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Abstract

A two-step approach to address the toolpath planning optimization problem is introduced. The first step divides the
surface into zones with similar local geometric properties in order to improve efficiency of toolpath planning algorithms.
To do this, an unsupervised clustering algorithm (like K-means) is used on a mesh defined by isoparametric curves.
The second step applies a toolpath planning algorithm to each zone, according to its optimal machining direction.
This optimal direction is calculated using a black-box optimization software. The final goal is to enhance gradually
the formulation of the optimization problem to obtain better and better results.
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1 Introduction

Tool path planning is a very important issue for the end
milling of free-form surfaces, due to the high machining
cost commonly observed for manufacturing high added
value parts such as molds and stamping dies. Therefore,
optimizing the toolpath planning process may lead to sig-
nificant gains in terms of machining costs.

In order to make progress in optimizing toolpath plan-
ning of free-form surface machining, a two-step approach,

that we shall call C4DO1D1(pronounced “CADOID”), is
introduced in this paper. Because it is well established
that toroidal cutter may lead to better results than its
ball-end counterpart [1], this type of cutter have been
chosen to carry on this study. Actually, a toroidal cut-
ter provides better results than a ball-end one when ma-
chining along the steepest-slope direction, but when used
perpendicularly to the steepest-slope direction, its per-
formances are worse than those of a ball-end cutter. Be-
cause the steepest-slope direction may vary a lot across
a free-form surface, partitioning this surface into several
zones (each of which will then be machined along an ap-
propriate direction) is considered as the best approach to
improve efficiency of the toroidal-cutter choice [2].

2 Partitioning the surface by a
clustering algorithm

In this section, a new method to define zones suitable
for machining with a toroidal cutter is presented. This
method relies on a clustering approach. Clustering algo-
rithms are part of unsupervised machine learning algo-
rithms. From an initial set of sample points, they pro-
vide a predefined number, K, of clusters gathering sam-
ple points according to a given metric. One of the most

1C4DO1D stands for Clustering 4D Optimization 1D
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commonly used clustering algorithm is the K-means al-
gorithm.

2.1 Formulating the clustering problem

In order to apply the K-means algorithm to the surface
partitioning problem, a set of sample points must first
be defined. To do this, a mesh over the entire surface
S(u, v) is defined by a set of (u, v) isoparametric curves.
This way, a set of elementary meshes is also defined. Tak-
ing the center of each elementary mesh as a sample point
provides a suitable set of sample points ensuring the en-
tire surface is covered (Figure 1). In other words, the
sample points Si, i ∈ {1, . . . , n}, are defined such that
Si = S(ui, vi), where ui and vi are parametric values dis-
cretizing the whole parametric domain.

sample point Si

Legend:

elementary mesh

S(u, v)

u

v

Figure 1: Sampling-point definition

The second element required to implement the K-
means algorithm is a metric space adapted to the sought
objective. A metric space consists of two components:
a vector of significant features, and the definition of dis-
tance between two vectors: that we shall call the metric.
Actually, a metric provides a measure of the dissimilarity
between a pair of sample points. Thus, two points that
are similar, have a reduced dissimilarity distance, while
two points that are very different have a greater distance.
As a first naive approach, the dissimilarity can be evalu-
ated directly through the Euclidean distance between the
two 3D points Si and Sj. However, this distance does
not totally represent the nearness of these sample points
from a milling point of view. In fact, to be suitable for
milling with a toroidal cutter, one expects the zones pro-
posed by clustering algorithm to be connected (in the
mathematical sense, i.e., roughly speaking, a zone must
not show any discontinuity). Indeed, a discontinuity in
a zone leads to a tool lifting that is harmful to the total
machining time. Thus, some definition of geometric prox-
imity of the sample points should intervene in the chosen
metric. The parametric values ui and vi are well suited
to give such an insight.

Moreover, in order to improve the efficiency of the
toroidal cutting tool, the resulting zones are expected to
feature rather uniform steepest slopes. In other words,
the steepest-slope value and its orientation should vary
as little as possible within a single zone. Thus, these two
values should also be taken into account in the chosen
metric.

To summarize, for each sample point Si, i ∈ {1, . . . , n},
we define the four-component feature vector Fi ∈ R4

whose four components are (Figure 2):

� the ui parametric value of the sample point Si

� the vi parametric value of the sample point Si

� the steepest-slope angle, noted si. This is the an-
gle between the vector ni = n(ui, vi), normal to the
surface at Si, and the horizontal plane (X,Y).

� the steepest-slope orientation, noted θi. This is the
angle between the projection of the vector ni onto
the horizontal plane (X,Y), and the X axis.

Si = S(ui, vi)

ni = n(ui, vi)

X

Y

Z

θi si

Figure 2: The four components (ui, vi, si and θi) of the
feature vectors

To obtain a fully defined metric space, a distance cal-
culation method (the metric) must also be defined. The
most natural choice is the Euclidean distance in R4, the
space of the chosen parameters (u, v, s and θ). The dis-
similarity between two sample points Si and Sj is thereby
defined as:

d(i, j) = ‖Fi − Fj‖ =
(
(ui − uj)2 + (vi − vj)2

+(si − sj)2 + (θi − θj)2
) 1

2 (1)
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The clustering problem aims at partitioning the given
n sample points (or, to be more precise, the n feature
vectors) into K (≤ n) clusters Z1, Z2, . . . , ZK so as to
minimize the sum of intra-cluster distances (squared, sim-
ply to avoid discontinuity in the derivative of the objec-
tive function). More precisely, the objective is to find
(Z1, . . . , ZK) ∈ P minimizing:

K∑
k=1

∑
i∈Zk

‖Fi − F̄k‖2

where P denotes the set of all possibles K-partitions (into
K sets) of the sample-point index set {1, . . . , n}, and F̄k =

1
|Zk|

∑
i∈Zk

Fi (called the centroid of Zk) is the barycenter

of the features vectors of all sample points belonging to
Zk.

2.2 Running the K-means algorithm on
the 4D parameter vectors

Once the sample-point dataset with their feature vectors
and the metric defined, the K-means algorithm may be
carried out. Let K be the number of clusters chosen. The
K-means algorithm is described in Algorithm 1.

Algorithm 1: The K-means algorithm

/* Initialize centroids */

choose K initial centroids F̄1, . . . , F̄K among the n
feature vectors

repeat
/* allocate points to clusters */

foreach sample point Si do
attach Si to the cluster k corresponding to
argmink‖Fi − F̄k‖

end
/* cluster-centroid update */

foreach cluster k do
recalculate centroid F̄k as the barycenter of
cluster-k feature vectors

end

until no more change occur

In general, the resulting K-partition of the K-means
algorithm depends on the particular choice of the initial
centroids. Empirical tests showed however that in the
case of machinable surfaces, the resulting zones are al-
most not sensitive to the choice of the initial centroids.
This is due to the (relative) regularity of machinable sur-
faces and the large (enough) number of sampling points,
so that outliers are avoided and the final result is less sen-
sitive to initialization. In this study, an equally-spread
angular repartition, in the parametric space, of initial
centroids is adopted.

The running loop of the algorithm is divided into two
parts. In the allocation step, each sample point Si is

attached to the closest centroid, according to the met-
ric distance (1), i.e. a sample point Si is attached to
the cluster k corresponding to argmink‖Fi − F̄k‖. In the
update step, the centroids are recalculated to reflect the
allocation changes. To do this, for each cluster Zk, the 4D
barycenter of the feature vectors (ui, vi, si, θi), i ∈ Zk,
of the sampling points belonging to the cluster Zk, is cal-
culated, which gives a new centroid, F̄k. Remark that
this new centroid does not generally correspond to one of
the n given sample points. Finally the repeat loop ends
when stabilization occurs, i.e. no more sample point is
switching from a cluster to another one and the position
of centroids remain constant.

Figure 3 shows an example of surface partitioning ob-
tained on the surface used in [3] with K = 3 and a
200× 200 tessellation grid.

Figure 3: Example of a surface partitioned into K = 3
zones

2.3 Dividing disconnected zones

Carrying out the K-means algorithm is fast, even for
fine tessellation meshes (for example the partitioning
scheme presented in Figure 3 is fully computed within
only 684 ms on a 16 cores Intel(R) Xeon(R) 1.70GHz sys-
tem). However, it may happen that the above procedure
provides disconnected zones, like in the case depicted by
Figure 4, where the green zone is composed of two discon-
nected sub-zones. This green zone must then be further
partitioned into two zones, to prevent the toolpath plan-
ning algorithm to provide a machining process involving
a single run, without lifting the cutter, which may cause
severe damages to the surface, and lead to unexpected
results.

We therefore propose a connectivity-check procedure to
ensure that the zones provided by the above K-means al-
gorithm are connected. The connected-component search
algorithm we are proposing to carry out this task goes as
follows. Finding connected components is a well-known
polynomial problem in graph theory, but to be able to
use it with a partitioning scheme, an undirected graph
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Figure 4: Example of disconnected zone (in green)

corresponding to this partitioning scheme must first be
defined. Each sample point corresponds to a vertex of the
graph. Any two sample points belonging to a same clus-
ter are connected with an edge if and only if they come
from side-by-side elementary meshes. Once the graph
corresponding to the partitioning scheme is defined, a
connected-component search can be performed, e.g., us-
ing the software package JGraphT [4]. As a result, any
disconnected zone will simply be sub-divided into several
connected zones. The time needed to perform this task is
heavily dependant on the number of sample points. How-
ever, even if it is a bit longer than the K-means procedure
itself, it is still short enough to be used interactively. For
example, the connected-component search on the surface
presented in Figure 4 requires less than 15 seconds of CPU
time (on the same computer as above). As expected, for
this particular case, the procedure results in four different
zones displayed on Figure 5.

To summarize, using the proposed connected-
component search strategy appears to be a fast an ef-
ficient choice to deal with the zone-partitioning issue.

3 Optimizing machining direction
within each zone

Once the zone-partitioning scheme defined, the optimal
milling process for machining the resulting K zones still
needs to be determined. For a given zone, let us call
X the vector of the (numerous) variables that can have
an impact on the machining time, and Pi(X), the ith

point of the toolpath (i = 1 . . . n(X)). For each zone, the

Figure 5: Result of the connected component search

optimization problem can then be expressed as:

min
X

machining time(X)

s.t. shi(X) 6 shmax, i = 1 . . . n(X)
(2)

where:

� shi(X) is the scallop height at the vicinity of the
point Pi(X)

� shmax is the maximum scallop height allowed for this
surface.

From an optimization point of view, this is a fairly
difficult problem as it is complicated to characterize the
entire search space. Moreover, even for a given path,
the objective function (machining time) cannot be cal-
culated analytically (i.e. as an explicit mathematical for-
mula in terms of optimization variables X). Actually,
the objective function is the result of a computer simu-
lation. Therefore, the machining time has to be consid-
ered as a so-called black-box objective function involving
numerous variables and constraints. In a preliminary ap-
proach, some choices can be made to simplify the objec-
tive function. First of all, we restrict our study to 3-axis
machines. Second a given toolpath generation strategy
is chosen: the strategy of zig-zag parallel planes. This
strategy is widely used in the industry as it ensures that
the entire surface is covered and it is easy to implement.
The paths are thereby defined as the intersection of sur-
face of the part and parallel vertical planes. The distance
between two adjacent planes (called step-over distance,
noted sod) is defined as the maximum distance such as
the scallop-height constraint (2) is respected for the whole
path. This choice facilitates the management of the qual-
ity criterion. Indeed, at a given plane, the position of the
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adjacent plane is easy to determine: it suffices to consider
the worst point, in terms of scallop height, of the path de-
fined by the given plane. This is enough to ensure that
the quality criterion will be satisfied for the entire trajec-
tory. From the optimization point of view, this strategy
is very useful because the constraints are thereby satisfied
by construction. Using a fast scallop height calculation
method, such as in [5], the above-described toolpath plan-
ning process is rapid enough to be used as the objective
function of an optimization procedure.

The only parameter that remains to be defined is, for
each zone, the direction of the parallel planes used to
run the machining strategy. For the zone Zk, this angle-
determination problem may be summarized as:

min
Θk

machining time(Θk) (3)

where Θk is the angle defining the machining direction of
zone Zk with reference to the X axis.

This is a univariate (one-dimensional) optimization
problem whose objective function is, again, a black-box
(i.e., its analytic form is not known). Thus, one single
evaluation of this function requires a full toolpath plan-
ning simulation. Therefore, the optimization process may
be time expensive, especially if running the whole proce-
dure within a time suitable for interactive usage is re-
quired. Such a problem can be solved using a simple
optimization algorithm, like the popular Nelder-Mead al-
gorithm, used in [6] to solve (3) over the entire surface
considered as a single zone. However, given the previous
considerations on the computation time, in the present
study, a more efficient black-box optimization approach
is chosen. An extensive review of black-box optimization
methods can be found in [7]. The software package used
in the present study to perform optimization is NOMAD
[8, 9]. It is a LGPL-licence software that relies on the al-
gorithms described in [10, 11]. Using this package makes
the resolution more flexible, and suitable for parallel com-
puting.

In order to run the optimization procedure an initial
guess of the angle Θk is advised. For this, we choose
the θ value of the initial centroid of zone Zk, as it may
be interpreted as the overall steepest-slope direction for
the zone Zk. As the steepest-slope direction is the most
effective machining direction when using a toroidal cutter,
this choice should be close to the optimal direction.

Applying this optimization procedure on the surface
studied in [3] (see also Figure 3) provides the toolpath
planning depicted in figure 6.

To carry out the parallel-planes strategy, a cutter of
outer radius 5 mm and torus radius 2 mm is used, and
the maximum scallop height is set to 0.01 mm, a value
commonly used in industry.

Using the optimized toolpath, the two symmetric zones
of Figure 6 need about 36 s to be machined, while the
front zone requires about 28 s. Thus, the total machining

Figure 6: Example of toolpath optimization

time is around 100 s. This value should be considered
keeping in mind the bulk size of the part is about 50 ×
75 mm on the (X,Y) plane.

4 Discussion

We perform empirical tests comparing K-means with
other clustering algorithms, namely the Hierarchical clus-
tering [12] and the Rival penalized competitive learning
[13]. These tests reveals that the latter are more sensi-
tive to algorithm parameters, such as learning coefficients
and mesh size, and that the K-means algorithm provides
the best results.

The choice of the particular metric used in the clus-
tering algorithm has a deep impact on the quality of the
results. This choice deserves thereby attention in a deeper
study.

The optimization process duration is heavily dependant
on the implementation parameters chosen. It ranges from
a few seconds of CPU time to several minutes, depending
on: whether the surrogate-model option is activated or
not, which stopping criterion is chosen, the mesh size,
and so on. More work needs to be pursued to find out
a good trade-off between CPU time and quality of the
results.

Toolpath planning for milling of free-form surfaces is a
field of research where very few authors release enough
data to allow relevant comparisons between methods.
Nevertheless, a comparison can be conducted between the
C4DO1D method introduced in this paper and the one
proposed by Choi & Banerjee in [3] because numerical
result values are published in their paper. However, this
comparison should be considered with caution because
the cutter used in their paper is a ball-end cutter. Re-
mark also that the measurement units in their paper are
inches, thus conversion to millimeters gives unusual val-
ues. The cutter radius used in [3] is 0.125 in = 3.175 mm;
thus we choose a toroidal cutter with same outer radius
to carry out the comparison. The torus radius was set
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to 0.05 in = 1.27 mm. Choi & Banerjee present two
experimental simulations: one with a maximum scallop
height shmax = 0.01 in = 0.254 mm, and the other us-
ing shmax = 0.05 in = 1.27 mm. Besides, the machining
time is not precised in [3]; thus, we only compare total
toolpath lengths. The resulting values are summarized in
table 1.

shmax C4DO1D Choi & Banerjee
0.254 1437 1717
1.27 323 955

units: millimeters

Table 1: Comparison results with Choi & Banerjee’s
method

Computation time is not specified in [3], but simply
to give a rough idea, running the full C4DO1D method
(clustering and optimization) takes less than 1 min of
CPU time on a 16 cores Intel(R) Xeon(R) 1.70GHz sys-
tem.

These comparative results show a significant
improvement of performances using the proposed
clustering/black-box optimization method. But once
again, they should be considered with caution because
the surface is rather small and the maximum scallop
height values are relatively high. It would be interesting
to compare both methods on parts that are more
representative of industrial ones, and using parameters
commonly used in industry.

5 Conclusion

In the context of machining free-form surfaces, the tool-
path optimization problem is a challenge. The C4DO1D
approach introduced in this paper provides the optimal
solution (given the restricting choices made). First, a K-
means algorithm is carried out to define machining zones.
A zone segmentation verification is then performed, and
finally, for each zone, a black-box optimization procedure
is carried out to define an optimal machining direction.

This work is a first attempt to address the toolpath
planning optimization problem using a clustering/black-
box optimization approach. Future tracks of research in-
clude improvements of both the clustering step and the
optimization step. In regard to this latter point, the
choice of a black-box optimization software may be very
helpful to integrate, step by step, new degrees of com-
plexity into the optimisation model.
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