform is of the form

E
[

exp
{
− λ · τLξ (ζ)

}]
= exp

{
− ζ/uλ(0)

}
, λ > 0, ζ ≥ 0,(2.3)

where uλ := {uλ(y) : y ∈R} is the density of the λ-resolvent kernel of ξ. When b= 0, we have Lξ(0,∞)
a.s.
= ∞

and τLξ (ζ)<∞ a.s. When b > 0, the potential density u0 is well-defined as the limit case λ= 0 for uλ. In this
case, we consider the limit case λ→ 0+ for (2.3) to get

P
(
Lξ(0,∞)≥ ζ

)
= 1−P

(
τLξ (ζ) =∞

)
= exp

{
− ζ/u0(0)

}
,

which induces that Lξ(0,∞) is exponentially distributed with mean u0(0) and P
(
τLξ (ζ) =∞

)
> 0 for any

ζ > 0. For a, θ > 0, let a · ξ(θ·) := {aξ(θt) : t ≥ 0}. The equality (2.1), along with the change of variables,
implies the following two equivalences3

La·ξ(θ·)
a.s.
=
{

(aθ)−1 ·Lξ(x/a, θt) : x ∈R, t≥ 0
}

and τLa·ξ(θ·)(ζ)
a.s.
= θ−1 · τLξ (aθζ), ζ ≥ 0.(2.4)

Let {W (x) : x ∈ R} be the scale function of ξ, which is identically zero on (−∞,0) and characterized on
[0,∞) as a strictly increasing function whose Laplace transform is given by∫ ∞

0
e−λxW (x)dx=

1

Φ(λ)
, λ > 0.(2.5)

The scale function W is continuous on R and differentiable on (0,∞) with derivative denoted as W ′; see
Theorem 8 in [9, p.194]. Applying the integration by parts to (2.5), we have∫ ∞

0
e−λxW ′(x)dx=

∫ ∞
0

λe−λxW (x)dx=
1

b+ cλα
, λ > 0.(2.6)

The Laplace transform of Mittag-Leffler function4 yields that W ′ has the representation

W ′(x) = c−1xα−1 ·Eα,α
(
− b/c · xα

)
, x > 0.

3Actually, these two equivalences hold for any Lévy process.
4The Mittag-Leffler function Eα,α on R+ is defined by Eα,α(x) :=

∑∞
n=0

xn

Γ(α(n+1))
; see [31] for a precise definition and a survey

of its properties, e.g., ∫ ∞
0

e−λxaxα−1Eα,α(−a · xα)dx=
a

a+ λα
, a,λ≥ 0.
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The smoothness of Eα,α induces that W is infinitely differentiable on (0,∞). When b= 0, we have Eα,α(0) =

1/Γ(α) and

W (x) =
xα

c · Γ(α+ 1)
, W ′(x) =

xα−1

c · Γ(α)
, W ′′(x) =

(α− 1)xα−2

c · Γ(α)
, x > 0.(2.7)

When b > 0, the function bW ′ is a Mittag-Leffler density function and 1−bW (x)→ 0 as x→∞. The properties
of Mittag-Leffler distribution/density function; see [31, 54, 56], yield that the scale function W is Hölder
continuous with index α. Moreover,

W (x)∼ xα

c · Γ(α+ 1)
, W ′(x)∼ xα−1

c · Γ(α)
, W ′′(x)∼ (α− 1)xα−2

c · Γ(α)
, as x→ 0+,

and

W (x)∼ 1

b
− c · x−α

b2 · Γ(1− α)
, W ′(x)∼ cα · x−α−1

b2 · Γ(1− α)
, W ′′(x)∼−cα(α+ 1) · x−α−2

b2 · Γ(1− α)
as x→∞.

A direct consequence of these asymptotic properties and (2.7) is that uniformly in x > 0,

W (x)≤C · xα, |W ′(x)| ≤C · xα−1 and |W ′′(x)| ≤C · xα−2.(2.8)

By the mean-value theorem, it is easy to identify that uniformly in x, y > 0,

|∇yW (x)|= |∆yW (x− y)| ≤C ·
[
xα ∧

(
|(x− y)+|α−1y

)]
.(2.9)

In addition to the scale function, we will also need a Sonine pair (K,LK) on (0,∞) defined by

K(x) :=
xα−1

c · Γ(α)
and LK(x) :=

c · x−α

Γ(1− α)
, x > 0,(2.10)

which satisfies the Sonine equation, i.e.,

K ∗LK = LK ∗K ≡ 1.(2.11)

In the theory of Volterra equations; see [30], the function LK is also said to be the resolvent of the first kind
related to K and vice versa. When b > 0, a simple calculation shows that the function bW ′ is the resolvent of
the second kind corresponding to bK , which is usually introduced by means of the resolvent equation

bW ′ = bK − (bK) ∗ (bW ′).(2.12)

The function bK is usually referred as the resolvent associated to bW ′. Convolving both sides of (2.12) by LK
and then dividing them by b, we have

LK ∗W ′ =W ′ ∗LK = 1− bW.(2.13)

Actually, this equality also holds when b= 0, since W ′ =K in this case; see (2.7) and (2.10).

2.2. Main results. We now formulate the main results for the local times of ξ at the stopping time τLξ (ζ) for

a given value ζ > 0. For convenience, we write Lξζ for the process {Lξ(x, τLξ (ζ)) : x≥ 0} under P( · |τLξ (ζ)<

∞). Since τLξ (ζ)<∞ a.s. when b= 0, this conditional probability law turns to be P. When b > 0, the stopping
time τLξ (Lξ(0,∞)) is finite almost surely and equal to the last time that ξ hits 0. In this case, we are also
interested in the process

Lξ∞ :=
{
Lξ(x,∞) : x≥ 0

} a.s.
=
{
Lξ
(
x, τLξ (Lξ(0,∞))

)
: x≥ 0

}
,(2.14)

under P. Let % be an exponential random variable with mean u0(0), independent of Nα(ds, dy, dz) and
N0(dy, dz). Our first main theorem establishes SVEs for Lξζ and Lξ∞.

THEOREM 2.1. We have the following:
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(1) For each ζ ≥ 0, the process Lξζ is a weak solution of (1.3).

(2) If b > 0, the process Lξ∞ is a weak solution of (1.3) with ζ = %.

(3) The weak uniqueness of non-negative solutions holds for (1.3).

REMARK 2.2. By the change of variables and Proposition A.1 with p = 2, there exists a constant C > 0

such that for any x≥ 0,∫ x

0
ds

∫ ∞
0

∣∣∇yW (x− s)
∣∣2να(dy) =

∫ x

0
ds

∫ ∞
0

∣∣∇yW (s)
∣∣2να(dy)≤C · xα.

Taking expectations on both sides of (1.3) and then using Fubini’s theorem along with (2.13), we have

E
[
Lξζ(x)

]
= E

[∫ ∞
0

∫ ζ

0
∇yW (x)N0(dy, dz)

]
= ζ

∫ ∞
0
∇yW (x)ν̄α(y)dy

= ζ

∫ ∞
0

ν̄α(y)dy

∫ x

(x−y)+

W ′(s)ds= ζ ·W ′ ∗LK(x) = ζ
(
1− bW (x)

)
≤ ζ, x≥ 0.(2.15)

The SVI in (1.3) has finite quadratic variation and is well defined as an Itô integral; see [35, p.59-63].

REMARK 2.3. By the exponential formula for PRMs; see [9, p.8], we have for any λ≥ 0,

E
[

exp
{
− λ

∫ ∞
0

∫ ζ

0
∇yW (x)N0(dy, dz)

}]
= exp

{
− ζ

∫ ∞
0

(1− e−λ∇yW (x))ν̄α(y)dy
}
.

From (2.15) and the fact that ∇yW (x)→ 0 uniformly in y as x→ 0, we have

E
[

exp
{
− λ

∫ ∞
0

∫ ζ

0
∇yW (x)N0(dy, dz)

}]
∼ exp

{
− ζλ

∫ ∞
0
∇yW (x)ν̄α(y)dy

}
→ e−ζλ.

Thus the first term on the right side of (1.3) converges to ζ a.s. as x→ 0+. We make the convention that it is
equal to ζ a.s. when x= 0, which is consistent with the fact that Lξζ(0)

a.s.
= ζ .

REMARK 2.4. By (2.15), the SVE (1.3) can be written as

Lξζ(x) = ζ
(
1− bW (x)

)
+

∫ ∞
0

∫ ζ

0
∇yW (x)Ñ0(dy, dz)

+

∫ x

0

∫ ∞
0

∫ Lξζ(s)

0
∇yW (x− s)Ñα(ds, dy, dz), x≥ 0,(2.16)

where Ñ0(dy, dz) :=N0(dy, dz)− ν̄α(y)dydz. Here the first term on the right side of this equality represents
the average local time at level x. The second term can be interpreted as the perturbations caused by jumps
up-crossing 0; the third term can be translated into the perturbations caused by jumps with initial positions
above 0 but below x. More precisely, the convolution kernel ∇yW (x− s) describes the impact of a jump with
initial position s and size y on the local time at level x. Notice that ∇yW (x− s) increases when x ∈ [s, s+ y]

and decreases as x→∞. It would be sensible to consider the jump size of each jump as its life-length/residual-
life during which it perturbs the local times directly. This interpretation is consistent with the genealogical
interpretations in [26, 47].

REMARK 2.5. Because of the delayed and smooth relaxation of its perturbations, the PRM Nα(ds, dy, dz)

fails to make solutions of (1.3) jump. This phenomena cannot be observed in Ito’s SDEs driven by PRM, since
the PRM releases its perturbations instantaneously that give raise to jumps in the solutions. Consequently,
the continuity of driving noises is a necessary condition for the continuity of solutions of Ito’s SDEs; see [35,
Chapter III-IV] and [59, Chapter II-V].
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REMARK 2.6. It is necessary to specify that the SVE (1.3) is beyond the scope of the existing literature, e.g.
[1, 2, 3, 23, 38, 57, 58]. More precisely, all SVEs studied in these literature are driven by finite-dimensional
semimartingale and always can be written as

X(t) =H(t) +

∫ t

0
K(t, s,Xs)dZ(t), t≥ 0,(2.17)

whereH is a given function, K is a d×k matrix-valued convolution kernel on R2
+×R and Z is a k-dimensional

Itô’s semimartingale whose differential characteristics are functions of X . Differently, the SVI in (1.3) is driven
by an infinite-dimensional martingale; see [42] and Appendix C. Since the impact of time t on the convolution
kernel ∇yW (t) is tightly intertwined with that of mark y, one cannot write (1.3) into the form of (2.17). Con-
sequently, it is difficult to prove the existence of solutions of (1.3) by using the approximation method used in
[1, 3] or the martingale problem theory developed in [2].

REMARK 2.7. Ito’s SDEs with non-negative solutions have been widely studied in [7, 10, 15, 16, 27] under
two key conditions: (i) when solutions hit 0, the diffusion vanishes and the drift turns to be non-negative; (ii)
solutions cannot jump into the negative half-line. In particular, it is the strong Markovianity that turns the state
0 to be a tripper or a reflecting boundary, which results in the existence of non-negative solutions. However, the
convolution kernel in (1.3) results in the lack of (strong) Markovianity of the solutions and makes the standard
stopping time method fail to prove the existence of non-negative solutions. Fortunately, thanks to Theorem 2.1,
the existence of non-negative solutions of (1.3) follows directly from the non-negativity of Lξζ .

REMARK 2.8. The point 0 is an absorbing state 5 for the process Lξζ (and also Lξ∞), i.e., once it hits 0, it
will stay at 0 forever. Indeed, the equivalence (2.2) shows that conditioned on τLξ (ζ)<∞,

τ0 := inf
{
x≥ 0 : Lξζ(x) = 0

}
<∞, a.s. and Lξζ(τ0 + x)

a.s.
= 0, x≥ 0.

Usually, the lack of Markovianity makes it difficult to obtain this property from the SVE (1.3). Even for the SVE
(2.17), the absorbing states and polarity are also unclear up to now.

The SVE (1.3) makes it possible to study the local times of ξ by using tools and methods from stochastic
analysis, e.g., stochastic integral inequalities, stochastic Fubini theorem and martingale problem theory. To
illustrate this, the next main theorem proves the Hölder continuity of Lξζ by using the Kolmogorov continuity
theorem and also provides a uniform upper bound for all moments of the Hölder coefficients by using the
Garsia-Rodemich-Rumsey inequality. For κ ∈ (0,1] and x > 0, the κ-Hölder coefficient of a Hölder continuous
function f on [0, x] is defined by

‖f‖C0,κ
x

:= sup
0≤y<z≤x

|f(y)− f(z)|
|y− z|κ

.

THEOREM 2.9 (Hölder continuity). For each ζ ≥ 0, we have the following:

(1) The process Lξζ is Hölder-continuous of any order strictly less than α/2.

(2) For each κ ∈ (0, α/2) and p≥ 0, there exists a constant C > 0 such that for any x≥ 0,

E
[
‖Lξζ‖

p

C0,κ
x

]
≤C · (1 + x)p(α−κ).

5Although the two terminologies absorbing state and polarity are initially introduced for Markov processes, it is sensible to use them
to describe the analogous phenomena in other stochastic processes. Precisely, a state in a process is said to be an absorbing state if once
it is entered, it is impossible to leave. A set is said to be a polar set for a process if it cannot be entered in finite time.
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As a direct consequence of this theorem, we can establish a maximal inequality for Lξζ . In detail, for each
κ ∈ (0, α/2) and p≥ 0, we have uniformly in x≥ 0,

sup
y∈[0,x]

|Lξζ(y)−Lξζ(0)|p ≤ ‖Lξζ‖
p

C0,κ
x
· xpκ, a.s.

By the power mean inequality6 and Theorem 2.9,

E
[

sup
y∈[0,x]

|Lξζ(y)|p
]
≤ C · ζp +C ·E

[
sup
y∈[0,x]

|Lξζ(y)−Lξζ(0)|p
]
≤C · ζp +C ·E

[
‖Lξζ‖

p

C0,κ
x

]
· xpκ,

for some constant C depending only on p. This yields the following corollary immediately.

COROLLARY 2.10 (Maximal inequality). For each ζ > 0 and p ≥ 0, there exists a constant C > 0 such
that for any x≥ 0,

E
[

sup
y∈[0,x]

∣∣Lξζ(y)
∣∣p]≤C · (1 + x)pα.

REMARK 2.11. By applying the discretization technique to the occupation measures of stable Lévy pro-
cesses, Boylan [13] proved the uniform Hölder regularity of their local times in both the time and spatial
directions. Later, Barlow [4] constructed the explicit modulus of continuity and gave the optimal Hölder expo-
nent. Recently, Forman et al. [26] proved the finiteness of all moments of the Hölder coefficient in the case of
b= 0. The novelties of our results are in the uniform upper bound for all moments of the Hölder coefficient and
the maximal inequality for the local times in the spatial direction.

Because of the Markovanity and martingale property, Brownian local times are tractable and their Laplace
transform can be written as an exponential affine function of the initial state, in terms of the solution of a
Riccati equation. By contrast, the lack of Markovanity and martingale property makes the local times of stable
processes quite intractable. As another example that illustrates the strength of the SVE (1.3), the third main
theorem establishes an explicit representation of Laplace functionals of Lξζ . LetA∞ be the space of all functions
f on (0,∞) satisfying that supx∈(0,T ] x

1−α|f(x)|<∞ for any T > 0. A continuous function vgλ on (0,∞) is
said to be a A-global solution of the nonlinear-VIE (1.4) if vgλ ∈A∞ and satisfies (1.4) on (0,∞).

THEOREM 2.12 (Laplace functionals). For each λ≥ 0 and g ∈ L∞(R+;R+), we have for x≥ 0,

E
[

exp
{
− λ ·Lξζ(x)− g ∗Lξζ(x)

}]
= exp

{
− ζ

∫ ∞
0

(
1− exp

{
−
∫ x

(x−y)+

vgλ(s)ds
})
ν̄α(y)dy

}
,(2.18)

where vgλ is the unique A-global solution of (1.4).

REMARK 2.13. By comparing (2.18) with (2.1) in [15] or (2.2) in [19], we see that the process Lξζ enjoys
the analogue of the affine property of affine Markov processes. In addition, this property also has been observed
in the rough Heston model that is defined by a SVE driven by Brownian motion; see [24]. Later, Abi Jaber et
al. [1, 3] considered a class of SVEs of the form (2.17) with solutions being affine and also named them affine
Volterra processes.

By using the resolvent equations (2.12) and (2.13), the last main result in this work provides equivalent
representations of the SVE (1.3) and the nonlinear-VIE (1.4), which help a lot to clarify the similarities and
differences between the process Lξζ and CB-processes; we refer to [53] for a review on CB-processes.

6For any p > 0,k ≥ 2 and x1, · · · , xk ∈R, by Jensen’s inequality we have |x1 + · · ·+ xk|p ≤ k(p−1)+(|x1|p + · · ·+ |xk|p).
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THEOREM 2.14. The SVE (1.3) is equivalent to

Lξζ(x) = ζ − b ·K ∗Lξζ(x) +

∫ ∞
0

∫ ζ

0

∫ x

(x−y)+

K(r)drÑ0(dy, dz)

+

∫ x

0

∫ ∞
0

∫ Lξζ(s)

0

∫ x−s

(x−s−y)+

K(r)drÑα(ds, dy, dz), x≥ 0,(2.19)

and the nonlinear-VIE (1.4) is equivalent to

vgλ(x) = λK(x) + g ∗K(x)−
(
b · vgλ + Vα ◦ vgλ

)
∗K(x), x > 0.(2.20)

By (2.10) and the Sonine equation (2.11), the nonlinear-VIE (2.20) can be written into a fractional differential
equation. Indeed, denote by Iαc and Dα

c the Riemann-Liouville fractional integral and derivative operators of
order α modified by the constant c > 0 respectively. They act on a measurable function f according to

Iαc f(x) :=

∫ x

0

(x− s)α−1

c · Γ(α)
f(s)ds and Dα

c f(x) :=
d

dx

∫ x

0

c(x− s)−α

Γ(1− α)
f(s)ds, x≥ 0.

Convolving both sides of (2.20) by LK and then using (2.11), we have

LK ∗ vgλ(x) = λ+

∫ x

0
g(s)ds−

∫ x

0

(
b · vgλ + Vα ◦ vgλ

)
(s)ds, x≥ 0.

Notice that Iαc f =K ∗ f and Dα
c v

g
λ = d

dx(LK ∗ vgλ). A simple calculation yields the next corollary.

COROLLARY 2.15. The nonlinear-VIE (1.4) is equivalent to

Dα
c v

g
λ = g− b · vgλ −Vα ◦ v

g
λ with I1−α

c vgλ(0) = λ.(2.21)

REMARK 2.16. By comparing (2.19) with the Itô’s SDE for a CB-process 7

Yζ(t) = ζ −
∫ t

0
aYζ(s)ds+

∫ t

0

∫ Yζ(s)

0
ς B1(ds, dz) +

∫ t

0

∫ ∞
0

∫ Yζ(s−)

0
y Ñ1(ds, dy, dz),(2.22)

and then comparing (2.21) with the Riccati equation for the Laplace exponent of Yζ
∂

∂t
vλ =−avλ −

ς2

2
|vλ|2 −

∫ ∞
0

(
e−yvλ − 1 + yvλ

)
ν1(dy) with vλ(0) = λ;

see [16, Section 3], we see that the processes Lξζ not only owns an evolution mechanism similar to that of Yζ ,
but also enjoys, formally at least, the striking analogue 8 of the branching property. Moreover, it is same to Yζ
that the point 0 is an absorbing state for Lξζ ; see Remark 2.8. In conclusion, the SVE (1.3) defines a fully novel
non-Markov CB-process whose degree of Hölder regularity is less than that of Feller branching diffusion; see
Theorem 2.9. Drawing from [24, 38], we may refer Lξζ as a rough CB-process.

REMARK 2.17. The CB-process defined by (2.22) can be reconstructed as the scaling limit of discrete
Galton-Watson branching processes. The life-length of individuals uniformly tends to 0 after rescaling and
jumps in (2.22) result from the simultaneous births of infinite offsprings; readers may refer to [53] for details.
In contrast, the variable y in (1.3) is positive and can be interpreted as the life-length of each individual during
which it gives birth to its children randomly. This slows down the extinction of the population. In detail, the
survival probability of the CB-process Yζ deceases to 0 at an exponential rate when a > 0, i.e., P(Yζ(t)> 0)∼
C · e−at as t→∞. While, the survival probability of the rough CB-process Lξζ decreases to 0 at a power rate
when b > 0; see the supplementary material [66].

7Here a ∈ R, ς ≥ 0, B1(ds, dz) is a Gaussian white noise on (0,∞)2 with intensity dsdz, Ñ1(ds, dy, dz) is a PRM on (0,∞)3

with intensity dsν1(dy)dz and ν1(dy) is a σ-finite measure on (0,∞) satisfying that
∫∞

0
(1∧ y2)ν1(dy)<∞.

8For ζ1, ζ2 > 0, assume Lξζ1 and Lξζ2 are two independent solutions of (1.3) with ζ = ζ1 and ζ = ζ2 respectively, we have Lξζ1 +Lξζ2
is the unique weak non-negative solution of (1.3) with ζ = ζ1 + ζ2.
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3. Local times of compound Poisson processes. In this section, we first introduce some properties of
local times of compound Poisson processes with negative drift and then establish a SVE for them. The proofs
are elementary and will be merely sketched.

For two constants β,γ > 0 and a probability law ν(dx) on (0,∞) with finite mean mν , let Y := {Y (t) : t≥
0} be a compound Poisson process on (Ω,F ,Ft,P) with a drift −β, arrival rate γ and jump-size distribution
ν. It is a Lévy process with bounded variation and Lévy measure γ · ν(dx). Its Laplace exponent is of the form

ϕ(λ) := βλ+ γ

∫ ∞
0

(e−λx − 1)ν(dx) = λ
(
β − γ

∫ ∞
0

e−λxν̄(x)dx
)
, λ≥ 0,

where ν̄(x) := ν([x,∞)) is the tail distribution of ν. The function ϕ is zero at zero and tends to∞ at infinity.
Moreover, it is infinitely differentiable and strictly convex on (0,∞). In particular, ϕ′(0) =−E[Y (1)] = β−γ ·
mν and hence ϕ is increasing on [0,∞) if ϕ′(0)≥ 0. The process Y drifts to −∞,∞ or is recurrent according
as ϕ′(0)> 0, < 0 or = 0. Denote by τ+

Y the first passage time of Y in [0,∞), i.e., τ+
Y := inf

{
t > 0 : Y (t)≥ 0

}
.

Actually, the process Y always moves from the negative half line into the positive half line by jumping, i.e.,
Y (τ+

Y −)< 0 and Y (τ+
Y )> 0 a.s. The next proposition comes from Theorem 17(ii) in [9, p.204]. Let ν∗(dx) be

the size-biased distribution of ν given by

ν∗(dx) := 1{x>0} ·
ν̄(x)

mν
· dx.

PROPOSITION 3.1. If ϕ′(0)≥ 0, then Y (τ+
Y ) under P( · |τ+

Y <∞) is distributed as ν∗.

Let LY := {LY (x, t) : x ∈R, t≥ 0} be the local times of Y satisfying the occupation density formula (2.1).
The local time LY (x,∞) is infinite almost surely for some and hence all x ∈R if and only if ϕ′(0) = 0. Denote
by τLY := {τLY (ζ) : ζ ≥ 0} the right-inverse local time at level 0. When β = 1, the local time LY (x, t) equals to
the times that Y hits x in the time interval (0, t], i.e.,

LY
a.s.
=
{

#{s ∈ (0, t] : Y (s) = x} : x ∈R, t≥ 0
}

and τLY only jumps at positive integer points. The next proposition follows directly from (2.4).

PROPOSITION 3.2. If β > 0, the process τLY only jumps at points {k/β : k = 1,2, · · · } and

LY
a.s.
=
{
β−1 ·#{s ∈ (0, t] : Y (s) = x} : x ∈R, t≥ 0

}
.

We write LYk/β and LY,∗k/β for the process {LY (x, τLY (k/β)) : x ≥ 0} under P( · |τLY (k/β) < ∞) and
Pν∗( · |τLY (k/β)<∞) respectively. Notice that sample paths on [0, τ+

Y ] make no contribution to the local times
{LY (x, τLY (k/β)) : x ≥ 0, k ≥ 1}. The next proposition can be proved immediately by using Proposition 3.2,
the strong Markov property and independent, stationary increments of Y .

PROPOSITION 3.3. If ϕ′(0) ≥ 0, then LYk/β
d
= LY,∗k/β

d
=
∑k

i=1L
Y,∗
1/β,i for any k ≥ 1, where {LY,∗1/β,i : i =

1,2, · · · } is a sequence of i.i.d. copies of LY,∗1/β .

3.1. Branching representation. Lambert [44] established a one-to-one correspondence between the local
times of compound Poisson processes with drift −1 and homogeneous, binary CMJ-processes. More precisely,
he observed that the jumping contour process of a homogeneous, binary CMJ-tree starting from one ancestor is
a compound Poisson process with a drift −1; conversely, the local times on R+ of a compound Poisson process
with drift −1 stopped upon hitting 0 are equal in distribution to a homogeneous, binary CMJ-process starting
from one ancestor. In this section, we extend this connection slightly to the case of compound Poisson processes
with arbitrary negative drift.
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Recall the triple (β,γ, ν) with β > 0. We consider a binary CMJ-process on (Ω,F ,Ft,P) defined by the
following three properties:

(P1) There are k ∈ Z+ ancestors at time 0 with residual life distributed as ν∗.

(P2) Offsprings have a common life-length distribution ν.

(P3) Each individual gives birth to its children according to a Poisson process with rate γ/β.

Denote by Ik the collection of all individuals in the population. Each individual x ∈ Ik is endowed with a
pair (σx, `x) that represents its birth time and life length. For convention, if x is an ancestor, we assume σx = 0

and `x equals to its residual life. For t≥ 0, let Ik(t) := {x ∈ Ik : 0≤ t−σx < `x} and #Ik(t) be the collection
and number of all individuals alive at time t respectively.

LEMMA 3.4. If ϕ′(0)≥ 0, then the process LYk/β is equal in distribution to {β−1 ·#Ik(βt) : t≥ 0}.

PROOF. Let Yβ := {Y (t/β) : t ≥ 0}, which is a compound Poisson process with a triple (1, γ/β, ν), local
times LYβ and the right-inverse local time τLYβ at level 0. Let LYβk be the process {LYβ(x, τLYβ(k)) : x ≥ 0}

under P( · |τLYβ(k)<∞). Theorem 3.2 in [46] asserts that LYβk
d
= #Ik. By (2.4) and Proposition 3.3, we have

LYk/β
d
= β−1 ·LYβk (β·) d

= β−1 ·#Ik(β·). �

3.2. Stochastic Volterra representation. In this section, we establish a SVE for the process LYk/β by linking
the preceding CMJ-process to a MHP; see Appendix B. It also can be obtained by using the connection between
general branching processes and multivariate MHPs established in [65, Section 4].

As a preparation, we first clarify the genealogy of the CMJ-process. Denote by `0,j the residual life of the
j-th ancestor at time 0, which is distributed as ν∗. We sort all offsprings by their birth times. Associated to the
sequence {(σi, `i) : i= 1,2, · · · } we define a (Ft)-random point measure Nν(ds, dy) on (0,∞)2 by

Nν(ds, dy) :=

∞∑
i=1

1{σi∈ds,`i∈dy}.

By the branching mechanism, a child will be born at time t at the rate γ/β ·#Ik(t−). Thus the random point
measure Nν(ds, dy) has a (Ft)-intensity γ/β ·#Ik(s−) · ds · ν(dy). Notice that #Ik has the representation

#Ik(t) =

k∑
j=1

1{`0,j>t} +
∑
σi≤t

1{`i>t−σi}, t≥ 0.

Here the two sums on the right side of this equality represent the numbers of ancestors and offsprings alive at
time t respectively. Similarly as in Appendix B, we can write the foregoing equation into

#Ik(t) =

k∑
j=1

1{`0,j>t} +

∫ t

0

∫ ∞
0

1{y>t−s}Nν(ds, dy), t≥ 0.(3.1)

Hence Nν(ds, du) is a MHP on (0,∞)2. Before applying Proposition B.1 to establish a SVE for the process
LYk/β , we need to introduce two important quantities related to the triple (β,γ, ν). Let Rν be the resolvent
associated to the function γ/β · ν̄ defined by the unique solution of

Rν =
γ

β
· ν̄ +

γ

β
· ν̄ ∗Rν .(3.2)
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Actually, the function Rν can be interpreted as the mean reproduction rate of an individual and its descents. In
addition, we introduce a two-parameter function on R2

+

R(t, y) = 1{y>t} +

∫ t

0
Rν(t− s) · 1{y>s}ds, t, y ≥ 0,(3.3)

to describe the mean reproduction rate of an individual with life-length y and its descents; we refer to [65,
Section 2] for more detailed explanations.

THEOREM 3.5. If ϕ′(0) ≥ 0, we have for k ≥ 1, the process LYk/β is equal in distribution to the unique
solution of the SVE

Zk(t) =
1

β

k∑
j=1

1{`0,j>βt} +

∫ t

0
RΛ

(
β(t− s)

) k∑
j=1

1{`0,j>βs}ds

+

∫ t

0

∫ ∞
0

∫ Zk(s−)

0

1

β
R
(
β(t− s), y

)
Ñ(ds, dy, dz), t≥ 0,(3.4)

where Ñ(ds, dy, dz) is a compensated PRM on (0,∞)3 with intensity βγ · dsν(dy)dz.

PROOF. From (3.1) and Proposition B.1, the population process #Ik(·) is the unique solution of

#Ik(t) =

k∑
j=1

1{`0,j>t} +

∫ t

0
Rν(t− s)

k∑
j=1

1{`0,j>s}ds+

∫ t

0

∫ ∞
0

∫ #Ik(s−)

0
R(t− s, y)Ñν(ds, dy, dz),

where Ñν(ds, dy, dz) is compensated PRM on (0,∞)3 with intensity γ/β · dsν(dy)dz. By the change of vari-
ables, the process β−1 ·#Ik(β·) is the unique solution to (3.4) with Ñ(ds, dy, dz) = Ñν(β · ds, dy,β · dz) and
the desired result follows directly from Lemma 3.4. �

4. Stochastic Volterra equation for Lξ
ζ . In this section, we prove the first two claims in Theorem 2.1.

By the self-similarity of stable processes and their local times; see (2.4), the next lemma shows that it suffices
to prove them for a subclass of spectrally positive stable processes. It will help a lot to simplify our proofs.

LEMMA 4.1. Let c0 > 0. If Theorem 2.1(1) holds for any ξ with (α, b, c) ∈ (0,1)× [0,∞)× {c0}, then it
holds for all ξ with (α, b, c) ∈ (0,1)× [0,∞)× (0,∞).

PROOF. For any ξ with parameters (α, b, c) ∈ (0,1) × [0,∞) × (0,∞), its self-similarity induces that aξ
with a = (c0/c)

1/(1+α) is a spectrally positive stable process with parameters (α,ab, c0) and Lévy measure
να(a−1 · dy) = c0/c · να(dy). For ζ > 0, by Theorem 2.1(1) the process Laξζ is a weak solution to

Laξζ (x) =

∫ ∞
0

∫ ζ

0
∇yWa(x)N0,a(dy, dz) +

∫ x

0

∫ ∞
0

∫ Laξζ (s)

0
∇yWa(x− s)Ña(ds, dy, dz), x≥ 0,

where Wa is the scale function of aξ, N0,a(dy, dz) is PRM on (0,∞)2 with intensity c0/c · ν̄α(y)dydz and
Ña(ds, dy, dz) is a compensated PRM on (0,∞)3 with intensity c0/c · dsνα(dy)dz. By (2.5) as well as the
continuity of W and Wa, we have W (x) = aWa(ax) for any x ∈ R. Application of (2.4) gives that Lξζ

a.s.
=

aLaξζ/a(a·). Taking these back into the preceding SVE and then using the change of variables,

Lξζ(x) =

∫ ∞
0

∫ ζ

0
∇yW (x)N0,a(a · dy, a−1 · dz) +

∫ x

0

∫ ∞
0

∫ Lξζ(s)

0
∇yW (x− s)Ña(a · ds, a · dy, a−1 · dz).
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Notice that να(a · dy) = a−α−1να(dy); see (1.2). The PRM N0,a(a · dy, a−1 · dz) has intensity ν̄α(y)dydz and
the compensated PRM Ña(a ·ds, a ·dy, a−1 ·dz) has intensity dsνα(dy)dz. Thus Lξζ is a weak solution of (1.3)
and Theorem 2.1(1) holds for ξ. �

4.1. Compound Poisson approximation. Based on Lemma 4.1, we start to prove Theorem 2.1(1) for any
ξ with

α ∈ (0,1), b≥ 0, c≡ Γ(1− α), να(dy) = α(α+ 1)y−α−2dy and ν̄α(y) = αy−α−1.

Let us consider a sequence of compound Poisson processes with negative drift and positive jumps, whose local
times give a good approximation for the process Lξζ . Denote by Λ the Pareto-II distribution on R+ with location
0 and shape α+ 1, i.e.,

Λ(dx) := (α+ 1)(1 + x)−α−2dx with tail-distribution Λ̄(x) = (1 + x)−α−1, x≥ 0.(4.1)

For n≥ 1, let {Y (n)(t) : t≥ 0} be a compound Poisson process with a drift −1, arrival rate γn ∈ (0, α), jump-
size distribution Λ, Laplace exponent ϕ(n) and local times LY (n) . We now consider the behavior of Y (n) and
LY (n) at a large time scale under the following condition.

CONDITION 4.2. Assume that nα(1− γn/α)→ b as n→∞.

A routine computation, along with this condition, induces that the rescaled Laplace exponent Φ(n) :=

{n1+αϕ(n)(λ/n) : λ ≥ 0} converges locally uniformly to Φ on R+ as n → ∞. By Corollary 4.3 in [36,
p.440], the rescaled compound Poisson process ξ(n) := {n−1 · Y (n)(n1+αt) : t≥ 0} converges weakly to ξ in
D([0,∞);R) as n→∞. Let Lξ(n) be the local times of ξ(n) satisfying (2.1) and τLξ(n) the right-inverse local time

at level 0. Similarly, we also write Lξ
(n)

ζ for the process {Lξ(n)(x, τLξ(n)(ζ)) : x≥ 0} under P( · |τLξ(n)(ζ)<∞).
The following convergence result comes from Theorem 2.4 in [45].

LEMMA 4.3. For ζ > 0, we have Lξ
(n)

ζ → Lξζ weakly in D([0,∞);R+) as n→∞.

For n≥ 1, let Z(n)
[nαζ] be the unique solution of (3.4) with k = [nαζ], β = 1, γ = γn and ν = Λ. By (2.4) and

Theorem 3.5,

Lξ
(n)

ζ
a.s.
=
{
n−α ·LY (n)

[nαζ](nx) : x≥ 0
} d

=
{
n−α ·Z(n)

[nαζ](nt) : t≥ 0
}

=:X
(n)
ζ(4.2)

and hence X(n)
ζ → Lξζ weakly in D([0,∞);R+) as n→∞; see Lemma 4.3. Clearly, Theorem 2.1(1) can be

proved by characterizing the cluster points of {X(n)
ζ }n≥1 as weak solutions of (1.3).

Let R(n)
Λ and R(n) be the resolvent associated to the tail-distribution Λ̄ defined as in (3.2)-(3.3) with β = 1,

γ = γn and ν = Λ, i.e., R(n)
Λ (t) =R(n)(t, y) = 0 if t≤ 0 or y ≤ 0 and for t, y ≥ 0,

R
(n)
Λ (t) = γnΛ̄(t) + γnΛ̄ ∗R(n)

Λ (t),(4.3)

R(n)(t, y) = 1{y>t} +

∫ t

0
R

(n)
Λ (t− s) · 1{y>s}ds.(4.4)

By (4.2), Theorem 3.5 and the change of variables, the process X(n)
ζ satisfies the SVE

X
(n)
ζ (t) =

1

nα

[nαζ]∑
i=1

1{`0,i>nt} +

∫ nt

0
R

(n)
Λ (nt− s) · 1

nα

[nαζ]∑
i=1

1{`0,i>s}ds
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+

∫ t

0

∫ ∞
0

∫ X
(n)
ζ (s−)

0

1

nα
R(n)

(
n(t− s), ny

)
Ñ (n)(n · ds,n · dy,nα · dz), t≥ 0,(4.5)

where Ñ (n)(n ·ds,n ·dy,nα ·dz) is a compensated PRM on (0,∞)3 with intensity n1+αγn ·ds ·Λ(n ·dy) ·dz.
Here `0,i is distributed as the size-biased distribution of Λ

Λ∗(dx) := αΛ̄(x)dx= α(1 + x)−α−1dx with tail-distribution Λ∗(x) := (1 + x)−α, x≥ 0.(4.6)

4.2. Proofs for Theorem 2.1(1)-(2). In order to make the proofs much easier to be understood, we offer
an intuitive description on how to derive the convergence of the SVE (4.5) to the SVE (1.3). The following
auxiliary lemmas will be proved in Section 4.3.

We start the asymptotic analysis from the first two terms on the right side of (4.5). Denote by X(n)
ζ,0 (t) their

sum. Let M(R+) be the space of all σ-finite measures on R+ endowed with the topology of weak convergence
and Mp(R+)⊂M(R+) the space of all Radon point measures on R+. Let N (n)

ζ (dy) be a finite point measure
on (0,∞) defined by

N
(n)
ζ (dy) :=

[nαζ]∑
i=1

1{`0,i/n∈dy}.

From this and the change of variables, we can write X(n)
ζ,0 into

X
(n)
ζ,0 (t) =

∫ ∞
0

(1{y>t}
nα

+

∫ t

0
n1−αR

(n)
Λ (n(t− s)) · 1{y>s}ds

)
N

(n)
ζ (dy), t≥ 0.

Obviously, the convergence of X(n)
ζ,0 relies on the asymptotic behavior of {n1−αR

(n)
Λ (nt) : t≥ 0} and N (n)

ζ .

LEMMA 4.4. We have
∫ ·

0 n
1−αR

(n)
Λ (ns)ds

u.c.→ W as n→∞.

Notice that nαP(`0,i/n ∈ dy)→ αy−α−1dy = ν̄α(y)dy vaguely in M(R+). The next proposition follows
directly from the basic convergence theorem of empirical measures; see Theorem 5.3 in [61, p.138].

PROPOSITION 4.5. We have N (n)
ζ (dy)→Nζ(dy) :=N0(dy, [0, ζ]) weakly in Mp(R+) as n→∞.

We start to consider the convergence of the SVI in (4.5). By (4.4),

n−αR(n)(nt,ny) = n−α1{y>t} +

∫ t

0
n1−αR

(n)
Λ (n(t− s))1{y>s}ds, t, y ≥ 0.

Clearly, the first term on the right side of this equality vanishes uniformly in t, y ∈R as n→∞. Additionally,
using the change of variable to the second term,∫ t

0
n1−αR

(n)
Λ

(
n(t− s)

)
1{y>s}ds=

∫ t

(t−y)+

n1−αR
(n)
Λ (ns)ds.

By Lemma 4.4 and the fact that W (x) = 0 if x < 0, it can be well approximated by W (t) −W (t − y) =

∇yW (t). Thus the SVI in (4.5) can be well approximated by

M (n)(t) :=

∫ t

0

∫ ∞
0

∫ X
(n)
ζ (s−)

0
∇yW (t− s)Ñ (n)(n · ds,n · dy,nα · dz)

with the error denoted as ε(n)(t). By the preceding analysis and notation, we can write the SVE (4.5) into

X
(n)
ζ (t) = ε(n)(t) +X

(n)
ζ,0 (t) +M (n)(t), t≥ 0.(4.7)

As the last preparation, the next two lemmas establish some convergence results for {M (n)}n≥1 and {ε(n)}n≥1.
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LEMMA 4.6. The sequence {M (n)}n≥1 is C-tight.

LEMMA 4.7. We have ε(n) +X
(n)
ζ,0 →Xζ,0 weakly in D([0,∞),R) as n→∞, where

Xζ,0(t) :=

∫ ∞
0
∇yW (t)Nζ(dy) =

∫ ∞
0

∫ ζ

0
∇yW (t)N0(dy, dz), t≥ 0.(4.8)

PROOF FOR THEOREM 2.1(1). Corollary 3.33(b) in [36, p.353], together with Lemma 4.3, 4.6 and 4.7,
yields the C-tightness of the sequence {(X(n)

ζ , ε(n) +X
(n)
ζ,0 ,M

(n))}n≥1. Additionally, if(
X

(n)
ζ , ε(n) +X

(n)
ζ,0 ,M

(n)
)
→
(
Xζ ,Xζ,0,M

)
,(4.9)

as n→∞ in the sense of finite-dimensional distributions, where

M(t) :=

∫ t

0

∫ ∞
0

∫ Xζ(s)

0
∇yW (t− s)Ñα(ds, dy, dz), t≥ 0,(4.10)

then Theorem 13.1 in [11, p.139] implies that (X
(n)
ζ , ε(n) +X

(n)
ζ,0 ,M

(n)) converges weakly to (Xζ ,Xζ,0,M)

in D([0,∞);R3). By Proposition 2.4 in [36, p.339] and the continuous mapping theorem,

sup
t∈[0,T ]

∣∣Xζ(t)−Xζ,0(t)−M(t)
∣∣ d
= lim
n→∞

sup
t∈[0,T ]

∣∣X(n)
ζ (t)− ε(n)(t)−X(n)

ζ,0 (t)−M (n)(t)
∣∣ a.s.

= 0,

for any T ≥ 0. In conclusion, we have Xζ
a.s.
= Xζ,0 +M and hence Xζ is a weak solution of the SVE (1.3).

To finish this proof, it remains to prove the finite-dimensional convergence (4.9). It follows if for any d≥ 1

and 0≤ t1 < · · ·< td, the 3d-dimensional random variable

Z
(n)
d :=

(
X

(n)
ζ (t1), ε(n)(t1) +X

(n)
ζ,0 (t1),M (n)(t1), · · · ,X(n)

ζ (td), ε
(n)(td) +X

(n)
ζ,0 (td),M

(n)(td)
)

converges in distribution to Zd := (Xζ(t1),Xζ,0(t1),M(t1), · · · ,Xζ(td),Xζ,0(td),M(td)). For i ∈ {1, . . . , d}
and t≥ 0, let

M
(n)
i (t) :=

∫ t

0

∫ ∞
0

∫ X
(n)
ζ (s−)

0
∇yW (ti − s)Ñ (n)(n · ds,n · dy,nα · dz),(4.11)

Mi(t) :=

∫ t

0

∫ ∞
0

∫ Xζ(s)

0
∇yW (ti − s)Ñα(ds, dy, dz).(4.12)

Similarly as in Remark 2.2, we can identify that both M (n)
i and Mi are well-defined and local martingales.

Notice that M (n)
i (ti)

a.s.
= M (n)(ti) and Mi(ti)

a.s.
= M(ti) for i= 1, · · · , d. Then

Z
(n)
d

d
=
(
X

(n)
ζ (t1), ε(n)(t1) +X

(n)
ζ,0 (t1),M

(n)
1 (t1), · · · ,X(n)

ζ (td), ε
(n)(td) +X

(n)
ζ,0 (td),M

(n)
d (td)

)
,

Zd
d
=
(
Xζ(t1),Xζ,0(t1),M1(t1), · · · ,Xζ(td),Xζ,0(td),Md(td)

)
.

By the continuity of W and the fact that Nα({t},R2
+)

a.s.
= 0 for any t > 0, the set {t≥ 0 : P(|Zd(t)−Zd(t−)| 6=

0)> 0} is null. From Proposition 3.14 in [36, p.349], we have Z(n)
d

d→ Zd if(
X

(n)
ζ , ε(n) +X

(n)
ζ,0 ,M

(n)
1 , · · · ,M (n)

d

)
→
(
Xζ ,Xζ,0,M1, · · · ,Md

)
, weakly in D([0,∞),R2+d).(4.13)

We start to prove (4.13) by using the weak convergence results established in [42] for Itô’s stochastic inte-
grals driven by infinite-dimensional semimartingale; see Appendix C. Let ν̂α(dy, dz) := να(dy)dz be a σ-finite
measure on R2

+ and L2(ν̂α) the collection of all functions on R2
+ that are square-integrable with respect to ν̂α.
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For n≥ 1 and t > 0, let Ñ(n)(t) := Ñ (n)((0, nt], n ·dy,nα ·dz) and Ñα(t) := Ñα((0, t], dy, dz), which are two
standard L2(ν̂α)#-martingales. We can write (4.11) and (4.12) into

(M
(n)
1 (t), · · · ,M (n)

d (t)) = F (X
(n)
ζ ,−) · Ñ(n)(t) and (M1(t), · · · ,Md(t)) = F (Xζ ,−) · Ñα(t),

where the function F :D([0,∞);R+)×R+ 7→ (L2(ν̂))d is defined by

F (x, s) :=
(
∇yW (t1 − s), · · · ,∇yW (td − s)

)
· 1{0<z≤x(s−)}.

From Condition 4.2 and Theorem 2.7 in [42], we have γnnα+1Λ(n · dy)→ να(dy) vaguely and hence Ñ(n)⇒
Ñα as n→∞. Similarly as in the proof of Lemma 4.9 in [33], we can prove that the sequence of L2(ν̂)#-
martingales {Ñ(n)}n≥1 is uniformly tight. By Example 5.3 in [41], the function F satisfies Condition C.2 and
also Condition C.1 in [42, p.248-249], which induces that(

X
(n)
ζ , ε(n) +X

(n)
ζ,0 , F (X

(n)
ζ ,−), Ñ(n)

)
⇒
(
Xζ ,Xζ,0, F (Xζ ,−), Ñα

)
.

By Theorem 4.2 or 5.5 in [42], there exists a filtration such that (Xζ , Ñα) is adapted and(
X

(n)
ζ , ε(n) +X

(n)
ζ,0 , F (X

(n)
ζ ,−), Ñ(n), F (X

(n)
ζ ,−) · Ñ(n)

)
⇒
(
Xζ ,Xζ,0, F (Xζ ,−), Ñα, F (Xζ ,−) · Ñα

)
,

as n→∞, which implies (4.13) immediately. The whole proof has been finished. �

PROOF FOR THEOREM 2.1(2). From (2.3), the inverse local time τLζ is a subordinator killed at an indepen-
dent exponential time %. For any ζ > 0, we have τLξ (ζ) <∞ if and only if % > ζ . Moreover, the independent
increments of ξ and the memorylessness of % yield that conditioned on τLξ (ζ)<∞, the two random elements
Lξ(·, τLξ (ζ)) and % are independent. Hence

P
(
Lξ(·, τLξ (ζ)) ∈A,% ∈ dζ|τLξ (ζ)<∞

)
= P

(
Lξ(·, τLξ (ζ)) ∈A|τLξ (ζ)<∞)P

(
% ∈ dζ|τLξ (ζ)<∞

)
= P

(
Lξζ ∈A

)
P
(
% ∈ dζ|% > ζ

)
.(4.14)

Notice that the event {Lξ(0,∞) ∈ dζ} occurs if and only if {τLξ (ζ) <∞, % ∈ dζ}. By (2.14) and (4.14), we
have for any Borel set A of C([0,∞),R+),

P
(
Lξ∞ ∈A

)
= P

(
Lξ(·, τLξ (Lξ(0,∞))) ∈A

)
=

∫ ∞
0

P
(
Lξ(·, τLξ (ζ)) ∈A,Lξ(0,∞) ∈ dζ

)
=

∫ ∞
0

P
(
Lξ(·, τLξ (ζ)) ∈A,τLξ (ζ)<∞, % ∈ dζ

)
=

∫ ∞
0

P
(
τLξ (ζ)<∞

)
P
(
Lξ(·, τLξ (ζ)) ∈A,% ∈ dζ|τLξ (ζ)<∞

)
=

∫ ∞
0

P
(
% > ζ

)
P
(
Lξζ ∈A

)
P
(
% ∈ dζ|% > ζ

)
=

∫ ∞
0

P
(
Lξζ ∈A

)
P
(
% ∈ dζ

)
.

Hence the process Lξ∞ is a weak solution of (1.3) with ζ = %. �

4.3. Proofs for auxiliary lemmas. In this section we provide the detailed proofs for the auxiliary lemmas
in the last section. Denote by LΛ̄, LΛ∗ and LR(n)

Λ
the Laplace transforms of Λ̄, Λ∗ and R(n)

Λ respectively, i.e.,

LΛ̄(λ) :=

∫ ∞
0

e−λxΛ̄(x)dx, LΛ∗(λ) :=

∫ ∞
0

e−λxΛ∗(dx), LR(n)
Λ

(λ) :=

∫ ∞
0

e−λxR
(n)
Λ (x)dx, λ≥ 0.
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4.3.1. Upper bounds for resolvents. As a preparation, we first give some upper bound estimates for the resol-
vent R(n)

Λ and R(n), which will play an important role in the following proofs and analyses. Notice that Λ̄ is
a complete monotone function. Theorem 5.3.1 in [30, p.148] tells that R(n)

Λ is also completely monotone and
‖R(n)

Λ ‖L∞ <∞ . The next proposition gives a uniform upper bound estimate for {R(n)
Λ }n≥1.

PROPOSITION 4.8. There exists a constant C > 0 such that for any t≥ 0 and n≥ 1,

R
(n)
Λ (t)≤C ·

(
1 + t

)α−1
.(4.15)

PROOF. Let RΛ be the resolvent associated to αΛ̄, i.e., RΛ = αΛ̄ + αΛ̄ ∗RΛ. It is bounded and completely
monotone with RΛ(0) = α. It is easy to identify that R(n)

Λ and RΛ have the representations

R
(n)
Λ =

∞∑
k=1

(γn · Λ̄)∗k and RΛ =

∞∑
k=1

(α · Λ̄)∗k.

Here f∗k is the k-th convolution of f . Since γn ≤ α, we have R(n)
Λ (t)≤RΛ(t) uniformly in n≥ 1 and t≥ 0.

Let R̄Λ := 1−RΛ/α for t≥ 0, which is a distribution function on R+. Using the integration by parts,∫ ∞
0

e−λtdR̄Λ(t) = λ

∫ ∞
0

e−λtR̄Λ(t)dt= λ

∫ ∞
0

e−λt[1−RΛ(t)/α]dt= 1− λ

α
LRΛ

(λ),(4.16)

where LRΛ
denotes the Laplace transform of RΛ. Taking Laplace transforms of both sides of RΛ = αΛ̄ +αΛ̄ ∗

RΛ, we have LRΛ
(λ) = αLΛ̄(λ)

[
1 +LRΛ

(λ)
]

and

LRΛ
(λ) =

αLΛ̄(λ)

1− αLΛ̄(λ)
, λ > 0.

It is obvious that the numerator goes to 1 as λ→ 0+. Moreover, a simple calculation with (4.1) induces that∫∞
t αΛ̄(s)ds= (1 + t)−α for t≥ 0. By Karamata’s Tauberian theorem9; see Theorem 8.1.6 in [12, p.333], we

have 1− αLΛ̄(λ)∼ Γ(1− α)λα and LRΛ
(λ)∼ λ−α/Γ(1− α) as λ→ 0+. Taking these back into (4.16),

1−
∫ ∞

0
e−λtdR̄Λ(t)∼ λ1−α

αΓ(1− α)
.

Using Karamata’s Tauberian theorem again, we have as t→∞,

1− R̄Λ(t)∼ tα−1

αΓ(α)Γ(1− α)
and hence RΛ(t) = α(1− R̄Λ(t))∼ tα−1

Γ(α)Γ(1− α)
.

Consequently, there exists a constant C > 0 such that R(n)
Λ (t)≤RΛ(t)≤C(1 + t)α−1 for any t≥ 0. �

PROPOSITION 4.9. For p > 1 + α, there exists a constant C > 0 such that for any t≥ 0 and n≥ 1,

nα+1

∫ t

0
ds

∫ ∞
0

∣∣n−αR(n)(ns,ny)
∣∣pΛ(n · dy)≤C · (1 + t)α(p−1).(4.17)

PROOF. By (4.4) and the power mean inequality; see footnote 5, the term on the left side of (4.17) can be
bounded by the sum of the following four terms

I
(n)
1 (t) := C

∫ t

0
ds

∫ ∞
0

∣∣n−α1{y>s}∣∣pnα+1Λ(n · dy),

9Let F be a probability distribution function on R+ with Laplace transform LF . If (1 − F (tx))/(1 − F (t))→ x−α or (1 −
LF (1/(tλ)))/(1−LF (1/t))→ x−α as t→∞ for some α ∈ (0,1), then 1−LF (1/t)∼ Γ(1− α)(1− F (t)) as t→∞.
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I
(n)
2 (t) := C

∫ t

0

∣∣∣ ∫ s

0
n1−αR

(n)
Λ (nr)dr

∣∣∣pnα+1Λ̄(ns)ds,

I
(n)
3 (t) := C

∫ t

0
ds

∫ s/2

0

∣∣∣ ∫ s

s−y
n1−αR

(n)
Λ (nr)dr

∣∣∣pnα+1Λ(n · dy),

I
(n)
4 (t) := C

∫ t

0
ds

∫ s

s/2

∣∣∣ ∫ s

s−y
n1−αR

(n)
Λ (nr)dr

∣∣∣pnα+1Λ(n · dy),

for some constant C depending only on p. Notice that the inner integral in I(n)
1 (t) equals to n(1−p)α+1Λ̄(ns).

By the change of variables and the fact that ‖Λ̄‖L1 <∞,

sup
t≥0
|I(n)

1 (t)|=Cn(1−p)α · sup
t≥0

∫ nt

0
Λ̄(s)ds=C‖Λ̄‖L1 · n(1−p)α,

which vanishes as n→∞, since p > 1. Integrating (4.15) induces that
∫ s

0 R
(n)
Λ (r)dr ≤C(1 + s)α uniformly in

n≥ 1 and s≥ 0. Using the change of variables to I(n)
2 ,

I
(n)
2 (t) =

C

n(p−1)α

∫ nt

0

∣∣∣ ∫ s

0
R

(n)
Λ (r)dr

∣∣∣pΛ̄(s)ds≤ C

n(p−1)α

∫ nt

0
(1 + s)(p−1)α−1ds≤C · (1 + t)(p−1)α.

Here the constant C > 0 is independent of n and t. We now turn to consider I(n)
3 . Using (4.15) again, we have

n1−αR
(n)
Λ (nr)≤C · rα−1 uniformly in n≥ 1 and r ≥ 0. Hence uniformly in s, y ≥ 0∫ s

(s−y)+

n1−αR
(n)
Λ (nr)dr ≤C ·

(
sα ∧ (|(s− y)+|α−1 · y)

)
.(4.18)

Plugging this back into I(n)
3 and then using the fact that nα+1Λ(n · dy)≤ να(dy), we have uniformly in n≥ 1

and t≥ 0,

I
(n)
3 (t)≤ C

∫ t

0
ds

∫ s/2

0
|s− y|p(α−1) · yp−α−2dy ≤C

∫ t

0
sp(α−1)ds

∫ s/2

0
yp−α−2dy ≤C · t(p−1)α.

Similarly, we also have
∫ s
s−y n

1−αR
(n)
Λ (nr)dr ≤C

∫ s
0 r

α−1dr ≤Csα uniformly in s > y ≥ 0. Then

I
(n)
4 (t)≤ C

∫ t

0
spαds

∫ s

s/2
y−α−2dy ≤C

∫ t

0
s(p−1)α−1ds≤C · t(p−1)α,

uniformly in n≥ 1 and t≥ 0. The desired result follows by putting all estimates above together. �

4.3.2. Moment estimates. In this section, we provide some uniform upper bounds for all moments of the
sequence {X(n)

ζ }n≥1 and the impact of each ancestor on the population system.

PROPOSITION 4.10. For each p≥ 0, there exists a constant C > 0 such that for any t≥ 0 and n≥ 1,

E
[∣∣∣ ∫ t

0
R

(n)
Λ (t− s) · 1{`0,1>s}ds

∣∣∣p]≤C · tα·(p−1)+

.

PROOF. By Jensen’s inequality, (4.6) and (4.15), there exists a constant C > 0 such that for any n ≥ 1,
p ∈ [0,1] and t≥ 0,

E
[∣∣∣ ∫ t

0
R

(n)
Λ (t− s) · 1{`0,1>s}ds

∣∣∣p]≤ (∫ t

0
R

(n)
Λ (t− s)E[1{`0,1>s}]ds

)p
≤C

(∫ t

0
(t− s)α−1 ds

sα

)p
≤C.
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For p > 1, by Hölder’s inequality10 and the previous upper bound,

E
[∣∣∣ ∫ t

0
R

(n)
Λ (t− s) · 1{`0,1>s}ds

∣∣∣p]≤ ‖R(n)
Λ ‖

p−1
L1
t
·E
[∫ t

0
R

(n)
Λ (t− s) · 1{`0,1>s}ds

]
≤C · ‖R(n)

Λ ‖
p−1
L1
t
.

By (4.15), we have supn≥1 ‖R
(n)
Λ ‖L1

t
≤C · tα uniformly in t≥ 0 and the desired result follows. �

PROPOSITION 4.11. For each p≥ 0 and T ≥ 0, we have supn≥1 supt∈[0,T ] E[|X(n)
ζ (t)|p]<∞.

PROOF. It suffices to prove the case of p ∈ Z+. Taking expectations on both sides of (4.5),

E[X
(n)
ζ (t)]≤ ζ + n−α

[ζnα]∑
k=1

E
[∫ nt

0
R

(n)
Λ (nt− s)1{`0,k>s}ds

]
.

From Proposition 4.10, we have E[X
(n)
ζ (t)] ≤ C uniformly in t ≥ 0 and n ≥ 1. By mathematical induction,

it suffices to prove that for any p ≥ 1, the desired 2p-order moment estimate holds under the assumption that
supn≥1 supt∈[0,T ] E[|X(n)

ζ (t)|p]<∞. By the power mean inequality; see footnote 5,

E[|X(n)
ζ (t)|2p]≤ C · ζ2p +CE

[∣∣∣ ∫ nt

0
R

(n)
Λ (nt− s)n−α

[ζnα]∑
k=1

1{`0,k>s}ds
∣∣∣2p]

+CE
[∣∣∣ ∫ t

0

∫ ∞
0

∫ X
(n)
ζ (s−)

0
n−αR(n)(n(t− s), ny)Ñ (n)(n · ds,n · dy,nα · dz)

∣∣∣2p],(4.19)

for some constant C > 0 independent of n and t. By (D.1), the last expectation can be bounded by

C
∣∣∣ ∫ t

0
ds

∫ ∞
0

∣∣n−αR(n)(ns,ny)
∣∣2nα+1Λ(n · dy)

∣∣∣p +C

∫ t

0
ds

∫ ∞
0

∣∣n−αR(n)(ns,ny)
∣∣2pnα+1Λ(n · dy),

uniformly in n≥ 1 and t ∈ [0, T ]. A simple calculation, together with (4.17), implies that these two terms can
be bounded uniformly in t≥ 0 and n≥ 1 by C · (1 + t)αp and C · (1 + t)α(2p−1) respectively. We now consider
the first expectation on the right side of (4.19). Notice that∣∣∣ [ζnα]∑

k=1

∫ nt

0
R

(n)
Λ (nt− s)1{`0,k>s}ds

∣∣∣2p =
∑

|k(n)|=2p

[ζnα]∏
i=1

∣∣∣ ∫ nt

0
R

(n)
Λ (nt− s)1{`0,i>s}ds

∣∣∣ki .
Here the sum on the right side of this inequality is over all k(n) := (k1, · · · , k[ζnα]) ∈ N[ζnα] with |k(n)| :=∑[ζnα]

i=1 ki = 2p. By Proposition 4.10, we have for some constant C > 0 depending only on p,

E
[∣∣∣ ∫ nt

0
R

(n)
H (nt− s)n−α

[ζnα]∑
k=1

1{`0,k>s}ds
∣∣∣2p]≤ C

n2pα
·
∑

|k(n)|=2p

(nt)α
∑[ζnα]
i=1 (ki−1)+

.

Using the multinomial distribution and then the combination formula to the last sum,

∑
|k(n)|=2p

(nt)α
∑[ζnα]
i=1 (ki−1)+

=

[nαζ]∧(2p)∑
j=1

[nαζ]Cj · (nt)α(2p−j),

10 For two integrable functions g,h on [0, T ] and p > 1, we have∣∣∣ ∫ T

0

|g(s)h(s)|ds
∣∣∣p =

∣∣∣ ∫ T

0

|g(s)||h(s)|1/p · |h(s)|1−1/pds
∣∣∣p ≤ ∫ T

0

|g(s)|p|h(s)|ds ·
∣∣∣ ∫ T

0

|h(s)|ds
∣∣∣p−1

.
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Here [nαζ]Cj := [nαζ]!/(j!([nαζ] − j)!) ≤ ζj · nαj/j! for any j = 1, · · · , [nαζ] ∧ (2p). Thus there exists a
constant C > 0 such that for any n≥ 1 and t ∈ [0, T ],

E
[∣∣∣ ∫ nt

0
R

(n)
H (nt− s)n−α

[ζnα]∑
k=1

1{`0,k>s}ds
∣∣∣2p]≤C [nαζ]∧(2p)∑

j=1

ζj · t
α(2p−j)

j!
≤C · ζ2p · (1 + t)α(2p−1).

The desired result follows by putting all estimates above together. �

4.3.3. Proof for Lemma 4.4. The desired convergence is obtained by showing that the Laplace transform of
the measure with density n1−αR

(n)
Λ (n·) converges toward the Laplace transform of the measure with density

W ′. Taking the Laplace transforms of both sides of (4.3), we have LR(n)
Λ

(λ) = γnLΛ̄(λ)
[
1 + LR(n)

Λ
(λ)
]

and
hence LR(n)

Λ
(λ) = γnLΛ̄(λ) · (1− γnLΛ̄(λ))−1. By the change of variables,∫ ∞

0
e−λtn1−αR

(n)
Λ (nt)dt=

LR(n)
Λ

(λ/n)

nα
=

γnLΛ̄(λ/n)

nα(1− γnLΛ̄(λ/n))

=
γnLΛ̄(λ/n)

nα(1− γn
α ) + γn

α · nα(1−LΛ∗(λ/n))
.

A simple calculation, along with Condition 4.2, shows that γnLΛ̄(λ/n)→ 1 as n→∞. By (4.6) and Karama-
ta’s Tauberian theorem; see footnote 8, we have nα

(
1−LΛ∗(λ/n)

)
→ Γ(1− α)λα as n→∞ and∫ ∞

0
e−λtn1−αR

(n)
Λ (nt)dt→ 1

b+ cλα
.

By (2.6), the function whose Laplace transform is equal to the last quantity is W ′.

4.3.4. Proof for Lemma 4.6. As a direct consequence of the continuity of ∇yW , the process M (n) is also
continuous. Let p > 2/α. By the Kolmogorov tightness criterion; see Theorem 13.5 in [11], the sequence
{M (n)}n≥1 is C-tight if for any T > 0, there exists a constant C ≥ 0 such that for any h ∈ [0,1],

sup
n≥1

sup
t∈[0,T ]

E
[
|∆hM

(n)(t)|2p
]
≤C · h2.(4.20)

We start to prove (4.20) with the help of the technical results about W in Appendix A. We first split ∆hM
(n)(t)

into the following five parts:

M
(n)
1 (t, h) :=

∫ t+h

t

∫ t+h−s

0

∫ X
(n)
ζ (s−)

0
∇yW (t+ h− s)Ñ (n)(n · ds,n · dy,nα · dz),

M
(n)
2 (t, h) :=

∫ t+h

t

∫ ∞
t+h−s

∫ X
(n)
ζ (s−)

0
W (t+ h− s)Ñ (n)(n · ds,n · dy,nα · dz),

M
(n)
3 (t, h) :=

∫ t

0

∫ t−s

0

∫ X
(n)
ζ (s−)

0
∇y∆hW (t− s)Ñ (n)(n · ds,n · dy,nα · dz),

M
(n)
4 (t, h) :=

∫ t

0

∫ t+h−s

t−s

∫ X
(n)
ζ (s−)

0
∇y∆hW (t− s)Ñ (n)(n · ds,n · dy,nα · dz),

M
(n)
5 (t, h) :=

∫ t

0

∫ ∞
t+h−s

∫ X
(n)
ζ (s−)

0
∆hW (t− s)Ñ (n)(n · ds,n · dy,nα · dz).

Applying (D.1), Proposition 4.11 and A.1 to E[|M (n)
1 (t, h)|2p],

E
[∣∣M (n)

1 (t, h)
∣∣2p]≤ C∣∣∣ ∫ t+h

t
ds

∫ t+h−s

0

|∇yW (t+ h− s)|2

yα+2
dy
∣∣∣p
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+C

∫ t+h

t
ds

∫ t+h−s

0

|∇yW (t+ h− s)|2p

yα+2
dy

≤ C
∣∣∣ ∫ h

0
ds

∫ ∞
0

|∇yW (s)|2

yα+2
dy
∣∣∣p +C

∫ h

0
ds

∫ ∞
0

|∇yW (s)|2p

yα+2
dy,

which can be bounded by Chpα ≤ Ch2 uniformly in n≥ 1, t ∈ [0, T ] and h ∈ [0,1]. With the help of Proposi-
tion A.2 and A.3, we also can prove the similar results for other terms. The inequality (4.20) follows by putting
them together and the power mean inequality; see footnote 5. �

4.3.5. Proof for Lemma 4.7. From (4.7), we have ε(n) + X
(n)
ζ,0 = X

(n)
ζ −M (n). Notice that X(n)

ζ → Lξζ

weakly in D([0,∞);R+); see Lemma 4.3 and (4.2). By the continuity of Lξζ , the sequence {X(n)
ζ }n≥1 is C-

tight. Together with this and Lemma 4.6, Corollary 3.33 in [36, p.353] yields the C-tightness of the sequence
{ε(n) +X

(n)
ζ,0 }n≥1 immediately. Hence it remains to prove ε(n) +X

(n)
ζ,0 →Xζ,0 in the sense of finite-dimensional

distributions, which follows directly from the next two propositions.

PROPOSITION 4.12. We have ε(n)→ 0 in the sense of finite-dimensional distributions as n→∞.

PROOF. It suffices to prove |ε(n)(t)| p→ 0 as n→∞ for any t≥ 0. By (4.4), we split ε(n)(t) into the following
two parts:

ε
(n)
1 (t) :=

∫ t

0

∫ ∞
0

∫ X
(n)
ζ (s−)

0
n−α · 1{y>t−s}Ñ (n)(n · ds,n · dy,nα · dz),

ε
(n)
2 (t) :=

∫ t

0

∫ ∞
0

∫ X
(n)
ζ (s−)

0

(∫ t−s

(t−s−y)+

n1−αR
(n)
Λ (nr)dr−∇yW (t− s)

)
Ñ (n)(n · ds,n · dy,nα · dz).

Applying (D.1) and Proposition 4.11 to E[|ε(n)
1 (t)|2], we have

sup
t≥0

E
[
|ε(n)

1 (t)|2
]
≤ C sup

t≥0

∫ t

0
n1−αΛ̄(n(t− s))ds=Cn−α

∫ ∞
0

Λ̄(s)ds,

which goes to 0 as n→∞. Similarly, we also have

sup
t∈[0,T ]

E
[
|ε(n)

2 (t)|2
]
≤ C

∫ T

0
ds

∫ ∞
0

∣∣∣ ∫ s

(s−y)+

n1−αR
(n)
Λ (nr)dr−∇yW (s)

∣∣∣2nα+1Λ(ndy).

For ϑ ∈ (1+α
2 , 1/2

1−α ∧ 1), the preceding integral can be bounded by the multiplication of the next two terms

ε
(n)
21 (T ) := sup

x∈[0,T ]

∣∣∣ ∫ x

0
n1−αR

(n)
Λ (nr)dr−W (x)

∣∣∣2(1−ϑ)
,

ε
(n)
22 (T ) :=

∫ T

0
ds

∫ ∞
0

∣∣∣ ∫ s

(s−y)+

n1−αR
(n)
Λ (nr)dr−∇yW (s)

∣∣∣2ϑnα+1Λ(n · dy).

From Lemma 4.4, we have ε(n)
21 (T )→ 0 as n→∞. It remains to prove that ε(n)

22 (T ) is bounded. By the power
mean inequality and the fact that nα+1Λ(n · dy)≤ να(dy),

ε
(n)
22 (T )≤ C

∫ T

0
ds

∫ ∞
0

|∇yW (s)|2ϑ

yα+2
dy+C

∫ T

0
ds

∫ ∞
0

∣∣∣ ∫ s

(s−y)+

n1−αR
(n)
Λ (nr)dr

∣∣∣2ϑ dy

yα+2
,(4.21)

uniformly in n ≥ 1. By Proposition A.1, the first integral on the right side of (4.21) can be bounded by C ·
Tα(2ϑ−1). Plugging (4.18) into the second integral on the right side of (4.21), it can be bounded by

C

∫ T

0
ds

∫ ∞
s

s2ϑα

yα+2
dy+C

∫ T

0
ds

∫ s

0
(s− y)2ϑ(α−1)y2ϑ−α−2dy ≤C · Tα(2ϑ−1).
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Hence ε(n)
22 (T ) <∞ and supt∈[0,T ] E[|ε(n)

2 (t)|2]→ 0 as n→∞. The desired result follows by putting these
estimates together. �

PROPOSITION 4.13. We have X(n)
ζ,0 →Xζ,0 in the sense of finite-dimensional distributions as n→∞.

PROOF. Notice that X(n)
ζ,0 (0) = [nαζ]/nα is deterministic and converges to ζ =Xζ,0(0) as n→∞. For any

T > 0, d ∈ Z+, 0< t1 < · · ·< td ≤ T and λ1, · · · , λd ≥ 0, let

Y
(n)
d (λ, y) :=

d∑
i=1

λi ·
(1{y>ti}

nα
+

∫ ti

0
n1−αR

(n)
Λ (n(ti − s)) · 1{y>s}ds

)
,

Yd(λ, y) :=

d∑
i=1

λi

∫ ti

0
W ′(ti − s) · 1{y>s}ds=

d∑
i=1

λi · ∇yW (ti).

It suffices to prove that E[exp{−
∫∞

0 Y
(n)
d (λ, y)N

(n)
ζ (dy)}]→E[exp{−

∫∞
0 Yd(λ, y)Nζ(dy)}]. By the defini-

tion of N (n)
ζ we have

E
[

exp
{
−
∫ ∞

0
Y

(n)
d (λ, y)N

(n)
ζ (dy)

}]
=
(
E[e−Y

(n)
d (λ,`0,1)]

)[nαζ]
=
(

1− 1

nα

∫ ∞
0

(
1− e−Y

(n)
d (λ,y)

)
· nα ·Λ∗(n · dy)

)[nαζ]
,

and this converges as n→∞ to

exp
{
− ζ

∫ ∞
0

(1− e−Yd(λ,y))ν̄α(y)dy
}

= E
[

exp
{
−
∫ ∞

0
Yd(λ, y)Nζ(dy)

}]
,

if and only if ∫ ∞
0

(
1− e−Y

(n)
d (λ,y)

)
· nα ·Λ∗(n · dy)−

∫ ∞
0

(1− e−Yd(λ,y))ν̄α(y)dy→ 0.(4.22)

For any ε ∈ (0, t1/2), we can write the preceding subtraction into the sum of the following four terms

ε
(n)
3 :=

∫ ∞
0

(
1− e−Yd(λ,y)

)
·
(
nα ·Λ∗(n · dy)− ν̄(y)dy

)
,

ε
(n)
4 :=

∫ ∞
ε

(
e−Yd(λ,y) − e−Y

(n)
d (λ,y)

)
· nα ·Λ∗(n · dy),

ε
(n)
5 :=

∫ ε

0

(
1− e−Y

(n)
d (λ,y)

)
· nα ·Λ∗(n · dy),

ε
(n)
6 :=

∫ ε

0

(
1− e−Yd(λ,y)

)
· nα ·Λ∗(n · dy).

The vague convergence of nα · Λ∗(n · dy) to ν̄α(y)dy implies that |ε(n)
3 | → 0 as n→∞. By Lemma 4.4, we

have Y (n)
d (λ, y)→ Yd(λ, y) uniformly in y > 0, which yields that as n→∞,

|ε(n)
4 | ≤ sup

y>0

∣∣e−Yd(λ,y) − e−Y
(n)
d (λ,y)

∣∣ · nαΛ∗(nε)≤ α · ε−α · sup
y>0

∣∣e−Yd(λ,y) − e−Y
(n)
d (λ,y)

∣∣→ 0.

Notice that Y (n)
d (λ, y) =

∑d
i=1 λi

∫ y
0 n

1−αR
(n)
Λ (n(ti − s))ds and Yd(λ, y) =

∑d
i=1 λi · ∇yW (ti) for any y ∈

(0, ε). By the change of variables and (4.18),

sup
n≥1

∣∣1− e−Y (n)
d (λ,y)

∣∣≤ sup
n≥1
|Y (n)
d (λ, y)|= sup

n≥1

d∑
i=1

λi

∫ ti

ti−y
n1−αR

(n)
Λ (ns)ds≤C · |t1|α−1 · y.
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Plugging this back into ε(n)
5 and then using the fact that nα ·Λ∗(n · dy)≤ ν̄(y)dy,

sup
n≥1
|ε(n)

5 | ≤C
∫ ε

0
yν̄(y)dy ≤C

∫ ε

0
y−αdy ≤Cε1−α,

which goes to 0 as ε→ 0+. Similarly, we also can prove that supn≥1 |ε
(n)
6 | → 0 as ε→ 0+. The convergence

(4.22) follows directly by putting these estimates together. �

5. Hölder continuity. In this section, we prove the Hölder continuity ofLξζ ; see Theorem 2.9. For simplicity
on exposition, we also denote by Xζ,0 and M the two terms on the right side of (1.3) respectively without
ambiguity, i.e., the SVE (1.3) can be written into Lξζ(x) =Xζ,0(x) +M(x) for any x≥ 0.

LEMMA 5.1. For each p≥ 0 and ζ > 0, the exists a constant C > 0 such that for any x≥ 0,

E
[∣∣Xζ,0(x)

∣∣p]≤C · (1 + x)α(p−1)+

.(5.1)

PROOF. By (2.16), we have Xζ,0(x)≥ 0 a.s. and

Xζ,0(x) = ζ
(
1− bW (x)

)
+

∫ ∞
0

∫ ζ

0
∇yW (x)Ñ0(dy, dz), x≥ 0.(5.2)

When p ≤ 1, by Jensen’s inequality we have E[|Xζ,0(x)|p] ≤ |E[Xζ,0(x)]|p ≤ ζp. For p > 1, By the power
mean inequality and Theorem D.1, there exits a constant C > 0 such that for any x > 0,

E
[∣∣Xζ,0(x)

∣∣p]≤ Cζp +C
∣∣∣ ∫ ∞

0
|∇yW (x)|2ν̄α(y)dy

∣∣∣p/2 +C

∫ ∞
0
|∇yW (x)|pν̄α(y)dy.(5.3)

By (2.8) and (2.15),∫ ∞
0
|∇yW (x)|pν̄α(y)dy ≤

∫ ∞
0
∇yW (x)ν̄α(y)dy · |W (x)|p−1 ≤Cx(p−1)α.

The desired result follows by plugging this back into (5.3). �

LEMMA 5.2. For each p≥ 1, there exists a constant C > 0 such that for any x1, x2 ≥ 0,

E
[∣∣Xζ,0(x2)−Xζ,0(x1)

∣∣2p]≤C · (|x2 − x1|2pα + |x2 − x1|pα
)
.

PROOF. By the power mean inequality and (5.2), there exists a constant C > 0 such that for any x1, x2 ≥ 0,
the expectation E[|Xζ,0(x2)−Xζ,0(x1)|2p] can be bounded by

C|W (x2)−W (x1)|2p +CE
[∣∣∣ ∫ ∞

0

∫ ζ

0

(
∇yW (x2)−∇yW (x1)

)
Ñ0(dy, dz)

∣∣∣2p].
By the uniform α-Hölder continuity of W on R+; see Section 2.1, the first term can be bounded by C · |x2 −
x1|2pα uniformly in x1, x2 ≥ 0. Applying (D.1) to the second term, it can be bounded by

C
∣∣∣ ∫ ∞

0
|∇yW (x2)−∇yW (x1)|2ν̄(y)dy

∣∣∣p +C

∫ ∞
0
|∇yW (x2)−∇yW (x1)|2pν̄(y)dy,(5.4)

for some constant C > 0 independent of x1, x2. Using the uniform α-Hölder continuity of W on (0,∞) again,
we have |∇yW (x2)−∇yW (x1)| ≤C

(
|x2 − x2|α ∧ yα

)
uniformly in x1, x2, y ≥ 0. Plugging this into (5.4), it

can be bounded by

C
∣∣∣ ∫ ∞

0

(
|x2 − x2|α ∧ yα

)2
ν̄(y)dy

∣∣∣p +C

∫ ∞
0

(
|x2 − x2|α ∧ yα

)2p
ν̄(y)dy ≤C · |x2 − x1|pα,

with C > 0 independent of x1, x2. The desired result follows by putting these estimates together. �
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LEMMA 5.3. For each p≥ 0 and ζ > 0, there exists a constant C > 0 such that for any x≥ 0,

E
[
|Lξζ(x)|p

]
≤C · (1 + x)pα.(5.5)

PROOF. Here we just prove this lemma with p = 2k and k ∈ N. The general case can be proved in the
same way. When k = 0, by (2.15) we have E[Lξζ(x)] ≤ ζ . For k ≥ 1, by mathematical induction it suffices
to prove (5.5) for p = 2k under the assumption that it holds for p = 2i with i = 0,1, · · · , k − 1. Applying the
Burkholder-Davis-Gundy inequality and the power mean inequality to E[|M(x)|2k ],

E
[
|M(x)|2k

]
≤ C ·E

[∣∣∣ ∫ x

0

∫ ∞
0

∫ Lξζ(s)

0

∣∣∇yW (x− s)
∣∣2Nα(ds, dy, dz)

∣∣∣2k−1]
≤ C ·E

[∣∣∣ ∫ x

0

∫ ∞
0

∫ Lξζ(s)

0

∣∣∇yW (x− s)
∣∣2Ñα(ds, dy, dz)

∣∣∣2k−1]
+C ·E

[∣∣∣ ∫ x

0
ds

∫ ∞
0

Lξζ(s)
∣∣∇yW (x− s)

∣∣2να(dy)
∣∣∣2k−1]

≤ C ·
k∑
i=1

E
[∣∣∣ ∫ x

0
ds

∫ ∞
0

Lξζ(s)
∣∣∇yW (x− s)

∣∣2iνα(dy)
∣∣∣2k−i],(5.6)

with C > 0 depending only on k. Applying Hölder’s inequality to each term in the last sum; see footnote 9,

E
[∣∣∣ ∫ x

0
ds

∫ ∞
0

Lξζ(s)
∣∣∇yW (x− s)

∣∣2iνα(dy)
∣∣∣2k−i]

≤
∫ x

0
ds

∫ ∞
0

E
[
|Lξζ(s)|

2k−i
]∣∣∇yW (x− s)

∣∣2iνα(dy)

×
∣∣∣ ∫ x

0
ds

∫ ∞
0

∣∣∇zW (x− s)
∣∣2iνα(dz)

∣∣∣2k−i−1

≤ sup
t∈[0,x]

E
[
|Lξζ(t)|

2k−i
]
·
∣∣∣ ∫ x

0
ds

∫ ∞
0

∣∣∇yW (s)
∣∣2iνα(dy)

∣∣∣2k−i
≤ C ·

(
1 + x

)2k−iα · ∣∣∣ ∫ x

0
ds

∫ ∞
0

∣∣∇yW (s)
∣∣2iνα(dy)

∣∣∣2k−i .
By Proposition A.1 with p= 2i, the right hand of the last inequality can be bounded by C · (1 +x)pα uniformly
in x≥ 0. Taking these estimates back into (5.6), we have E[|M(x)|p]≤C · (1 + x)pα uniformly in x≥ 0. The
desired result follows from this, (5.1) and the power mean inequality. �

LEMMA 5.4. For each p≥ 1, there exists a constant C > 0 such that for any x≥ 0 and x1, x2 ∈ [0, x],

E
[
|M(x1)−M(x2)|2p

]
≤C · (1 + x)pα · |x2 − x1|pα.

PROOF. Without loss of generality, we assume 0≤ x1 < x2 ≤ x. Similarly as in the proof of Lemma 4.6, by
the power mean inequality we have E

[
|M(x1)−M(x2)|2p

]
≤ 52p ·

∑5
i=1 E[|Mi(x1, x2)|2p] with

M1(x1, x2) :=

∫ x2

x1

∫ x2−s

0

∫ Lξζ(s)

0
∇yW (x2 − s)Ñα(ds, dy, dz),

M2(x1, x2) :=

∫ x2

x1

∫ ∞
x2−s

∫ Lξζ(s)

0
W (x2 − s)Ñα(ds, dy, dz),

M3(x1, x2) :=

∫ x1

0

∫ ∞
x1−s

∫ Lξζ(s)

0
∇y∆x2−x1

W (x1 − s)Ñα(ds, dy, dz),

M4(x1, x2) :=

∫ x1

0

∫ x2−s

x1−s

∫ Lξζ(s)

0
∇y∆x2−x1

W (x1 − s)Ñα(ds, dy, dz),
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M5(x1, x2) :=

∫ x1

0

∫ ∞
x2−s

∫ Lξζ(s)

0
∆x2−x1

W (x1 − s)Ñα(ds, dy, dz).

Applying (D.1) to E[|M1(x1, x2)|2p] and then using the change of variables, there exists a constant C > 0

depending only on p such that

E[|M1(x1, x2)|2p]≤ C sup
t∈[0,x]

E[|Lξζ(t)|
p] ·
∣∣∣ ∫ x2

x1

∫ x2−s

0
|∇yW (x2 − s)|2να(dy)ds

∣∣∣p
+C sup

t∈[0,x]
E[|Lξζ(t)|] ·

∫ x2

x1

∫ x2−s

0
|∇yW (x2 − s)|2pνα(dy)ds

= C sup
t∈[0,x]

E[|Lξζ(t)|
p] ·
∣∣∣ ∫ x2−x1

0
ds

∫ s

0
|∇yW (s)|2να(dy)

∣∣∣p
+C sup

t∈[0,x]
E[|Lξζ(t)|] ·

∫ x2−x1

0
ds

∫ s

0
|∇yW (s)|2pνα(dy).

By Proposition A.1 and Lemma 5.3, the foregoing quantities can be bounded by

C sup
t∈[0,x]

E[|Lξζ(t)|
p] · |x2 − x1|pα +C sup

t∈[0,x]
E[|Lξζ(t)|] · |x2 − x1|α(2p−1) ≤C · (1 + x)pα · |x2 − x1|pα,

uniformly in x≥ 0 and x1, x2 ∈ [0, x]. Similarly, for i ∈ {2,3,4,5}, by Proposition A.2 and A.3 we also have
E[Mi(x1, x2)|2p]≤ C · (1 + x)pα · |x2 − x1|pα uniformly in x≥ 0 and x1, x2 ∈ [0, x]. The desired inequality
follows by putting these estimates together. �

PROOF FOR THEOREM 2.9. By the Kolmogorov continuity theorem along with Lemma 5.2 and 5.4, the two
processes Xζ,0 and M are locally Hölder continuous of any order strictly less than α/2. Then claim (1) holds.
For the second claim, it suffices to consider the case of p > 1. By the Garsia-Rodemich-Rumsey inequality; see
Lemma 1.1 in [28] with ψ(u) = |u|p and p(u) = |u|q+1/p for q > 1/p, there exists a constant Cp,q > 0 such that
for any x2 > x1 ≥ 0,

|M(x2)−M(x1)|p ≤Cp,q · |x2 − x1|pq−1

∫ x2

x1

dv

∫ x2

x1

|M(u)−M(v)|p

|u− v|pq+1
du, a.s.

In particular, choosing p > (α/2− κ)−1 and q = 1/p+ κ we have

‖M‖p
C0,κ
x

= sup
0≤x1<x2≤x

|M(x2)−M(x1)|p

|x2 − x1|pκ
≤Cp,q

∫ x

0
dv

∫ x

0

|M(u)−M(v)|p

|u− v|pκ+2
du, a.s.

From Lemma 5.4, there exists a constant C > 0 such that for any x≥ 0,

E
[
‖M‖p

C0,κ
x

]
≤ C(1 + x)pα/2

∫ x

0
dv

∫ x

0
|u− v|pα/2−pκ−2du≤C(1 + x)p(α−κ).

Similarly, by Lemma 5.2 we also have E
[
‖Xζ,0‖pC0,κ

x

]
≤ C(1 + x)p(α−κ) uniformly in x ≥ 0. Then claim (2)

follows from these two upper bound estimates. �

6. Laplace functionals and weak uniqueness. In this section, we firstly prove the affine representation
of the Laplace functionals of Lξζ in two steps: (i) on some finite interval, local solutions of (1.4) exist uniquely
and (2.18) holds; (ii) this finite interval can be extended successfully to the whole positive real line. Then we
prove the weak uniqueness holds for the SVE (1.3). As a preparation, we introduce several function spaces that
will be used in the following proofs. For T,J > 0,

• AT,J : the space of functions f on (0,∞) satisfying supt∈(0,T ] t
1−α|f(t)| ≤ J ;
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• BT,J : the space of functions f on R+ satisfying ‖f‖L∞T ≤ J .

Notice that AT,J1
⊂AT,J2

for any J2 ≥ J1 > 0. Let AT := ∪J>0AT,J , which collects all functions on (0,∞)

satisfying that supx∈(0,T ] x
1−α|f(x)|<∞. It is obvious that AT is decreasing in T and A∞ = ∩T>0AT .

6.1. Nonlinear Volterra equation. We say a pair (vgλ, T ) ∈AT × (0,∞) is aA-local solution of (1.4) if vgλ
is continuous and satisfies (1.4) on (0, T ]. Moreover, for a pair (vgλ, T

g
λ ) with T gλ ∈ (0,∞] and a function vgλ on

[0, T gλ ), we say it is a A-noncontinuable solution11 of (1.4) if for any T ∈ (0, T gλ ), the pair (vgλ, T ) is a A-local
solution of (1.4) and lim supx→T gλ− |v

g
λ(x)| =∞ if T gλ− <∞. In particular, if T gλ =∞ the function vgλ turns

to be a A-global solution of (1.4). In this section, we prove the existence and uniqueness of A-noncontinuable
solutions of (1.4) with the help of the following technical estimates for the nonlinear operator Vα. The next
useful inequality can be proved immediately by using the mean-value theorem∣∣(e−x − 1 + x)− (e−z − 1 + z)

∣∣≤ (e|x|∨|z|) · (|x| ∨ |z|) · |x− z|, x, z ∈R.(6.1)

PROPOSITION 6.1. There exists a constant C > 0 such that for any T,J > 0, f ∈AT,J and t ∈ (0, T ],

sup
y≥0

∣∣∣ ∫ t

(t−y)+

f(r)dr
∣∣∣≤ J

α
· tα and

∫ ∞
0

∣∣∣ ∫ t

(t−y)+

f(r)dr
∣∣∣2να(dy)≤C · J2 · tα−1.(6.2)

PROOF. The first desired inequality follows directly from a simple calculation. For the second one, we have∫ ∞
0

∣∣∣ ∫ t

(t−y)+

f(r)dr
∣∣∣2να(dy)≤ ‖f‖2L1

t
· ν̄α(t/2) +

∫ t/2

0
‖f‖2L1

[t−y,t]
να(dy).(6.3)

It is easy to see that ‖f‖2L1
t
· ν̄α(t/2) ≤ C · J2 · tα−1 uniformly in t ∈ (0, T ] and T > 0. Since ‖f‖L1

[t−y,t]
≤

J · (t− y)α−1 · y ≤ 2J · tα−1 · y for any 0< y < t/2< t≤ T , we have∫ t/2

0
‖f‖2L1

[t−y,t]
να(dy)≤ 4J2t2α−2

∫ t/2

0
y2να(dy)≤C · J2 · tα−1,(6.4)

with C > 0 depending only on α and c. The second desired inequality follows. �

PROPOSITION 6.2. There exists a constant C > 0 such that for any T,J > 0, f ∈AT,J and t ∈ (0, T ],∣∣Vα ◦ f(t)
∣∣≤C · J2e

J

α
·tα · tα−1 and

∣∣(Vα ◦ f) ∗W ′(t)
∣∣≤C · J2e

J

α
·tα · t2α−1.

PROOF. By the first inequality in (6.2) and (6.1) with z = 0,∣∣∣ exp
{
−
∫ t

(t−y)+

f(r)dr
}
− 1 +

∫ t

(t−y)+

f(r)dr
∣∣∣≤ e Jα ·tα · ∣∣∣ ∫ t

(t−y)+

f(r)dr
∣∣∣2.

Plugging this back into (1.5) and then using the second inequality in (6.2), we have

|Vα ◦ f(t)| ≤ e
J

α
·tα
∫ ∞

0

∣∣∣ ∫ t

(t−y)+

f(r)dr
∣∣∣2να(dy)≤C · J2e

J

α
·tα · tα−1.

From this and (2.8), we have uniformly in T,J ≥ 0, f ∈AT,J and t ∈ [0, T ],∣∣(Vα ◦ f) ∗W ′(t)
∣∣≤ C · J2 · e

J

α
·tα ·

∫ t

0
sα−1(t− s)α−1ds≤C · J2 · e

J

α
·tα · t2α−1.

�

11The terminology “noncontinuable solution" comes from the theory of Volterra equations; see Chapter 12 in [30].
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PROPOSITION 6.3. For θ ∈ (1, 1
1−α), there exists a constant C > 0 such that for any T,J > 0 and f1, f2 ∈

AT,J , ∥∥(Vα ◦ f1 −Vα ◦ f2) ∗W ′
∥∥
LθT
≤C · JTαe

J

α
·Tα ·

∥∥f1 − f2

∥∥
LθT
.

PROOF. Let f̄ := f1 − f2. By (1.5), (6.1) and the first inequality in (6.2),

|Vα ◦ f1(t)−Vα ◦ f2(t)| ≤ e
J

α
·tα
∫ ∞

0

(
‖f1‖L1

[(t−y)+,t]
∨ ‖f2‖L1

[(t−y)+,t]

)
‖f̄‖L1

[(t−y)+,t]
να(dy)(6.5)

and hence |(Vα ◦ f1 −Vα ◦ f2) ∗W ′(t)| ≤ e
J

α
·tα(I1(t) + I2(t)) for any t ∈ [0, T ], where

I1(t) :=

∫ t

0
W ′(t− s)ds

∫ ∞
s/2

(
‖f1‖L1

[(s−y)+,s]
∨ ‖f2‖L1

[(s−y)+,s]

)
‖f̄‖L1

[(s−y)+,s]
να(dy),

I2(t) :=

∫ t

0
W ′(t− s)ds

∫ s/2

0

(
‖f1‖L1

[s−y,s]
∨ ‖f2‖L1

[s−y,s]

)
‖f̄‖L1

[s−y,s]
να(dy).

By Minkowski’s inequality, we have ‖(Vα ◦ f1 −Vα ◦ f2) ∗W ′‖LθT ≤ e
J

α
Tα(‖I1‖LθT + ‖I2‖LθT ). Notice that

I1(t)≤
∫ t

0
W ′(t− s) · (‖f1‖L1

s
∨ ‖f2‖L1

s
) · ‖f̄‖L1

s
· ν̄α(s/2)ds.

By Hölder’s inequality, we have ‖f̄‖L1
s
≤ ‖f̄‖Lθs · s

1−1/θ . By (2.8) and the first inequality in (6.2), there exits a
constant C > 0 such that for any T,J > 0 and t ∈ (0, T ],

I1(t)≤ C · J ·
∫ t

0
(t− s)α−1s−1/θ‖f̄‖Lθsds≤C · J · t

α−1/θ · ‖f̄‖Lθt and ‖I1

∥∥
LθT
≤C · J · Tα · ‖f̄‖LθT .

Noting that ‖f1‖L1
(s−y,s]

∨ ‖f2‖L1
(s−y,s]

≤ J · (s− y)α−1 · y for any y ∈ (0, s/2), we have∫ s/2

0
(‖f1‖L1

[s−y,s]
∨ ‖f2‖L1

[s−y,s]
)‖f̄‖L1

[s−y,s]
να(dy)≤ C · J

∫ s/2

0
(s− y)α−1y−α−1‖f̄‖L1

[s−y,s]
dy

= C · J
∫ s/2

0
(s− y)α−1y−α−1

∫ y

0
|f̄(s− r)|drdy

= C · J
∫ s/2

0
|f̄(s− y)|dy

∫ s/2

y
(s− r)α−1r−α−1dr

≤ C · J · sα−1

∫ s/2

0
y−α|f̄(s− y)|dy

≤ C · J · sα−1

∫ s

0
(s− y)−α|f̄(y)|dy,

for some constant C independent of s, J , T and f̄ . Here the two equalities follow from the change of variables
and Fubini’s theorem respectively. Plugging this into I2(t) and then using (2.8),

I2(t)≤ C · J ·
∫ t

0
(t− s)α−1sα−1ds

∫ s

0
(s− y)−α|f̄(y)|dy

= C · J ·
∫ t

0
|f̄(s)|ds

∫ t−s

0
(t− s− y)α−1(y+ s)α−1y−αdy.

This equality comes from Fubini’s theorem and the change of variables. Let η ∈ (0 ∨ 1−θα
θ−θα ,1). Since (y +

s)α−1 ≤ s(1−η)(α−1) · yη(α−1) for any y, s > 0, we have

I2(t)≤ C · J ·
∫ t

0
s(1−η)(α−1)|f̄(s)|ds

∫ t−s

0
(t− s− y)α−1yη(α−1)−αdy

≤ C · J ·
∫ t

0
(t− s)η(α−1)s(1−η)(α−1)|f̄(s)|ds.
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By Young’s convolution inequality and then Hölder’s inequality,

‖I2

∥∥
LθT
≤ C · J ·

(∫ T

0
tθη(α−1)dt

)1/θ
·
∫ T

0
s(1−η)(α−1)|f̄(s)|ds

≤ C · J · T η(α−1)+1/θ ·
(∫ T

0
s(1−η)(α−1) θ

θ−1ds
) θ−1

θ ‖f̄‖LθT ≤C · J · T
α · ‖f̄‖LθT

with C > 0 independent of T,J and f̄ . The desired result follows by putting these estimates together. �

The next two propositions can be proved similarly and their detailed proofs are omitted.

PROPOSITION 6.4. There exists a constant C > 0 such that for any T,J > 0, f ∈ BT,J and t ∈ (0, T ],

|Vα ◦ f(t)| ≤C · J2eJt · t1−α and |(Vα ◦ f) ∗W ′(t)| ≤C · J2eJt · t.

PROPOSITION 6.5. There exists a constant C > 0 such that for any T,J > 0 and f1, f2 ∈ BT,J ,

‖(Vα ◦ f1 −Vα ◦ f2) ∗W ′‖L1
T
≤C · JTeJT · ‖f1 − f2‖L1

T
.

LEMMA 6.6. For each λ ≥ 0 and g ∈ L∞(R+;R+), the nonlinear Volterre equation (1.4) has a unique
A-noncontinuable solution.

PROOF. By using Banach’s fixed point theorem, we prove this lemma in the following three steps.

Step 1. We first prove the existence of A-local solutions near 0. We consider the map R0 that acts on a
locally integrable function f on R+ according to R0 ◦ f := λW ′ + (g − Vα ◦ f) ∗W ′. Recall the constant
θ ∈ (1,1/(1−α)). By (2.8), Proposition 6.2 and 6.3, there exists a constant C0 > 0 such that for any T,J > 0,
f1, f2 ∈AT,J and t ∈ (0, T ],∣∣R0 ◦ f1(t)

∣∣≤C0

(
|λ|+ ‖g‖L∞ + J2 · Tαe

J

α
Tα
)
· tα−1

and ∥∥R0 ◦ f1 −R0 ◦ f2

∥∥
LθT

=
∥∥(Vα ◦ f1 −Vα ◦ f2) ∗W ′

∥∥
LθT
≤C0J · Tαe

J

α
Tα
∥∥f1 − f2

∥∥
LθT
.

Choosing J0 > 2C(|λ|+ ‖g‖L∞) and T0 ∈ (0,1) such that Tα0 · C0 · J0e
J0/α < 1/2, we have for any f1, f2 ∈

AT0,K0
and t ∈ (0, T0],

|R0 ◦ f1(t)| ≤ J0 · tα−1 and
∥∥R0 ◦ f1 −R0 ◦ f2

∥∥
LθT0

<
∥∥f1 − f2

∥∥
LθT0

.

ThusR0 is a contractive map fromAT0,K0
to itself. It can be easily identify thatAT0,J0

is a closed, bounded and
convex subset in Lθ((0, T0];R). By Banach’s fixed point theorem, there exists a unique function v0 ∈ AT0,J0

satisfying (1.4), i.e., v0 =R0 ◦ v0 almost everywhere on (0, T0]. By the properties of convolution, the function
vgλ :=R0 ◦ v0 is continuous and equal to v0 almost everywhere. Hence R0 ◦ vgλ =R0 ◦ v0 = vgλ pointwisely on
(0, T0] and (vgλ, T0) is a A-local solution of (1.4).

Step 2. We now extend the preceding A-local solution into a A-noncontinuable solution. Denote by T the
collection of all T > 0 such that (1.4) has a A-local solution on (0, T ]. We assert that T is an open interval
containing (0, T0]. Indeed, for any t0 ∈ T and some j0 > 0, assume that vgλ ∈ At0,j0 is a A-local solution of
(1.4). For t≥ 0, let

H1(t) := λW ′(t0 + t) +W ′ ∗ g(t0 + t)−
∫ t0

0
Vα ◦ vgλ(s)W ′(t0 + t− s)ds.(6.6)

By (2.8), we have |λW ′(t0 + t)| ≤C · tα−1
0 and |W ′ ∗g(t0 + t)| ≤C ·‖g‖L∞ ·(t0 + t)α uniformly in t≥ 0. From

Proposition 6.2, we also have |Vα ◦ vgλ(s)| ≤C · sα−1 uniformly in s ∈ (0, t0] and hence
∫ t0

0 Vα ◦ v
g
λ(s)W ′(t0 +



31

t− s)ds ≤ C uniformly in t ≥ 0. Putting these estimates together, there exists a constant CH1
> 0 such that

|H1(t)| ≤ CH1
for any t ∈ [0,1]. We consider the map R1 acting on functions f ∈ L∞(R+;R) by R1 ◦ f :=

H1 −W ′ ∗ (Vα ◦ f). Recall BT,J for T,J > 0. From Proposition 6.4 and 6.5, there exists a constant C1 > 0

such that for any T ∈ [0,1], J > 0, f1, f2 ∈ BT,J and t ∈ [0, T ],∣∣R1 ◦ f1(t)
∣∣≤C1(CH1

+ J2eJ ·T · T ) and
∥∥R1 ◦ f1 −R1 ◦ f2

∥∥
L1
T

≤C1 · JT · e2JT · ‖f1 − f2‖L1
T
.

Choosing J1 > 2C1 ·CH1
and T1 ∈ [0,1] such that T1 ·C1J1e

2J1 < 1/2, we have for any f1, f2 ∈ BT1,J1
,

sup
t∈[0,T1]

∣∣R1 ◦ f1(t)
∣∣≤ J1 and

∥∥R1 ◦ f1 −R1 ◦ f2

∥∥
L1
T1

<
∥∥f1 − f2

∥∥
L1
T1

.

Thus R1 is a contractive map from BT1,J1
to itself. Notice that BT1,J1

is a closed, bounded and convex subset
of L1([0, T1];R). Applying Banach’s fixed point theorem again, there exists a unique function v1 ∈ BT1,J1

satisfying that v1 =R1 ◦ v1 almost everywhere. For t ∈ [0, T1], let vgλ(t0 + t) :=R1 ◦ v1(t). One can verifies
that (vgλ, t0 + T1) is a A-local solution of (1.4) and hence t0 is an interior point of T .

Let T gλ := supT and vgλ be a continuous function on (0, T gλ ) satisfying that (vgλ, T ) is a A-local solution
of (1.4) for any T ∈ (0, T gλ ). To assert that (vgλ, T

g
λ ) is a A-noncontinuable solution, it remains to identify that

lim supt→T gλ− |v
g
λ(t)| =∞ if T gλ <∞. Actually, if supt∈[T0,T

g
λ−) |v

g
λ(t)| ≤ J2 for some constant J2 > 0, then

supt∈(0,T gλ ) t
1−α|vgλ(t)|<∞. Let H2 be a function on R+ defined as in (6.6) with t0 replaced by T gλ . Let R2

be a map acting on functions f ∈ L∞(R+;R) by R2 ◦ f :=H2 +W ′ ∗ (Vα ◦ f). Similarly as in the previous
paragraph, there exist constants CH2

> 0, T2 ∈ [0,1] and J2 > 0 such that |H2(t)| ≤ CH2
for any t ∈ [0,1]

and R2 is a contractive map from BT2,J2
to itself. By Banach’s fixed point theorem again, there exists a unique

function v2 ∈ BT2,J2
satisfying that v2 =R2◦v2 almost everywhere. For t ∈ [0, T2], let vgλ(T gλ +t) :=R1◦v2(t).

Then (vgλ, T
g
λ + T2) is a A-local solution of (1.4) and T gλ + T2 ∈ T , which contradicts the assumption that

T gλ = supT . Consequently, (vgλ, T
g
λ ) is a A-noncontinuable solution of (1.4).

Step 3. We prove the uniqueness. Assume that (vgλ, T
g
λ ) and (v̂gλ, T̂

g
λ ) are two A-noncontinuable solutions

of (1.4) with T gλ ≤ T̂ gλ . Similarly as in Step 1, there exist two constants T0 ∈ (0,1) and J0 > 0 such that
vgλ, v̂

g
λ ∈AT0,J0

and the mapR0 is contractive fromAT0,J0
to itself. Then Banach’s fixed point theorem induces

that ‖vgλ − v̂
g
λ‖LθT0

= 0. Their continuity yields that vgλ = v̂gλ on (0, T0]. Similarly as in Step 2, let t0 := inf{t >
0 : vgλ(t) 6= v̂gλ(t)}, H1 be the function defined by (6.6), vgλ,1(t) = vgλ(t0 + t) and v̂gλ,1(t) = v̂gλ(t0 + t) for
t ∈ [0, T gλ − t0). We also can find some constants T1 ∈ (0,1) ∩ [0, T gλ − t0) and J1 > 0 such that vgλ,1, v̂

g
λ,1 ∈

BT1,J1
and the map R1 is contractive from BT1,J1

to itself. Again, Banach’s fixed point theorem induces that
‖vgλ,1 − v̂

g
λ,1‖L1

T1
= 0. Their continuity yields that vgλ = v̂gλ on (0, t0 + T1], which contracts the definition of t0.

Hence the uniqueness holds. �

6.2. Laplace functionals. For convenience, we assume that the process Lξζ , the PRM Ñα(ds, dy, dz) are
defined on a filtrated probability basis (Ω,G ,Gr,P) satisfying the general hypotheses and N0(dy, dz) is G0-
measurable12. For each λ≥ 0 and g ∈ L∞(R+;R+), we assume that (vgλ, T ) is a A-local solution of (1.4), i.e.,
T > 0 and vgλ ∈ AT,J for some J > 0. For x, r ≥ 0, conditioned on Gr we take expectations on both sides of
(1.3) and get

E
[
Lξζ(x)

∣∣Gr]=

∫ ∞
0

∫ ζ

0
∇yW (x)N0(dy, dz) +

∫ x∧r

0

∫ ∞
0

∫ Lξζ(s)

0
∇yW (x− s)Ñα(ds, dy, dz).(6.7)

PROPOSITION 6.7. For any x ∈ [0, T ], the following hold:

12Otherwise, by the definition of weak solutions of (1.3); see footnote 1, a realization of LξL, N0(dy, dz) and Ñα(ds, dy, dz) can be
found on some filtrated probability basis such that (1.3) holds.
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(1) The random variable Yx(x) := λLξζ(x) + (g−Vα ◦ vgλ) ∗Lξζ(x) is integrable, i.e., E[|Yx(x)|]<∞.

(2) The Doob martingale {Yx(t) := E[Yx(x)|Gt] : t ∈ [0, x]} has the representation

Yx(t) =

∫ ∞
0

∫ ζ

0

∫ x

(x−y)+

vgλ(s)dsN0(dy, dz) +

∫ t

0

∫ ∞
0

∫ Lξζ(s)

0

∫ x−s

(x−s−y)+

vgλ(r)drÑα(ds, dy, dz).

PROOF. By Proposition 6.2, we have ‖Vα ◦ vgλ‖L1
x
≤ C · xα. Moreover, by (2.15) we have E[|Yx(x)|] ≤

ζ ·
(
λ+ ‖g‖L1

x
+ ‖Vα ◦ vgλ‖L1

x

)
<∞ and

Yx(0) =

∫ ∞
0

∫ ζ

0
λ∇yW (x)N0(dy, dz) +

∫ ∞
0

∫ ζ

0
∇yW (·)N0(dy, dz) ∗ (g−Vα ◦ vgλ)(x).(6.8)

By using Proposition 6.2 and (2.15) again, we have for any ε > 0,∣∣∣ ∫ x

0
(g−Vα ◦ vgλ)(x− s)

∫ ε

0
∇yW (s)ν̄α(y)dyds

∣∣∣≤ (‖g‖L1
x

+ ‖Vα ◦ vgλ‖L1
x

)
sup
s∈[0,x]

∫ ε

0
∇yW (s)ν̄α(y)dy,

which is finite and goes to 0 as ε→ 0+. Moreover, by Fubini’s theorem,∫ x

0
(g−Vα ◦ vgλ)(x− s)∇yW (s)ds=

∫ x

0
(g−Vα ◦ vgλ)(x− s)

∫ s

(s−y)+

W ′(r)drds

=

∫ x

(x−y)+

(g−Vα ◦ vgλ) ∗W ′(s)ds,

which can be bounded by C(1∧ y) uniformly in y > 0; see Proposition 6.2. Hence for any ε > 0,∫ ε

0

∣∣∣ ∫ x

(x−y)+

(g−Vα ◦ vgλ) ∗W ′(s)ds
∣∣∣ν̄α(y)dy ≤C · εα,

which vanishes as ε→ 0+. By these and the stochastic Fubini theorem; see Theorem D.2, the stochastic integral∫ ∞
0

∫ ζ

0

∫ x

(x−y)+

(g−Vα ◦ vgλ) ∗W ′(s)dsN0(dy, dz)

is well defined and equal almost surely to the second stochastic integral on the right side of (6.8). By (1.4),

λ∇yW (x) +

∫ x

(x−y)+

(g−Vα ◦ vgλ) ∗W ′(s)ds

=

∫ x

(x−y)+

(
λW ′(s) + (g−Vα ◦ vgλ) ∗W ′(s)

)
ds=

∫ x

(x−y)+

vgλ(s)ds.

Plugging this back into (6.8), we have

Yx(0) =

∫ ∞
0

∫ ζ

0

∫ x

(x−y)+

vgλ(s)dsN0(dy, dz).(6.9)

By (6.7), we have for t ∈ [0, x],

Yx(t) =

∫ ∞
0

∫ ζ

0

∫ x

(x−y)+

vgλ(s)dsN0(dy, dz) +

∫ t

0

∫ ∞
0

∫ Lξζ(s)

0
λ∇yW (x− s)Ñα(ds, dy, dz)

+

∫ x

0

(
g−Vα ◦ vgλ

)
(x− r)dr

∫ r∧t

0

∫ ∞
0

∫ Lξζ(s)

0
∇yW (r− s)Ñα(ds, dy, dz).(6.10)

Proposition 6.2, together with the assumption that vgλ ∈AT , implies that g−Vα ◦ vgλ ∈AT . Then there exists a
constant C > 0 such that |g(t)−Vα ◦ vgλ(t)| ≤C ·K(t) for any t ∈ (0, T ]. By Proposition A.4,∫ x

0

(
g−Vα ◦ vgλ

)
(x− r)dr

∣∣∣ ∫ r

0
ds

∫ ε

0
|∇yW (r− s)|2να(dy)

∣∣∣1/2
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≤ C
∫ x

0
K(r)dr ·

∣∣∣ ∫ x

0
ds

∫ ε

0
|∇yW (s)|2να(dy)

∣∣∣1/2 ≤C · xα · ∣∣∣ ∫ x

0
ds

∫ ε

0
|∇yW (s)|2να(dy)

∣∣∣1/2,(6.11)

which goes to 0 as ε→ 0+. Moreover, by the change of variables,∫ x

0

(
g−Vα ◦ vgλ

)
(x− r) · 1{0≤s<r∧t} · ∇yW (r− s)dr =

(
g−Vα ◦ vgλ

)
∗∇yW (x− s) · 1{0≤s<t}.

By Proposition A.5, we have for ε > 0,∫ x

0
ds

∫ ε

0
|
(
g−Vα ◦ vgλ

)
∗∇yW (x− s)|2να(dy)≤C

∫ x

0
ds

∫ ε

0

|K ∗∇yW (x− s)|2

yα+2
dy,

which is finite and goes to 0 as ε→ 0+. From this, (6.11) and the stochastic Fubini theorem; see Theorem D.2,
the stochastic integral ∫ t

0

∫ ∞
0

∫ Lξζ(s)

0

(
g−Vα ◦ vgλ

)
∗∇yW (x− s)Ñα(ds, dy, dz)

is well defined and equal almost surely to the last stochastic integral on the right side of (6.10). Moreover, by
Fubini’s theorem we have for any s ∈ [0, T ] and y > 0,

λ∇yW (s) +
(
g−Vα ◦ vgλ

)
∗∇yW (s) =

∫ s

(s−y)+

(
λW ′(r) + (g−Vα ◦ vgλ) ∗W ′(r)

)
dr =

∫ s

(s−y)+

vgλ(r)dr.

Consequently, the sum of the last two stochastic integrals on the right side of (6.10) can be replaced by∫ t

0

∫ ∞
0

∫ Lξζ(s)

0

∫ x−s

(x−s−y)+

vgλ(r)drÑα(ds, dy, dz)

and claim (2) holds. �

Associated to vgλ, we define a stochastic process Zx := {Zx(t) : t ∈ [0, x]} by

Zx(t) := E
[
λLξζ(x) + g ∗Lξζ(x)|Gt

]
−
∫ x

t
Vα ◦ vgλ(x− s)E

[
Lξζ(s)|Gt

]
ds.

By Proposition 6.7(2) and (6.9), the process Zx also has the following representation

Zx(t) = Yx(t) +

∫ t

0
Vα ◦ vgλ(x− s)Lξζ(s)ds= Yx(0) +

∫ t

0
Vα ◦ vgλ(x− s)Lξζ(s)ds

+

∫ t

0

∫ ∞
0

∫ Lξζ(s)

0

∫ x−s

(x−s−y)+

vgλ(r)drÑα(ds, dy, dz).

Thus Zx is a (Gt)-semimartingale. Applying Itô’s formula to exp{−Zx(t)} and then using (1.4),

e−Zx(t) = e−Yx(0) +Mx(t), t ∈ [0, x],(6.12)

where Mx := {Mx(t) : t ∈ [0, x]} is a (Gr)-local martingale and

Mx(t) :=

∫ t

0

∫ ∞
0

∫ Lξζ(s)

0
e−Zx(s)

(
exp

{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}
− 1
)
Ñα(ds, dy, dz).(6.13)

In the next lemma, we prove the martingality of e−Zx := {e−Zx(t) : t ∈ [0, x]} and the equality (2.18) by using
the method developed in [1, Lemma 6.3] and [3, Lemma 7.3].

LEMMA 6.8. For each x ∈ [0, T ], the local-martingale e−Zx is a true (Gr)-martingale and (2.18) holds.
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PROOF. For each t≥ 0, define

Ux(t) :=

∫ t

0

∫ ∞
0

∫ Lξζ(s)

0

(
exp

{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}
− 1
)
Ñα(ds, dy, dz),

which is a uniformly square integrable (Gr)-martingale, i.e., by the Burkholder-Davis-Gundy inequality, (2.15),
Proposition 6.1 and the change of variables,

sup
t≥0

E
[
|Ux(t)|2

]
≤ sup

t≥0

∫ t

0
E
[
Lξζ(s)

]
ds

∫ ∞
0

(
exp

{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}
− 1
)2
να(dy)

≤ C
∫ x

0
ds

∫ ∞
0

∣∣∣ ∫ x−s

(x−s−y)+

vgλ(r)dr
∣∣∣2να(dy) =C

∫ x

0
sα−1ds≤Cxα.

Denote by EUx := {EUx(t) : t≥ 0} the Doléan-Dade exponential of Ux. By Itô’s formula,

EUx(t) = exp
{
−
∫ t

0

∫ ∞
0

∫ Lξζ(s)

0

∫ x−s

(x−s−y)+

vgλ(r)drÑα(ds, dy, dz)−
∫ t

0
Vα ◦ vgλ(x− s)Lξζ(s)ds

}
.

Notice that EUx is a non-negative local martingale and hence a supermartingale. By Fatou’s lemma, we have
E[EUx(t)]≤ 1 and hence it suffices to identify that E[EUx(t)] = 1 for any t≥ 0. For each t0 ≥ 0 and n≥ 1, let
τn := inf{t≥ 0 : Lξζ(t)≥ n} ∧ t0 and EnUx(·) := EUx(τn ∧ ·). By the inequality |1 + (z − 1)ez| ≤ z2ez for any
z ∈R and Proposition 6.1, there exists a constant C > 0 such that for any t≥ 0,∫ t

0
1{s≤τn}L

ξ
ζ(s)ds

∫ ∞
0

∣∣∣1− (1 +

∫ x−s

(x−s−y)+

vgλ(r)dr
)

exp
{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}∣∣∣να(dy)

≤ n
∫ x

0
ds

∫ ∞
0

(∫ x−s

(x−s−y)+

vgλ(r)dr
)2

exp
{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}
να(dy)≤C ·

∫ x

0
sα−1ds≤Cxα.

By Theorem IV.3 in [51] with y(s, z) = 1{s≤τn} · (exp{−
∫ x−s

(x−s−y)+ v
g
λ(r)dr} − 1), the process EnUx is a mar-

tingale for each n≥ 1. Thus

1 = E
[
EnUx(t0)

]
= E

[
EnUx(t0); τn = t0

]
+E

[
EnUx(t0); τn < t0

]
= E

[
EUx(t0); τn = t0

]
+E

[
EnUx(t0); τn < t0

]
.

By the monotone convergence theorem and the fact that τn
a.s.→ t0 as n→∞, we have E[EUx(t0); τn = t0]→

E[EUx(t0)]. Thus it suffices to prove that E[EnUx(t0); τn < t0]→ 0 as n→∞. Associate with the martingale
EnUx , we define a probability law Qn

x on (Ω,G ,Gr) by

dQn
x

dP
= EnUx(τn).

Since EnUx(0)
a.s.
= 1, the PRM N0(dy, dz) is G0-measurable and has the same distribution under P and Qn

x . By
Girsanov’s theorem for random measure; see Theorem 3.17 in [36, p.170], the PRMNα(ds, dy, dz) is a random
point measure under Qn

x with intensity

1{s≤τn} · exp
{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}
dsνα(dy)dz,

and the SVE (1.3) is equal in distribution to the following SVE under Qn
x ,

Lξ,nζ (t) =Xζ,0(t) +Bn(t) +Mn(t), t≥ 0,

where Xζ,0 is defined as in (4.8), Mn is defined as in (4.10) with Xζ replaced by Lξ,nζ and

Bn(t) :=

∫ t

0
1{s≤τn}L

ξ
ζ,n(s)ds

∫ ∞
0
∇yW (t− s)

(
exp

{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}
− 1
)
να(dy).
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Noting that ∇yW (t− s) = 0 when s≥ t and
∫ x−s

(x−s−y)+ v
g
λ(r)dr = 0 when s≥ x, we have for any t≥ 0,

Bn(t) =

∫ x

0
1{s≤τn}L

ξ
ζ,n(s)ds

∫ ∞
0
∇yW (t− s)

(
exp

{
−
∫ x−s

(x−s−y)+

vgλ(r)dr
}
− 1
)
να(dy).

By the arithmetic-geometric mean inequality and Proposition 6.1, the preceding inner integral can bounded by
C · ((x− s)+ · (t− s)+)(α−1)/2 uniformly in t, s, y > 0. The definition of τn implies that

sup
t≥0
|Bn(t)| ≤C · n ·

∫ x

0
(x− s)α−1ds≤C · n · xα, a.s.(6.14)

Proposition 6.1 implies that exp{−
∫ x−s

(x−s−y)+ v
g
λ(r)dr} is uniformly bounded in s, y ≥ 0. Similarly as in the

proofs of Lemma 5.1-5.4, there exists a constant C > 0 such that for any t > 0 and t1, t2 ∈ [0, t],

EQn
x

[∣∣Xζ,0(t)
∣∣p +

∣∣Lξ,nζ (t)
∣∣p]<C · (1 + t)pα

and

EQn
x

[∣∣Xζ,0(t1)−Xζ,0(t2)
∣∣p +

∣∣Mn(t1)−Mn(t2)
∣∣p]≤C · (1 + t)pα · |t1 − t2|pα.

Here EQn
x is the expectation under Qn

x . Together with these estimates, an argument similar to that in the proof
of Theorem 2.9 implies that for any κ ∈ (0, α/2), both Xζ,0 and Mn are locally κ-Hölder continuous under
Qx
n and the Hölder coefficient has finite moments of all orders. Like the argument before Corollary 2.10, we

have EQn
x [sups∈[0,t] |Xζ,0(s)|p] + EQn

x [sups∈[0,t] |Mn(s)|p]<∞ for any t, p≥ 0, which, together with (6.14),
implies that EQn

x [sups∈[0,t] |L
ξ,n
ζ (s)|p]<∞. By the definition of τn and Chebyshev’s inequality,

E
[
EnUx(τn); τn < t

]
= Qn

x

(
τn < t

)
= Qn

x

(
sup
s∈[0,t]

Lξ,nζ (s)≥ n
)
≤ 1

n
EQn

x

[
sup
s∈[0,t]

Lξ,nζ (s)
]
,

which vanishes as n→∞. Hence E[EUx(t0)] = 1 and EUx is a (Gr)-martingale under P. By Proposition 6.1,∫ ∞
0

∣∣∣1− exp
{
−
∫ x

(x−y)+

vgλ(r)dr
}∣∣∣ν̄α(y)dy ≤ C

∫ ∞
0

∣∣∣ ∫ x

(x−y)+

vgλ(r)dr
∣∣∣ν̄α(y)dy.

Similarly as in the proof for Proposition 6.1, we can prove that the last quantity is finite. From this and the
exponential formula for PRMs; see [9, p.8],

E
[

exp{−Yx(0)}
]

= exp
{
− ζ

∫ ∞
0

(
1− exp

{
−
∫ x

(x−y)+

vgλ(s)ds
})
ν̄α(y)dy

}
<∞.

Notice that e−Zx = e−Yx(0)EUx on [0, x]. The standard conditional expectation argument yields that the local-
martingale e−Zx is a true (Gr)-martingale under P. The equality (2.18) can be obtained immediately from the
facts that Zx(x) = λLξζ(x) + g ∗Lξζ(x)≥ 0 and E[e−Zx(x)] = E[e−Yx(0)]. �

6.3. Proof for Theorem 2.12. By Lemma 6.6 and 6.8, associated to the unique A-noncontinuable solution
(vgλ, T

g
λ ) of (1.4) we see that Theorem 2.12 holds for any x ∈ [0, T gλ ). Thus it suffices to prove that (vgλ, T

g
λ )

is a A-global solution, i.e., T gλ =∞. In the sequel, we assume for contradiction that T gλ <∞, which implies
that lim supt→T gλ− |v

g
λ(t)|=∞. With the help of the following propositions, we prove that |vgλ(t)| ≤ C · tα−1

uniformly in (0, T gλ ); see Lemma 6.14, which leads to a contradiction to the preceding assumption,

PROPOSITION 6.9. If T gλ <∞, there exists a constant C > 0 such that for any t ∈ [0, T gλ ] and y > 0,∣∣∣ ∫ t

(t−y)+

vgλ(r)dr
∣∣∣≤C and |Vα ◦ vgλ(t)| ≤C

∫ ∞
0

∣∣∣ ∫ t

(t−y)+

vgλ(r)dr
∣∣∣2να(dy).(6.15)



36

PROOF. Notice that e−x−1 +x≥ 0 for any x ∈R. By (1.4), we have vgλ(t)≤ λW ′(t) + g ∗W ′(t)≤Ctα−1

and hence
∫ t

(t−y)+ v
g
λ(r)dr ≤ C uniformly in t ∈ [0, T gλ ] and y > 0. We now prove

∫ t
(t−y)+ v

g
λ(r)dr ≥ −C

uniformly in t ∈ [0, T gλ ] and y > 0. If not, the fact that vgλ ∈AT for any T ∈ (0, T gλ ) yields that for any y > 0,∫ T gλ

(T gλ−y)+

vgλ(r)dr =−∞.

Moreover, by the inequality 1− e−x ≤ x for any x ∈R, Lemma 6.8 and (2.18), we have for any t ∈ (0, T gλ ),

0≤
∫ ∞

0

(
1− exp

{
−
∫ t

(t−y)+

vgλ(s)ds
})
ν̄α(y)dy ≤

∫ ∞
0

ν̄α(y)dy

∫ t

(t−y)+

vgλ(s)ds.

The continuity of vgλ on (0, T gλ ) implies that the last integral tends to −∞ as t increases to T gλ , which leads to
a contradiction and hence the first desired inequality holds. The second one can be proved similarly as in the
proof of Proposition 6.2. �

Recall the constant θ ∈ (1, 1
1−α) defined in Proposition 6.3. We need the next two constants in the follows

η ∈
((1

θ
− 1 + α2

2

)+
,

1

2θ

)
and ` ∈

(1 + α

2
,
η+ 1− 1/θ

1− α
∧ 1
)
.(6.16)

The first inequality in Proposition 6.2, together with 0 < θη < 1/2 and θ(α − 1) + 1 > 0, implies that the
following function is well defined on [0, T gλ ),

H(t) :=

∫ t

0
s−θη ·

∣∣Vα ◦ vgλ(t− s)
∣∣θds.

PROPOSITION 6.10. If T gλ <∞, there exists a constant C > 0 such that for any t ∈ (0, T gλ ),∣∣Vα ◦ vgλ(t)
∣∣≤Ctα−1 +C|H(t)|2/θ · tα+2η+1−2/θ +Ct2(α+η−`+1−1/θ)

∫ t

0

|H(t− s)|2/θ

sα+2−2`
ds.(6.17)

PROOF. For y > 0, integrating both sides of (1.4) over ((t− y)+, t] and then using Fubini’s theorem,∫ t

(t−y)+

vgλ(s)ds= λ · ∇yW (t) +
(
g−Vα ◦ vgλ

)
∗∇yW (t).

Plugging this into the second inequality in (6.15) and then using the Cauchy-Schwarz inequality, we have
|Vα ◦ vgλ(t)| ≤C

[
J1(t) + J2(t) + J3(t)

]
uniformly in t ∈ (0, T gλ ), where

J1(t) := λ2

∫ ∞
0

∣∣∇yW (t)
∣∣2να(dy), J2(t) :=

∫ ∞
0
|g ∗∇yW (t)|2να(dy),

J3(t) :=

∫ ∞
0

∣∣(Vα ◦ vgλ) ∗∇yW (t)
∣∣2να(dy).

Similarly as in (6.3)-(6.4), we have J1(t) ≤ C · tα−1 uniformly in t ∈ (0, T gλ ). By Hölder’s inequality, we
have |g ∗ ∇yW (t)| ≤ ‖g‖L∞ · ‖∇yW‖L1

t
≤ ‖g‖L∞ · t1/2 · ‖∇yW‖L2

t
. Plugging this into J2(t) and then using

Proposition A.1 with p= 2 as well as Fubini’s theorem, we have uniformly in t ∈ [0, T gλ ),

J2(t)≤C · t ·
∫ ∞

0
‖∇yW‖2L2

t
να(dy) =C · t ·

∫ t

0
dr

∫ ∞
0
|∇yW (r)|2να(dy)≤C · tα+1.

We now turn to analyze J3(t). Splitting the interval of integration and then using the Cauchy-Schwarz inequal-
ity, we have J3(t)≤ J31(t) + J32(t) with J31(t) :=

∣∣|Vα ◦ vgλ| ∗W (t)
∣∣2 · ν̄α(t) and

J32(t) := 2

∫ t

0

∣∣∣ ∫ t

t−y
Vα ◦ vgλ(s)W (t− s)ds

∣∣∣2να(dy),
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J32(t) := 2

∫ t

0

∣∣∣ ∫ t−y

0
Vα ◦ vgλ(s)∇yW (t− s)ds

∣∣∣2να(dy).

By Hölder’s inequality and (2.8),∣∣|Vα ◦ vgλ| ∗W (t)
∣∣=

∫ t

0
s−η|Vα ◦ vgλ(t− s)| · sηW (s)ds

≤
∣∣H(t)

∣∣1/θ · (∫ t

0

∣∣sηW (s)
∣∣θ/(θ−1)

ds
)1−1/θ

≤C ·
∣∣H(t)

∣∣1/θ · tα+η+1−1/θ

and hence J31(t)≤C · |H(t)|2/θ · tα+2η+1−2/θ uniformly in t ∈ (0, T gλ ). Similarly, we also have∫ t

t−y
|Vα ◦ vgλ(s)|W (t− s)ds=

∫ y

0
s−η|Vα ◦ vgλ(t− s)| · sηW (s)ds

≤
(∫ y

0
s−ηθ|Vα ◦ vgλ(t− s)|θds

)1/θ
·
(∫ y

0

∣∣sηW (s)
∣∣θ/(θ−1)

ds
)1−1/θ

,

which can be bounded by C · |H(t)|1/θ · yα+η+1−1/θ . Taking this back into J32(t), we have J32(t) ≤
C|H(t)|2/θ · tα+2η+1−1/θ uniformly in t ∈ [0, T gλ ). For J33(t), we first consider its inner integral. Like the
preceding argument, by Hölder’s inequality we have∫ t−y

0
|Vα ◦ vgλ(s)∇xW (t− s)|ds=

∫ t

y
(s− y)−η|Vα ◦ vgλ(t− s)| · (s− y)η∇yW (s)ds

≤
(∫ t

y
(s− y)−ηθ|Vα ◦ vgλ(t− s)|θds

)1/θ
·
(∫ t

y

∣∣(s− y)η∇yW (s)
∣∣ θ

θ−1ds
)1−1/θ

.(6.18)

By the change of variables, the first term on the right side of this inequality equals to |H(t − y)|1/θ . Recall
the constant ` in (6.16). By (2.9), we have |∇yW (s)| ≤C · sα(1−`) · (s− y)`(α−1) · y` uniformly in s > y > 0.
Plugging this into the second term on the right side of the inequality in (6.18), it can be bounded by

Ctα(1−`) ·
(∫ t

y
(s− y)(η+(α−1)`) θ

θ−1ds
) θ−1

θ · y` ≤C · tα+η−`+1−1/θ · y`.

uniformly in t ∈ [0, T gλ ) and y ∈ (0, t). Taking these two estimates back into (6.18) and then J33(t), we have

J33(t)≤ C · t2(α+η−`+1−1/θ) ·
∫ t

0

∣∣H(t− y)
∣∣2/θ · y2`−α−2dy.

Here the constant C > 0 is independent of t. Then (6.17) follows by putting all estimates above together. �

PROPOSITION 6.11. If T gλ <∞, there exists a constant C∗ > 0 such that for any t ∈ (0, T gλ ),

H(t)≤ C∗t−ηθ +C∗

∫ t

0
(t− s)−ηθ · |H(s)|2dt.(6.19)

PROOF. Raising both sides of the inequality (6.17) to the θ power and then using the power mean inequality,
we have for some constant C > 0 independent of t,

|Vα ◦ vgλ(t)|θ ≤ Ctθ(α−1) +C|H(t)|2 · tθ(α+2η+1)−2 +Ct2θ(α+η−`+1)−2
(∫ t

0

|H(t− s)|2/θ

sα+2−2`
ds
)θ
.

Convolving both sides of this inequality by the power function s−θη ,

H(t)≤ C
∫ t

0
(t− s)−ηθ · sθ(α−1)ds+C

∫ t

0
(t− s)−ηθ · |H(s)|2 · sθ(α+2η+1)−2ds

+C

∫ t

0
(t− s)−ηθ · s2θ(α+η−`+1)−2

(∫ s

0

|H(s− r)|2/θ

rα+2−2`
dr
)θ
ds.(6.20)
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Notice that ηθ < 1/2, θ(α− 1) + 1> 0 and θ(α+ 2η+ 1)− 2> 0. A simple calculation shows that uniformly
in t ∈ (0, T gλ ), the first term on the right side of the above inequality can be bounded by C · t−ηθ and the second
term can be bounded by

C · tθ(α+2η+1)−2

∫ t

0
(t− s)−ηθ · |H(s)|2ds.(6.21)

Using Hölder’s inequality and the fact that 2`− α− 1> 0, we have(∫ s

0

|H(s− r)|2/θ

rα+2−2`
dr
)θ

=
(∫ s

0

|H(s− r)|2/θ

r(α+2−2`)/θ
· r(1−1/θ))(2`−α−2)dr

)θ
≤
(∫ s

0
z2`−α−2dz

)θ−1
∫ s

0

|H(s− r)|2

rα+2−2`
dr

=
s(θ−1)(2`−α−1)

|2`− α− 1|θ−1

∫ s

0

|H(s− r)|2

rα+2−2`
dr.

Plugging this into the third term on the right side of (6.20), it can be bounded uniformly in t ∈ (0, T gλ ) by

C

∫ t

0
(t− s)−ηθ · s2θ(α+η−`+1)−2+(θ−1)(2`−α−1) ·

∫ s

0

|H(s− r)|2

rα+2−2`
drds

≤ Ctθ(α+2η+1)−2−(2`−α−1) ·
∫ t

0
(t− s)−ηθ ·

∫ s

0

|H(s− r)|2

rα+2−2`
drds

= C · tθ(α+2η+1)−2−(2`−α−1) ·
∫ t

0
|H(s)|2

∫ t−s

0

(t− s− r)−ηθ

rα+2−2`
drds.

Here the inequality comes from the fact that 2θ(α+ η − `+ 1)− 2 > 0 as well as (θ − 1)(2`− α− 1) > 0,
and the equality comes from Fubini’s theorem. Noting that 2`− α− 1> 0 and ηθ < 1/2, a simple calculation
induces that uniformly in t≥ s > 0,∫ t−s

0

(t− s− r)−ηθ

rα+2−2`
dr ≤C · (t− s)−ηθ+2`−α−1 ≤C · t2`−α−1 · (t− s)−ηθ

Consequently, the third term on the right side of (6.20) can be bounded uniformly in t ∈ (0, T gλ ) by

C · tθ(α+2η+1)−2 ·
∫ t

0
(t− s)−ηθ|H(s)|2ds,

which can be merged with (6.21). Then (6.19) follows by putting these estimates together. �

PROPOSITION 6.12. For any C∗ > 0, there exists a unique continuous and non-negative solution of

ψ(t) =C∗t−ηθ +C∗
∫ t

0
(t− s)−ηθ · |ψ(s)|2ds, t > 0.(6.22)

Moreover, for any T > 0, there exists a constant C > 0 such that ψ(t)≤C · t−ηθ for any t ∈ (0, T ].

PROOF. By Theorem 6.1(ii) in [3] and 0 < ηθ < 1/2, there exists a unique solution ψ̃ ∈ L2
loc(R+;R+) of

(6.22). Let ψ(t) :=C∗t−ηθ +C∗
∫ t

0 (t− s)−ηθ · |ψ̃(s)|2ds for t > 0. By the properties of convolution, it is easy
to identify that ψ is continuous on (0,∞) and equal to ψ̃ almost everywhere. Thus ψ is the unique continuous
and non-negative solution of (6.22). By Theorem 2.a in [14], there exist two constants Cψ, rψ > 0 such that
ψ(t) ≤ Cψt−ηθ uniformly on t ∈ (0, rψ]. For T > rψ , the continuity of ψ yields that ψ(t) ≤ C · t−ηθ for any
t ∈ (0, T ] and some C > 0. �

PROPOSITION 6.13. If T gλ <∞, there exists a constantC > 0 such thatH(t)≤C ·t−ηθ for any t ∈ (0, T gλ ).
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PROOF. Choosing the two constants C∗ >C∗ > 0 such that the inequality (6.19) turns to be strict. It is easy
to identify that both tηθH(t) and tηθψ(t) are continuous on [0, T gλ ). By Theorem 2.1 in [18] 13, the function H
can be uniformly bounded by ψ on (0, T gλ ) and the desired result follows directly from Proposition 6.12. �

LEMMA 6.14. If T gλ <∞, there exists a constant C > 0 such that |vgλ(t)| ≤C · tα−1 for any t ∈ (0, T gλ ).

PROOF. Plugging Proposition 6.13 into (6.17), we have

|Vα ◦ vgλ(t)| ≤ Ctα−1 +Ctα+1−2/θ +Ct2(α+η−`+1−1/θ)

∫ t

0

(t− s)−2η

sα+2−2`
ds.

Notice that α+1−2/θ ∈ (α−1,1−α), η < 1/2 and α+2−2` < 1, we have |Vα ◦vgλ(t)| ≤C · tα−1 uniformly
in t ∈ [0, T gλ ). Taking this back into (1.4), we can get the desired result immediately. �

6.4. Proof for Theorem 2.1(3). Assume that Lξζ,1 and Lξζ,2 are two weak solutions of (1.3). For any x, z ≥ 0

and g ∈ L∞(R+;R+), let vg0 be the unique A-global solution of (1.4) with λ= 0. By Theorem 2.12,

E
[
e−z·g∗L

ξ
ζ,1(x)

]
= exp

{
− ζ

∫ ∞
0

(
1− exp

{
−
∫ x

(x−y)+

vg0(s)ds
})
ν̄α(y)dy

}
= E

[
e−z·g∗L

ξ
ζ,2(x)

]
.

The one-to-one correspondence between non-negative random variables and their Laplace transforms yields
that the two non-negative random variables g ∗ Lξζ,1(x) and g ∗ Lξζ,2(x) are equal in distribution. Hence the

two solutions Lξζ,1 and Lξζ,2 have the same probability law on L1([0, x];R+) and also on C([0, x];R+). By the
arbitrariness of x, the weak uniqueness of non-negative solutions holds for (1.3).

7. Fractional integral representations. In this section we prove the two equivalences in Theorem 2.14.
When b = 0, they follow directly from (2.7). We now prove them with b > 0. The equivalence between (1.4)
and (2.20) follows from the resolvent equation (2.12). Indeed, by Theorem 4.6 14 in [30, p.48] and (2.12) we
have vgλ solves (2.20) if and only if

vgλ = λK + (g−Vα ◦ vgλ) ∗K − bW ′ ∗
(
λK + (g−Vα ◦ vgλ) ∗K

)
= λ(K − bW ′ ∗K) + (g−Vα ◦ vgλ) ∗ (K − bW ′ ∗K).

Multiplying both sides by b and then using (2.12) again, we have

bvgλ = λ(bK − bW ′ ∗ bK) + (g−Vα ◦ vgλ) ∗ (bK − bW ′ ∗ bK) = λbW ′ + (g−Vα ◦ vgλ) ∗ bW ′,

which is equivalent to (1.4).

The equivalence between (1.3) and (2.19) can be proved in the same way. For convenience, we assume
K(x) = 0 if x ≤ 0. Notice that

∫ s
s−yK(r)dr =

∫ s
0 ∇yK(r)dr for any s, y ≥ 0. By Theorem 4.6 in [30, p.48]

and (2.12) again, the process Lξζ is a solution of (2.19) if and only if it solves

Lξζ(x) = ζ − ζ · bW (x) +

∫ ∞
0

∫ ζ

0

∫ x

0
∇yK(r)drÑ0(dy, dz)

−
∫ x

0
bW ′(x− t)dt

∫ ∞
0

∫ ζ

0

∫ t

0
∇yK(r)drÑ0(dy, dz)

13For T > 0 and ρ ∈ (0,1), let f1, f2 be two functions on (0, T ] satisfying that tρfi(t) ∈ C([0, T ];R) with i = 1,2. If f1(t) <

C1t
−ρ +C1

∫ t
0

(t− s)−ρf1(s)ds and f2(t) =C2t
−ρ +C2

∫ t
0

(t− s)−ρf2(s)ds with C1 <C2, then f1 < f2 on (0, T ].
14For two function f,k ∈ L1

loc(R+;R), we have x= f + k ∗ x if and only if x= f +Rk ∗ f , where Rk is the unique solution of
Rk = k + k ∗Rk.
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+

∫ x

0

∫ ∞
0

∫ Lξζ(s)

0

∫ x−s

0
∇yK(r)drÑα(ds, dy, dz)

−
∫ x

0
bW ′(x− t)dt

∫ t

0

∫ ∞
0

∫ Lξζ(s)

0

∫ t−s

0
∇yK(r)drÑα(ds, dy, dz).(7.1)

By the change of variables and Proposition A.4,∫ x

0
bW ′(x− t)

∣∣∣ ∫ t

0
ds

∫ ε

0

∣∣∣ ∫ t−s

0
∇yK(r)dr

∣∣∣2να(dy)
∣∣∣1/2dt

≤ C ·W (x) ·
∣∣∣ ∫ x

0
ds

∫ ε

0

|
∫ s

0 ∇yK(r)dr|2

yα+2
dy
∣∣∣1/2,(7.2)

which goes to 0 as ε→ 0+. By the change of variables and Fubini’s theorem,∫ x

0
bW ′(x− t)

∫ t−s

t−s−y
K(r)dr · 1{0≤s<t}dt=

∫ x−s

0
bW ′(x− s− t)

∫ s

0
∇yK(r)drdt

=

∫ x−s

0
∇yK(t)

∫ x−s

t
bW ′(x− s− r)drdt

=

∫ x−s

0
∇yK(t)bW (x− s− t)drdt= bW ∗∇yK(x− s).

By the change of variables and Proposition A.6, we have for ε > 0,∫ x

0
ds

∫ ε

0
|bW ∗∇yK(x− s)|2να(dy)≤C

∫ x

0
ds

∫ ε

0

|W ∗∇yK(s)|2

yα+2
dy,

which is finite and goes to 0 as ε→ 0+. From this, (7.2) and the stochastic Fubini theorem; see Theorem D.2,
the stochastic integral ∫ x

0

∫ ∞
0

∫ Lξζ(s)

0
bW ∗∇yK(x− s)Ñα(ds, dy, dz)

is well defined and equal almost surely to the last stochastic integral on the right side of (7.1). Moreover, by
Fubini’s theorem and (2.13),∫ x−s

0
∇yK(r)dr− bW ∗∇yK(x− s) =

(
1− bW

)
∗∇yK(x− s)

=W ′ ∗LK ∗∇yK(x− s) =∇yW (x− s).

Thus the subtraction of the last two terms on the right side of (7.1) is equal almost surely to∫ x

0

∫ ∞
0

∫ Lξζ(s)

0
∇yW (x− s)Ñα(ds, dy, dz).

Similarly, the following stochastic integral∫ ∞
0

∫ ζ

0

∫ x

0
bW ′(x− t)

∫ t

0
∇yK(r)drdtÑ0(dy, dz)

is also well defined and equal almost surely to the second stochastic integral on the right side of (7.1). Moreover,∫ x

0
∇yK(r)dr−

∫ x

0
bW ′(x− t)

∫ t

0
∇yK(r)drdt=

∫ x

0
∇yW ′(r)dy =∇yW (x).

The subtraction of the first two integrals on the right side of (7.1) is equal almost surely to∫ ∞
0

∫ ζ

0
∇yW (x)Ñ0(dy, dz).

Putting these results together, we see that (7.1) turns into (2.16) and hence (2.19) is equivalent to (1.3). �
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8. Application to M/G/1 processor-sharing queues. As the continuation of [45], we use the preceding
results to establish a SVE for the heavy-traffic limit of heavy-tailed M/G/1 processor sharing queues. Recall the
sequence {γn}n≥1 and the Pareto distribution Λ defined in Section 4.1. In the n-th processor-sharing queue,
the arrival of customers to the system is described by a Poisson process with rate γn > 0 and the amount of
processing time that each customer requires from the server is distributed as Λ. Additionally, there are zn initial
customers in the system at time 0, whose residual service times are independent and identically distributed with
common distribution Λ∗. Here we are interest in the heavy-traffic limit of the queue-length process before the
queue becoming empty. More precisely, let q(n) := {q(n)(t) : t≥ 0} be the queue-length process and τ (n) the
first time that the queue becomes empty, i.e. τ (n) := inf{t > 0 : q(n)(t) = 0}. We write Q(n) for the rescaled
queue-length process {n−α/(1+α) · q(n)(nt) : t ∈ [0, τ (n)]} under P( · |τ (n) <∞).

Denote by E the set of all positive excursions with finite length. For each f ∈ E , let ef be the right end point
of f and

If (t) :=

∫ t

0
f(s)ds, t≥ 0.(8.1)

It is obvious that If is a continuous and non-decreasing function on R+, which allows us to define its right-
inverse function I−1

f by I−1
f (t) = ef if t > If (∞) and I−1

f (t) := inf{s≥ 0 : If (s)≥ t} if t ∈ [0,If (∞)]. Let
L be the Lamperti transformation on E , which is a map acting on an excursion f ∈ E by L ◦f(t) := f(I−1

f (t))

for t≥ 0. The next corollary is a direct consequence of Theorem 6.5 in [45] and Theorem 2.14.

COROLLARY 8.1. If Condition 4.2 holds and zn/nα/(1+α)→ ζ > 0 as n→∞, we haveQ(n)→Qζ weakly
in D([0,∞),R+), where the limit process Qζ ∈ E is the unique weak solution of

Qζ(t) = ζ − b
∫ t

0

(
I−1
Qζ

(t)−I−1
Qζ

(s)
)α−1

Γ(α)Γ(1− α)
ds+

∫ ∞
0

∫ ζ

0

(∫ I−1
Qζ

(t)

(I−1
Qζ

(t)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
ÑQ,0(dy, dz)

+

∫ t

0

∫ ∞
0

(∫ I−1
Qζ

(t)−I−1
Qζ

(s)

(I−1
Qζ

(t)−I−1
Qζ

(s)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
ÑQ(ds, dy), t≥ 0,(8.2)

where να(dy) is given by (1.2) with c= Γ(1− α), ÑQ,0(dy, dz) and ÑQ(ds, dy) are two compensated PRMs
on (0,∞)2 with intensity ν̄α(y)dydz and dsνα(dy), respectively.

PROOF. Let Lξζ be the unique weak solution of (2.19) with c = Γ(1 − α). From Theorem 6.5 in [45], we

have Q(n)→L ◦Lξζ ∈ E weakly in D([0,∞),R+). By (2.19) and the change of variables,

L ◦Lξζ(t) = ζ − b
∫ I−1

L
ξ
ζ

(t)

0

(I−1
Lξζ

(t)− s)α−1

Γ(α)Γ(1− α)
Lξζ(s)ds

+

∫ ∞
0

∫ ζ

0

(∫ I−1

L
ξ
ζ

(t)

(I−1

L
ξ
ζ

(t)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
Ñ0(dy, dz)

+

∫ I−1

L
ξ
ζ

(t)

0

∫ ∞
0

∫ Lξζ(s)

0

(∫ I−1

L
ξ
ζ

(t)−s

(I−1

L
ξ
ζ

(t)−s−y)+

rα−1dr

Γ(α)Γ(1− α)

)
Ñα(ds, dy, dz)

= ζ − b
∫ t

0

(I−1
Lξζ

(t)−I−1
Lξζ

(s))α−1

Γ(α)Γ(1− α)
Lξζ(I

−1
Lξζ

(s))dI−1
Lξζ

(s)

+

∫ ∞
0

∫ ζ

0

(∫ I−1

L
ξ
ζ

(t)

(I−1

L
ξ
ζ

(t)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
Ñ0(dy, dz)

+

∫ t

0

∫ ∞
0

∫ Lξζ(I
−1

L
ξ
ζ

(s))

0

(∫ I−1

L
ξ
ζ

(t)−I−1

L
ξ
ζ

(s)

(I−1

L
ξ
ζ

(t)−I−1

L
ξ
ζ

(s)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
Ñα(dI−1

Lξζ
(s), dy, dz)
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= ζ − b
∫ t

0

(I−1
Lξζ

(t)−I−1
Lξζ

(s))α−1

Γ(α)Γ(1− α)
L ◦Lξζ(s)dI

−1
Lξζ

(s)

+

∫ ∞
0

∫ ζ

0

(∫ I−1

L
ξ
ζ

(t)

(I−1

L
ξ
ζ

(t)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
Ñ0(dy, dz)

+

∫ t

0

∫ ∞
0

(∫ I−1

L
ξ
ζ

(t)−I−1

L
ξ
ζ

(s)

(I−1

L
ξ
ζ

(t)−I−1

L
ξ
ζ

(s)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
Ñα(dI−1

Lξζ
(s), dy, (0,L ◦Lξζ(s)]).(8.3)

For any s ∈ [0,ILξζ(∞)], by (8.1) we have

s= ILξζ(I
−1
Lξζ

(s)) =

∫ I−1

L
ξ
ζ

(s)

0
Lξζ(r)dr =

∫ s

0
Lξζ(I

−1
Lξζ

(r))dI−1
Lξζ

(r) =

∫ s

0
L ◦Lξζ(r)dI

−1
Lξζ

(r).

Differentiating both sides of this equality and then moving L ◦Lξζ to the left side of the first equality,

ds

L ◦Lξζ(s)
= dI−1

Lξζ
(s).

Integrating both side of this equality over [0, t], we have

I−1
Lξζ

(t) =

∫ t

0

ds

L ◦Lξζ(s)
= I−1

L ◦Lξζ
(t).

Plugging these back into the terms on the right side of the last equality in (8.3) yields that

L ◦Lξζ(t) = ζ − b
∫ t

0

(
I−1

L ◦Lξζ
(t)−I−1

L ◦Lξζ
(s)
)α−1

Γ(α)Γ(1− α)
ds

+

∫ ∞
0

∫ ζ

0

(∫ I−1

L◦Lξ
ζ

(t)

(I−1

L◦Lξ
ζ

(t)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
ÑQ,0(dy, dz)

+

∫ t

0

∫ ∞
0

(∫ I−1

L◦Lξ
ζ

(t)−I−1

L◦Lξ
ζ

(s)

(I−1

L◦Lξ
ζ

(t)−I−1

L◦Lξ
ζ

(s)−y)+

rα−1dr

Γ(α)Γ(1− α)

)
ÑQ(ds, dy),

where ÑQ,0(dy, dz) := Ñ0(dy, dz) and ÑQ(ds, dy) := Ñα(dI−1
Lξζ

(s), dy, (0,L ◦ Lξζ(s)]). It is easy to identi-

fy that ÑQ(ds, dy) is a compensated PRM on (0,∞)2 with intensity L ◦ Lξζ(s)dI
−1
Lξζ

(s)να(dy) = dsνα(dy).

Consequently, the limit process L ◦Lξζ is a weak solution of (8.2). The weak uniqueness of solutions of (8.2)
follows directly from Theorem 2.1. �

APPENDIX A: SOME TECHNICAL RESULTS ABOUT THE SCALE FUNCTION

PROPOSITION A.1. For p > 1 + α, there exists a constant C > 0 such that for any h≥ 0,∫ ∞
0

|∆hW (s)|p

(s+ h)α+1
ds+

∫ h

0
ds

∫ ∞
0

|∇yW (s)|p

yα+2
dy ≤Ch(p−1)α.

PROOF. From (2.9), there exists a constant C > 0 such that for any h≥ 0,∫ ∞
0

|∆hW (s)|p

(s+ h)α+1
ds≤ C

∫ h

0
(s+ h)pα−α−1ds+C

∫ ∞
h

hpsp(α−1)

(s+ h)α+1
ds≤C · h(p−1)α.
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Similarly, there exists a constant C > 0 such that for any h≥ 0,∫ h

0
ds

∫ s

0
|∇yW (s)|py−α−2dy ≤ C

∫ h

0
ds

∫ s/2

0

(s− y)p(α−1)

yα+2−p dy+C

∫ h

0
ds

∫ ∞
s/2

spα

yα+2
dy

≤ C
∫ h

0
sp(α−1)ds

∫ s/2

0
yp−α−2dy+C

∫ h

0
spα−α−1ds≤C · h(p−1)α.

�

PROPOSITION A.2. For p≥ 2, there exists a constant C > 0 such that for any h≥ 0,∫ ∞
0

ds

∫ s

0

|∇y∆hW (s)|p

yα+2
dy ≤Ch(p−1)α.(A.1)

PROOF. We first split the double integral in (A.1) into the following four parts:

J1(h) :=

∫ 4h

0
ds

∫ s

0

|∇y∆hW (s)|p

yα+2
dy, J2(h) :=

∫ ∞
4h

ds

∫ s

s−h

|∇y∆hW (s)|p

yα+2
dy,

J3(h) :=

∫ ∞
4h

ds

∫ s−h

s/2

|∇y∆hW (s)|p

yα+2
dy, J4(h) :=

∫ ∞
4h

ds

∫ s/2

0

|∇y∆hW (s)|p

yα+2
dy.

The power mean inequality, along with the equality ∇y∆hW (s) = ∇yW (s + h) − ∇yW (s), implies that
uniformly in h≥ 0,

J1(h)≤ C
∫ 4h

0
ds

∫ s

0

|∇yW (s+ h)|p

yα+2
dy+C

∫ 4h

0
ds

∫ s

0

|∇yW (s)|p

yα+2
dy.

By Proposition A.1, the second term on the right side of this inequality can be bounded by Ch(p−1)α uniformly
in h ≥ 0. Applying the change of variables to the first term and then using Proposition A.1 again, it can be
bounded uniformly in h≥ 0 by

C

∫ 5h

h
ds

∫ s−h

0

|∇yW (s)|p

yα+2
dy ≤C

∫ 5h

0
ds

∫ s

0

|∇yW (s)|p

yα+2
dy ≤Ch(p−1)α.

Hence J1(h)≤C ·h(p−1)α uniformly in h≥ 0. Similarly, notice that∇y∆hW (s) = ∆h∇yW (s) = ∆hW (s)−
∆hW (s− y), by the power mean inequality we have uniformly in h≥ 0,

J2(h)≤ C ·
∫ ∞

4h
ds

∫ s

s−h

|∆hW (s)|p

yα+2
dy+C ·

∫ ∞
4h

ds

∫ h

0

|∆hW (y)|p

(s− y)α+2
dy.

Here the change of variables is also used to get the second integral. From (2.9) we have |∆hW (s)| ≤ Csα−1h

for any s≥ h≥ 0 and |∆hW (y)| ≤Chα for any y ∈ (0, h]. Thus

J2(h)≤ Chp
∫ ∞

4h
sp(α−1)ds

∫ s

s−h

dy

yα+2
+Chpα+1

∫ ∞
4h

ds

(s− h)α+2

≤ Chp+1

∫ ∞
4h

sp(α−1)

(s− h)α+2
ds+Chpα+1

∫ ∞
3h

s−α−2ds≤Ch(p−1)α.

We now turn to consider J3(h) and J4(h). By (2.8), we have uniformly in h≥ 0 and s≥ y > 0,

|∇y∆hW (s)|=
∣∣∣ ∫ y

0
dỹ

∫ h

0
W ′′(s+ h̃− ỹ)dh̃

∣∣∣≤C ∫ y

0
dỹ

∫ h

0
|s+ h̃− ỹ|α−2dh̃≤Ch · |s− y| ∧ y

(s− y)2−α .

Plugging this into J3(h) and J4(h) yields that uniformly in h≥ 0,

J3(h)≤ Chp
∫ ∞

4h
ds

∫ s−h

s/2

(s− y)p(α−1)

yα+2
dy ≤Chpα

∫ ∞
4h

s−α−1ds≤Ch(p−1)α
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and

J4(h)≤ Chp
∫ ∞

4h

∣∣s/2∣∣p(α−2)
ds

∫ s/2

0
yp−α−2dy ≤Ch(p−1)α.

The desired result follows immediately by putting these estimates together. �

PROPOSITION A.3. For p≥ 2, there exists a constant C > 0 such that for any h≥ 0,∫ ∞
0

ds

∫ s+h

s

|∇yW (s+ h)−W (s)|p

yα+2
dy ≤Ch(p−1)α.

PROOF. We split the preceding double integral into the following three parts:

J1(h) :=

∫ h

0
ds

∫ h

s

|∇yW (s+ h)−W (s)|p

yα+2
dy,

J2(h) :=

∫ h

0
ds

∫ s+h

h

|∇yW (s+ h)−W (s)|p

yα+2
dy,

J3(h) :=

∫ ∞
h

ds

∫ s+h

s

|∇yW (s+ h)−W (s)|p

yα+2
dy.

By the power mean inequality, we have uniformly in h≥ 0,

J1(h)≤ C
∫ h

0
ds

∫ h

s

|∇yW (s+ h)|p

yα+2
dy+C

∫ h

0
ds

∫ h

s

|W (s)|p

yα+2
dy.

Since W (s) ≤ Csα uniformly in s ≥ 0; see (2.8), the second term on the right side of this inequality can
be bounded by C

∫ h
0 s

pα−α−1ds ≤ C · h(p−1)α uniformly in h ∈ [0,1]. For the first term, choosing a positive
constant θ satisfying that 1 + α< pθ < (1− α)−1 ∧ p, by (2.9) we have

∇yW (s+ h) = |∇yW (s+ h)|1−θ · |∇yW (s+ h)|θ ≤C(s+ h)(1−θ)α(s+ h− y)θ(α−1)yθ,

uniformly in h≥ s≥ 0 and y ∈ [h, s+ h]. Then∫ h

0
ds

∫ h

s

|∇yW (s+ h)|p

yα+2
dy ≤ C

∫ h

0
ds

∫ h

s
(s+ h)(1−θ)pα(s+ h− y)pθ(α−1)ypθ−α−2dy

≤ C · h(1−θ)pα
∫ h

0
ds

∫ h

s
(s+ h− y)pθ(α−1)ypθ−α−2dy

≤ C · h(1−θ)pα
∫ h

0
spθ−α−2ds

∫ s

0
(y+ h− s)pθ(α−1)dy

≤ C · h(1−θ)pα+pθ(α−1)+1

∫ h

0
spθ−α−2ds≤Ch(p−1)α.

Hence J1(h)≤C ·h(p−1)α uniformly in h≥ 0. We turn to consider J2(h). Notice that∇yW (s+h)−W (s) =

∆hW (s)−W (s+ h− y) for any y ∈ [h, s+ h]. By the power mean inequality,

J2(h)≤ C
∫ h

0
ds

∫ s+h

h

|∆hW (s)|p

yα+2
dy+C

∫ h

0
ds

∫ s+h

h

|W (s+ h− y)|p

yα+2
dy,

uniformly in h≥ 0. Since |∆hW (s)| ≤ C(s+ h)α and W (s+ h− y)≤ C(s+ h− y)α uniformly in s,h≥ 0

and y ∈ [0, s+ h], there exists a constant C > 0 such that for any h≥ 0,

J2(h)≤ C
∫ h

0
ds

∫ s+h

h

(s+ h)pα

yα+2
dy+C

∫ h

0
ds

∫ s+h

h

(s+ h− y)pα

yα+2
dy.



45

The first double integral on the right side of this inequality can be bounded by Ch−α−1
∫ h

0 (s + h)pαds ≤
Ch(p−1)α. Using the change of variables and then Fubini’s theorem to the second double integral,∫ h

0
ds

∫ s+h

h

(s+ h− y)pα

yα+2
dy =

∫ h

0
ds

∫ s

0

(s− y)pα

(y+ h)α+2
dy =

∫ h

0
ds

∫ h

s

(y− s)pα

(s+ h)α+2
dy ≤C · h(p−1)α

and hence J2(h)≤C · h(p−1)α uniformly in h≥ 0. Similarly, we also have

J3(h)≤
∫ ∞
h

ds

∫ s+h

s

|∆hW (s)|p

yα+2
dy+

∫ ∞
h

ds

∫ s+h

s

|W (s+ h− y)|p

yα+2
dy

≤ Chp
∫ ∞
h

ds

∫ s+h

s

sp(α−1)

yα+2
dy+C

∫ ∞
h

ds

∫ s+h

s

(s+ h− y)pα

yα+2
dy.

The first term on the right side of the second inequality can be bounded by C · hp
∫∞
h sp(α−1)−α−1ds ≤ C ·

h(p−1)α uniformly in h≥ 0. By the change of variables, the second term equals to

C

∫ ∞
h

ds

∫ h

0

(h− y)pα

(y+ s)α+2
dy ≤C

∫ ∞
h

ds

∫ h

0

ypα

sα+2
dy ≤C · h(p−1)α

and J3(h)≤Ch(p−1)α uniformly in h≥ 0. The desired result follows by putting these estimates together. �

PROPOSITION A.4. For any x≥ 0, we have as ε→ 0+,∫ x

0
ds

∫ ε

0

|∇yW (s)|2

yα+2
dy+

∫ x

0
ds

∫ ε

0

|
∫ s

0 ∇yK(r)dr|2

yα+2
dy→ 0.

PROOF. Here we just prove the convergence of the first integral to 0. The second one can be prove in the
same way. For convenience, we assume x ≥ ε ≥ 0. By Fubini’s theorem and the fact that W (s − y) = 0 for
y ≥ s, we can split the targeted integral into two parts

I1(ε) :=

∫ ε

0
dy

∫ y

0

|W (s)|2

yα+2
ds and I2(ε) :=

∫ ε

0
dy

∫ x

y

|∇yW (s)|2

yα+2
ds.

By (2.8), we have
∫ y

0 |W (s)|2ds≤C · y2α+1 uniformly in y ≥ 0 and hence I1(ε)≤C · εα→ 0 as ε→ 0+. Let
ϑ ∈ (α+ 1, (1− α)−1 ∧ 2). Using (2.9), we have uniformly in s≥ y ≥ 0,∣∣∇yW (s)

∣∣2 =
∣∣∇yW (s)

∣∣ϑ · ∣∣∇yW (s)
∣∣2−ϑ ≤C · yθ(s− y)ϑ(α−1) · s(2−ϑ)α.

Plugging this into I2(ε) implies that

I2(ε)≤ C ·
∫ ε

0
dy

∫ x

y

(s− y)ϑ(α−1)

yα+2−ϑ · s(2−ϑ)αds≤C · x(2−ϑ)α

∫ ε

0

(x− y)ϑ(α−1)+1

yα+2−ϑ dy ≤C · εϑ−α−1,

which goes to 0 as ε→ 0+. The desired result follows by putting these estimates together. �

PROPOSITION A.5. For any x≥ 0, we have as ε→ 0+,∫ x

0
ds

∫ ε

0

|K ∗∇yW (s)|2

yα+2
dy→ 0.

PROOF. We still assume x≥ ε≥ 0 and then split the targeted double integral into the following two parts

I3(ε) :=

∫ ε

0
dy

∫ y

0

|K ∗W (s)|2

yα+2
ds and I4(ε) :=

∫ ε

0
dy

∫ x

y

|K ∗∇yW (s)|2

yα+2
ds.
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By (2.8), we have uniformly in y ≥ 0,∫ y

0

∣∣K ∗W (s)
∣∣2ds≤ C · ∫ y

0

∣∣∣ ∫ s

0
(s− r)α−1rαdr

∣∣∣2ds≤C · ∫ y

0
s4αds≤C · y4α+1.

Taking this into I3(ε), we have I3(ε) ≤ C · ε3α→ 0 as ε→ 0+. By the Cauchy-Schwarz inequality, we have
I4(ε)≤C

[
I41(ε) + I42(ε)

]
uniformly in x≥ ε≥ 0, where

I41(ε) :=

∫ ε

0

dy

yα+2

∫ x

y

∣∣∣ ∫ y

0
(s− r)α−1W (r)dr

∣∣∣2ds,
I42(ε) :=

∫ ε

0

dy

yα+2

∫ x

y

∣∣∣ ∫ s

y
(s− r)α−1∇yW (r)dr

∣∣∣2ds.
By (2.8) and the fact that (s− r)α−1 ≤ (y− r)

α−1

2 · (s− y)
α−1

2 for s > y > r > 0, there exists a constant C > 0

such that for any x≥ y ≥ 0,∫ x

y

∣∣∣ ∫ y

0
(s− r)α−1W (r)dr

∣∣∣2ds≤ C · ∫ x

y

∣∣∣ ∫ y

0
(y− r)

α−1

2 rαdr
∣∣∣2(s− y)α−1ds≤C · xα · y3α+1.

Plugging this back into I41(ε), we have I41(ε)≤ C · ε2α→ 0 as ε→ 0+. Let ϑ ∈ (α+1
2 , α+1/2

1−α ∧ 1). By (2.9),
we have |∇yW (r)| ≤C · (r− y)(α−1)ϑyϑ · xα(1−ϑ) uniformly in 0≤ y ≤ r ≤ x and hence∫ x

y

∣∣∣ ∫ s

y
(s− r)α−1∇yW (r)dr

∣∣∣2ds≤ C · y2ϑ

∫ x

y

∣∣∣ ∫ s

y
(s− r)α−1(r− y)(α−1)ϑdr

∣∣∣2ds
≤ C · y2ϑ

∫ x

y
(s− y)2α+2(α−1)ϑds≤C · y2ϑ.

Taking this back into I42(ε), we have I42(ε)≤C ·ε2θ−α−1→ 0 as ε→ 0+. The desired result follows by putting
all results above together. �

PROPOSITION A.6. For any x≥ 0, we have as ε→ 0+,∫ x

0
ds

∫ ε

0

|W ∗∇yK(s)|2

yα+2
dy→ 0.

PROOF. Notice that |W ∗∇yK(s)| ≤C · xα ·
∫ s

0 ∇yK(r)dr uniformly in x≥ s≥ 0. Thus∫ x

0
ds

∫ ε

0

|W ∗∇yK(s)|2

yα+2
dy ≤C ·

∫ x

0
ds

∫ ε

0

|
∫ s

0 ∇yK(r)dr|2

yα+2
dy,

which goes to 0 as ε→ 0+; see Proposition A.4. �

APPENDIX B: MARKED HAWKES POINT MEASURES

Let U be a Lusin topological space endowed with the Borel σ-algebra U . Let {σk : k = 1,2 · · · } be a
sequence of increasing, (Ft)-adapted random times and {ηk : k = 1,2, · · · } be a sequence of i.i.d. U-valued
random variables with distribution νH(du). We assume that ηk is independent of {σj : j = 1, · · · , k} for any
k ≥ 0. In terms of these two sequences we define the (Ft)-random point measure

NH(ds, du) :=

∞∑
k=1

1{σk∈ds,ηk∈du}
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on (0,∞) × U. We say NH(ds, du) is a marked Hawkes point measure (MHP) on (0,∞) × U if it has a
(Ft)-intensity Z(s−)dsνH(du) with the intensity process Z := {Z(t) : t≥ 0} given by

Z(t) = µ(t) +

NH(t)∑
k=1

φ(t− σk, ηk), t≥ 0,

for some kernel φ : R+ ×U→ [0,∞) and some F0-measurable, non-negative functional-valued random vari-
able {µ(t) : t≥ 0}. We usually interpret φ(·, u) and µ as the impacts of an event with mark u and all events prior
to time 0 on the arrival of future events respectively. Following the argument in [35, p.93]; see also Section 2 in
[32], on an extension of the original probability space we can define a time-homogeneous PRM N(ds, du, dz)

on (0,∞)×U×R+ with intensity dsνH(du)dz such that

NH(ds, du) =

∫ Z(s−)

0
N(ds, du, dz)

and hence the intensity process at time t can be rewritten into

Z(t) = µ(t) +

∫ t

0

∫
U

∫ Z(s−)

0
φ(t− s,u)N(ds, du, dz).

Denote by φH := {φH(t) : t≥ 0} the mean impacts of an event on the arrival of future events with φH(t) :=∫
U φ(t, u)νH(du). We assume φH is locally integrable. Let RH := {RH(t) : t ≥ 0} be the resolvent of φH

defined as the unique solution to RH = φH + φH ∗ RH . It is usual to interpret RH as the mean impacts of
an event and its triggered events on the arrivals of future events. In addition, we introduce a two-parameter
function R(t, u) = φ(t, u) +RH ∗ φ(t, u) on R+ × U to describe the mean impacts of an event with mark u
on the arrivals of future events. An argument similar to the one used in Section 2 in [32] induces the following
proposition immediately.

PROPOSITION B.1. The intensity process Z satisfies the following SVE

Z(t) = µ(t) +

∫ t

0
RH(t− s)µ(s)ds+

∫ t

0

∫
U

∫ Z(s−)

0
R(t− s,u)Ñ(ds, du, dz), t≥ 0

where Ñ(ds, du, dz) :=N(ds, du, dz)− dsνH(du)dz.

APPENDIX C: STOCHASTIC INTEGRALS WITH RESPECT TO H#-SEMIMARTINGALE

In this section we give a brief introduction to the stochastic integrals with respect to infinite-dimensional
semimartingales; readers may refer to [42] for more details. Let H be a separable Banach space endowed with
a norm ‖ · ‖H. We now give the definition of H#-semimartingales.

DEFINITION C.1. We say Y is a (Ft)-adapted H#-semimartingale, if it is a stochastic process indexed by
H×R+ such that

• For each f ∈H, Y (f) := {Y (f, t) : t≥ 0} is a cádlág (Ft)-semimartingale with Y (f,0)
a.s.
= 0;

• For each t≥ 0, α1, · · · , αm ∈R and f1, · · · , fm ∈H, Y (
∑m

k=1αkfk, t)
a.s.
=
∑m

k=1αkY (fk, t).

Let H0 be a dense subset of H and S0 the collection of H-valued stochastic processes of the form

X(t) :=

m∑
k=1

ξk(t)ϕk with ξk(t) :=

∞∑
i=0

ηki · 1[τki ,τ
k
i+1)(t),
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where m≥ 1, ϕ1, · · · ,ϕm ∈H0, {τki }i≥0 is a sequence of non-decreasing (Ft)-stopping times and ηki ∈Rd is
Fτki

-measurable. For any X ∈ S0, define

X− · Y (t) =

m∑
k=1

∫ t

0
ξk(s−)dY (ϕk, t), t≥ 0.

DEFINITION C.2. The H#-semimartingale Y is standard if

Ht :=
{

sup
s≤t
|X− · Y (s)| :X ∈ S0, sup

s≤t
‖X(s)‖H ≤ 1

}
(C.1)

is stochastically bounded for each t≥ 0.

For any H-valued cádlág process X and standard H#-semimartingale Y , we can find a sequence {Xε}ε>0 ⊂
S0 such that as ε→ 0,

sup
t∈[0,T ]

‖Xε(t)−X(t)‖H
a.s.→ 0 and X− · Y := lim

ε→0+
Xε
− · Y

exists a.s. in the sense that supt∈[0,T ] |X− ·Y (t)−Xε
− ·Y (t)| p→ 0. Moreover, the limit processX− ·Y is cádlág,

independent of {Xε}ε>0 and called the stochastic integral of X with respect to Y . For any (Ft)-stopping time
σ, we have X− · Y (t∧ σ) =Xσ

− · Y with Xσ
−(t) :=X−(t)1[0,σ)(t) for t≥ 0.

DEFINITION C.3. A sequence of H#-semimartingales {Yn}n≥1 is uniformly tight if {Hn,t}n≥1 is uni-
formly stochastically bounded for any t≥ 0, where Hn,t is defined by (C.1) with Y replaced by Yn. We say Yn
converges weakly to Y and write Yn⇒ Y if for any m≥ 1 and f1, · · · , fm ∈H,

(Yn(f1), · · · , Yn(fm))
d→ (Y (f1), · · · , Y (fm)) in D([0,∞),Rm).

In addition, we also write (Xn, Yn)⇒ (X,Y ) if

(Xn, Yn(f1), · · · , Yn(fm))
d→ (X,Y (f1), · · · , Y (fm)) in D([0,∞),H×Rm).

APPENDIX D: STOCHASTIC INTEGRALS WITH RESPECT TO POISSON RANDOM MEASURE

Let Ñ1(ds, dy, dz) be a compensated (Ft)-PRM on (0,∞)3 with intensity dsν1(dy)dz, where ν1(dy) is a
σ-finite measure on R+ such that ν1(x,∞)<∞ for any x > 0. Let {X(t) : t≥ 0} be a (Ft)-predictable and
non-negative process.

THEOREM D.1 (Maximal inequality). For p≥ 1 and T > 0, let f be a measurable function on R2
+ satisfy-

ing
∫ T

0 ds
∫∞

0 |f(s, y)|2pν1(dy)<∞. If supt∈[0,T ] E[|X(t)|p]<∞, then there exists a constant C > 0 depend-
ing only on p such that

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫ ∞
0

∫ X(s)

0
f(s, y)Ñ1(ds, dy, dz)

∣∣∣2p]≤ C sup
t∈[0,T ]

E
[
|X(t)|p

]
·
∣∣∣ ∫ T

0

∫ ∞
0
|f(s, y)|2ν1(dy)ds

∣∣∣p
+C sup

t∈[0,T ]
E
[
|X(t)|

]
·
∫ T

0

∫ ∞
0
|f(s, y)|2pν1(dy)ds.(D.1)

PROOF. By the maximal inequality established in [55, Theorem 1, p.297] for purely discontinuous martin-
gales, there exists a constant C > 0 depending only on p such that

E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

∫ ∞
0

∫ X(s)

0
f(s, y)Ñ1(ds, dy, dz)

∣∣∣2p]
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≤ C ·E
[∣∣∣ ∫ T

0
X(s)ds

∫ ∞
0
|f(s, y)|2ν1(dy)

∣∣∣p +

∫ T

0
X(s)ds

∫ ∞
0
|f(s, y)|2pν1(dy)

]
≤ C ·E

[∣∣∣ ∫ T

0
X(s)ds

∫ ∞
0
|f(s, y)|2ν1(dy)

∣∣∣p]+C sup
t∈[0,T ]

E[|X(t)|] ·
∫ T

0
ds

∫ ∞
0
|f(s, y)|2pν1(dy).

By Hölder’s inequality; see footnote 9, the first expectation on the right side of the second inequality can be
bounded by ∫ T

0
E
[
|X(r)|p

]∫ ∞
0
|f(r, y)|2ν1(dy)dr ·

∣∣∣ ∫ T

0

∫ ∞
0
|f(s, z)|2ν1(dz)ds

∣∣∣p−1
,

which can be bounded by supt∈[0,T ] E[|X(t)|p] ·
∣∣ ∫ T

0

∫∞
0 |f(s, y)|2ν1(dy)ds

∣∣p. The desired result holds. �

THEOREM D.2 (Stochastic Fubini theorem). Let (V,V ,m) be a measurable space. For T ≥ 0, let f be a
measurable function on V and g,h two measurable functions on V× [0, T ]×R+ satisfying that as ε→ 0+,∫

V
|f(v)|m(dv)

∣∣∣ ∫ T

0
ds

∫ ε

0
|g(v, s, y)|2ν1(dy)

∣∣∣1/2 +

∫ T

0
ds

∫ ε

0

∣∣∣ ∫
V
f(v)g(v, s, y)m(dv)

∣∣∣2ν1(dy)→ 0

and ∫
V
|f(v)|m(dv)

∫ T

0
ds

∫ ε

0
|h(v, s, y)|ν1(dy) +

∫ T

0
ds

∫ ε

0

∣∣∣ ∫
V
f(v)h(v, s, y)m(dv)

∣∣∣ν1(dy)→ 0.

If ‖X‖L∞T <∞ a.s., we have∫
V
f(v)m(dv)

∫ T

0

∫ ∞
0

∫ X(s)

0
g(v, s, y)Ñ1(ds, dy, dz)

a.s.
=

∫ T

0

∫ ∞
0

∫ X(s)

0

∫
V
f(v)g(v, s, y)m(dv)Ñ1(ds, dy, dz)(D.2)

and ∫
V
f(v)m(dv)

∫ T

0

∫ ∞
0

∫ X(s)

0
h(v, s, y)N1(ds, dy, dz)

a.s.
=

∫ T

0

∫ ∞
0

∫ X(s)

0

∫
V
f(v)h(v, s, y)m(dv)N1(ds, dy, dz).(D.3)

PROOF. Here we just prove the first the equality (D.2) and the second one can be proved in the same way. It
is easy to identify that the two integrals in (D.2) are well-defined. We now show they are equal almost surely.
For any ε ∈ (0,1], by the assumption that ν1(ε,∞)<∞ and Fubini’s theorem,∫

V
f(v)m(dv)

∫ T

0

∫ ∞
ε

∫ X(s)

0
g(v, s, y)Ñ1(ds, dy, dz)

=

∫
V
f(v)m(dv)

∫ T

0

∫ ∞
ε

∫ X(s)

0
g(v, s, y)N1(ds, dy, dz)

−
∫
V
f(v)m(dv)

∫ T

0

∫ ∞
ε

X(s)g(v, s, y)dsν(dy)

=

∫ T

0

∫ ∞
ε

∫ X(s)

0

∫
V
f(v)g(v, s, y)m(dv)N1(ds, dy, dz)

−
∫ T

0

∫ ∞
ε

X(s)

∫
V
f(v)g(v, s, y)m(dv)dsν(dy)

=

∫ T

0

∫ ∞
ε

∫ X(s)

0

∫
V
f(v)g(v, s, y)m(dv)Ñ1(ds, dy, dz).
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Here the two stochastic integrals with respect to N1(ds, dy, dz) on the right side of the first and second equality
are finite sums. Thus the difference between the two integrals in (D.2) can be bounded by |A1(ε)|+ |A2(ε)|
uniformly in ε ∈ (0,1] with

A1(ε) :=

∫
V
f(v)m(dv)

∫ T

0

∫ ε

0

∫ X(s)

0
g(v, s, y)Ñ1(ds, dy, dz),

A2(ε) :=

∫ T

0

∫ ε

0

∫ X(s)

0

∫
V
f(v)g(v, s, y)m(dv)Ñ1(ds, dy, dz).

It suffices to prove that |A1(ε)| + |A2(ε)| p→ 0 as ε→ 0+. For any η > 0 and J > 0, we have P(|A1(ε)| ≥
η) ≤ P(|A1(ε)| ≥ η,‖X‖L∞T ≤ J) + P(‖X‖L∞T > J). Since ‖X‖L∞T <∞ a.s., then P(‖X‖L∞T > J)→ 0 as
J →∞. Notice that

P(|A1(ε)| ≥ η,‖X‖L∞T ≤ J)≤P
(∣∣∣∫

V
f(v)m(dv)

∫ T

0

∫ ε

0

∫ X(s)∧J

0
g(v, s, y)Ñ1(ds, dy, dz)

∣∣∣≥ η).
By Chebyshev’s inequality and then Fubini’s theorem,

P(|A1(ε)| ≥ η,‖X‖L∞T ≤ J)≤ 1

η

∫
V
|f(v)|m(dv)E

[∣∣∣ ∫ T

0

∫ ε

0

∫ X(s)∧J

0
g(v, s, y)Ñ1(ds, dy, dz)

∣∣∣].
By (D.1) with p= 1/2 and then Jensen’s inequality, the last expectation can be bounded by

E
[∣∣∣ ∫ T

0

∫ ε

0

∫ X(s)∧J

0
|g(v, s, y)|2N1(ds, dy, dz)

∣∣∣1/2]
≤
∣∣∣E[∫ T

0

∫ ε

0

∫ X(s)∧J

0
|g(v, s, y)|2N1(ds, dy, dz)

]∣∣∣1/2 ≤ ∣∣∣J ∫ T

0
ds

∫ ε

0
|g(v, s, y)|2ν1(dy)

∣∣∣1/2
and hence

P(|A1(ε)| ≥ η,‖X‖L∞T ≤ J)≤
√
J

η

∫
V
|f(v)| ·

∣∣∣ ∫ T

0
ds

∫ ε

0
|g(v, s, y)|2ν1(dy)

∣∣∣1/2m(dv),

which goes to 0 as ε→ 0+. Putting these estimates together, we have P(|A1(ε)| ≥ η)→ 0 and hence |A1(ε)| p→
0 as ε→ 0+. Similarly, we also can prove that |A2(ε)| p→ 0 as ε→ 0+. �
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