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Abstract

Accurate simulation of bolted joints is not always consistent with industrial requirements, since numerous

nonlinearities in the vicinity of the bolt can lead to overly expensive calculations. For this reason, commercial

finite element (FE) codes preferentially use substitutes for bolts, such as simplified models or connectors. In

this paper, a nonlinear FE connector with its identification methodology is proposed to model the behavior

of a bolted assembly. The connector model is based on practical design parameters, such as bolt preload,

friction coefficients, or plastic material parameters. The connector is based on a separation of the different

phenomena governing the macroscopic behavior of a bolted assembly. The axial behavior of the connector

reflects the preload effect and the axial stiffness of the assembly, while the tangential behavior of the connector

takes into account the friction phenomena that occur in the vicinity of the bolt. At the same time, a plastic

behavior law with isotropic hardening for the bolt is proposed. The identification of the connector parameters

is performed on a generic elementary one-bolt assembly. The connector is implemented in ABAQUS through

a user-element subroutine. Comparisons of quasi-static responses between large-scale full 3D calculations

and simulations with connectors on different bolted assemblies are provided. The results obtained are very

similar, while observing a significant reduction in CPU time.

Keywords: bolted joint, nonlinear user-element, plasticity, frictional contact, connector

1. Introduction

Over the past few years, the development of new mechanical models and numerical tools has led to

improvements in the design of assembled structures. The design of bolted joints is based on making a good

estimate of the loads distribution between fasteners. This load distribution depends on the stiffness of the

fastener and of the parts, the way in which external forces are introduced and of all physical parameters.5

The dimensioning of these elements therefore requires rigorous modeling and description. In this context, it

is necessary to take into account the preload installed in the assembly, the friction between the parts, the

plasticity, etc.

In this work, preload and friction phenomena as well as plasticity within the screw are considered. To take

these elements into account, one can imagine using some of the possibilities offered in commercial softwares.10

For example, using an elastoplastic beam element would make it possible to represent the screw behavior.

Commercial codes usually enables one to impose bolt preload, generally as a prescribed displacement jump,
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at an arbitrary bolt cross-section or interface. However, the displacement value corresponding to a desired

preload is unknown to engineers if not through an iterative process. Finally, to take friction into account,

dedicated connector elements can be added. Modeling many connections in this way is at the cost of tedious,15

and often cumbersome according to the code, model manipulations. This does not enable one to treat the

problem in an integrated way. Moreover, a method of identification for the associated connection model

parameters has to be proposed.

The goal of the present work is to fill this gap by proposing a coherent and fully integrated implementation

of a nonlinear finite element (FE) connector and its identification methodology. It thus consists in proposing20

a simplified model that can behaves similarly to a finely discretized bolt and accounts for the nonlinearities

that occur within a bolted assembly as previously described. The non-linearities of the initial numerical

model are then taken into account within an unique connector.

The model proposed in [1] already accounts for friction and preload. In particular, Section 3.3 of [1]

details the process of setting the preload: the preload is introduced by giving a force value, and the algorithm25

proposed computes at the first iteration of the first computational increment the displacement jump to be

imposed, as well as the internal stress due to the preload. As en extension of this model, plasticity of

the screw is here introduced. The adopted modeling principle consists in separating the phenomena and

mechanisms in order to facilitate the identification of the model parameters. This results in parameters with

a strong mechanical meaning, which turns out to be very advantageous to conduct a robust bolted connection30

optimization process. The whole is designed to be integrated in a user element subroutine which is easily

adaptable to any FE codes: a first implementation has been proposed in SAMCEF [2], the enhanced version

presented here has been implemented in ABAQUS. Without appropriate tools to take all these non-linearities

into account, simplified generic patterns are usually used that lead to structures that are often oversized,

although mass saving is crucial for aeronautical structures.35

Historically, a first way to apprehend the mechanical behavior of a bolted assembly naturally lies in the

realization of experimental campaigns. In the literature, there are numerous experimental set-ups which

aim at characterizing the behavior of bolted joints. For example, scanning electron microscopy techniques

are used [3] in order to examine the surfaces of the nut and bolt to analyze the initial contact conditions.

A phenomenon that is much studied in the literature and in industry is the phenomenon of self-loosening40

of bolted joints. Several approaches are thus detailed in [4, 5] in order to provide elements contributing

to the understanding of the phenomenon under transverse loading. When the connection is subjected to

vibrations, the anti-loosening capacity of many fastening screws is tested on a test bench. Contributions

of [6] try to determine a general methodology for carrying out loosening tests. More generally, the study

of the identification of friction properties in bolted connections remains crucial to understand the different45

interactions between each element. The work proposed in [7] thus aims at determining the coefficient of

friction in which parameters such as surface condition or bolt preload vary.

In many cases, especially in an industrial context, it is interesting to be able to quickly estimate the

performance of assemblies in the presizing phases. For this, it is necessary to have analytical models for the

representation of assemblies that quickly provide estimates of the mechanical stresses that pass through the50

assembly. For the calculation of normal equivalent stiffnesses, two distinct approaches can be identified. The
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first is based on the work of [8] which focuses essentially on the determination of the value of the opening

angle of the Rötscher cone as a function of the geometry of the parts and the type of threaded element. The

second approach is the one of [9], which is based on the search for an equivalent section of a cylindrical part

of the same length as the assembly, of the same Young’s modulus as the real parts, subjected to uniform55

compression, from the energy of elastic deformation. In [10], an analytical expression based on this model is

proposed.

For the formulation of an analytical formula for the tangential stiffness of an elementary bolted joint,

different values are found in [11, 12, 13, 14, 15]. By applying these formulas on the same assembly, the

difference between the different tangential stiffnesses can reach 40%. Even if part of this gap can be explained60

by the fact that they are drawn from different experimental assemblies and/or based on different modeling

hypotheses, this gap is not satisfactory and shows the great diversity of analytical models in the literature.

However, the majority of analytical models in the literature are one-dimensional, and often valid for

only one type of solicitation, which makes their generic use delicate and restricts their scope of application.

The improvement of design methods is then oriented towards precise and reliable numerical simulations,65

which try to take into account all the complex phenomena highlighted experimentally. The work of [16], for

example, proposes a framework, based on finite elements, to predict the progressive static failure behavior

of bolted assemblies of fiber-metal laminates. The influence of the number of bolted connections, their

geometrical arrangement and the clearance between the screw body and the bore for composite materials are

research topics that are still important in the academic and industrial communities. Multi-bolted composite70

connections have thus been studied in [17, 18]. The development of three-dimensional finite element models

then demonstrated that increasing play leads to an increase in bolt rotation, a decrease in the contact area in

the vicinity of the bolted connections, and a decrease in joint stiffness. Complementarily, a numerical model

of the stress distribution in the vicinity of the bore, including a complete discretization of the fastener model,

was provided by [19, 20].75

Improving prediction capability through 3D numerical simulations of multi-bolt assemblies generates

prohibitive calculation costs. There are nevertheless specific calculation strategies, as in [21] or in [22]. The

work of [23] presents an efficient mixed domain decomposition method based on the LATIN method to study

the influence of material parameters for 3D assemblies of composite parts with contact and friction. This

facilitates the implementation of parametric studies with a large number of configurations [24].80

However, a numerical model describing the fastener at a fine scale cannot be used on an assembly with

a large number of fasteners. Taking into account the non-linear phenomena inherent to bolted connections

generates far too much calculation time in an industrial context. Thus, the use of simplified models that can

account for these phenomena, but that do not require the full discretization of the connections is increasingly

popular with the community. Thanks to the savings in terms of computing time, the use of connectors has85

become commonplace in many areas of numerical simulation. Indeed, connectors allow to report in a robust

and efficient way on the behavior of links.

For the case of bolted joints, a Global Bolted Joint Model (GBJM) implemented in the ABAQUS software

is proposed in [25]. This model consists of two linear beam elements, representing the bolt, and two rigid

surfaces, representing the contact surfaces, and allows to take into account the preload of the assembly. In90
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addition, the assembled elements are discretized by shell-type elements. The contact between the assembled

components, and between the bore and the bolt, is treated by penalization. Friction is only taken into

account for the contact between the plates. An improvement of this model is proposed in [26]. This time, the

model presents only one beam element, and is able to represent the non-linear behavior of bolted composite

connections up to the failure of the connection. A third node must be added to the simplified model for a95

double overlapping configuration.

The study proposed in [27] highlights that the identification of the equivalent stiffnesses of the GBJM

was delicate. Moreover, the model proposed by [25] with two rigid surfaces connected by an elastic element

accounts for shear and bending deformation, but does not take into account the deformation induced by the

bolt tension. An original approach to overcome this problem is that of [27] which introduces an MCRS model100

(for Multi Connected Rigid Surfaces) to represent the functional surfaces of the assembly and connects them

elastically.

A problem common to all the models described is that they do not take into account all the non-linear

phenomena occurring in the vicinity of a bolted connection such as frictional contact, bolt plasticity, or large

displacements. The recent developments [2, 28, 29] resulting from the CARAB project (Robust Advanced105

Design of Bolted Joints) propose a new model of connector allowing to take into account the bolt preload

and the friction phenomena between the assembled elements.

The model proposed in [1] proposes a non-linear connector element with 2 nodes, themselves linked to

the rest of the model by kinematic couplings. The identification of the parameters is carried out on a 3D

numerical model, including the phenomena at the interfaces of the assembled elements. A formulation of110

friction laws through an elastoplastic analogy is enhanced. The reduction in calculation time is significant

on industrial scale structures.

In this work, an improvement of a non-linear FE connector modeling the behavior of a bolted assembly is

detailed. The main novelty of this work compared with [1] is the introduction of the plastic behavior of the

screw combined with the friction phenomena in the vicinity of the assembly. The chosen strategy makes it115

possible to separate the different phenomena and mechanims in order to identify and illustrate their effects

independently.

The connector parameters are based on design parameters : bolt preload, friction coefficient, bolt dimen-

sions and material parameters. The contributions of the different elements, such as the bolt behavior or the

frictional phenomena at the interface between the bolted elements, are separated. This makes it possible to120

introduce a non-linear behavior for the bolt, identified as a Timoshenko beam with an elastoplastic behavior,

where the threshold function is based on beam quantities under traction/compression, bending and torsion

solicitations. The behavior of axial connectors models the effect of bolt preload and axial stiffness [10].

Then, friction phenomena that occur in the vicinity of the bolt due to preload are taken into account by an

elasto-plastic analogy [30]. The identification of the behavior is performed on a generic simple elementary125

3D single-bolt assembly [2, 28]. The connector is developed in ABAQUS through a Fortran user element

subroutine [1, 31]. Comparisons between fine-scale 3D computations and simulations with connectors on

various bolted assemblies are provided.

The article is structured as follows. A phenomenological approach based on the simulation of a generic
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bolted assembly is first proposed in Section 2. The effects of friction and plasticity phenomena are then130

clearly distinguished. A 3D reference model with the different design parameters is presented, as well as the

principles of connector modeling. The connector behavior model is detailed in Section 3. The constitutive

plastic law is presented and an efficient local integration of this law and its implementation in the global

resolution scheme is detailed. Finally, the method is validated in Section 4 on a complex multi-bolted

assembly. The response of the model with connectors is compared to a so-called reference model, meshed135

with 3D elements.

2. Study of an elementary bolted assembly

The study of an elementary bolted connection is presented below. The phenomena due to the elastoplastic

behavior of the bolt are of particular interest.

2.1. Phenomenological approach on a generic model140

The view cut of the studied elementary bolted joint is presented in Figure 1. Two plates are assembled

using a bolt, consisting of a screw and a nut. The bolt has a plastic behavior. The friction coefficients

(0.1 between the assembled plates and 0.15 elsewhere) are chosen such that the proposed study is limited

to micro-slip phenomena under the screw head, under the nut and between the assembled plates. Indeed,

the situation where macroscopic sliding occur between the screw head and the plate (or the nut and the145

plate) would require a quasi-dynamic or dynamic study, and therefore does not fall within the scope of the

work presented in this paper. Screw head and nut remain in adhesion with the plates. The mesh consists of

hexahedral quadratic elements, and is composed of 33, 000 degrees of freedom.

First, a preload is applied to the assembly to establish contact conditions. Tensile loading in y-direction

is then applied in order to stress the bolt in shear. The loading as well as the boundary conditions considered150

are shown in Figure 1.

The quantity of interest studied is the displacement tangential jump gT , of the nodes of the assembled

elements located near the screw head and the nut. More specifically, the tangential displacement jump gT

is defined by the difference between the average displacement of the nodes under the screw head, and the

average displacement of the nodes under the nut, extracted as shown in Figure 1.155

In order to be able to observe the influence of the plasticity of the bolt independently from the friction

phenomena, different simulations with different plasticity parameters are presented. Is is thus proposed to

study two bolt behavior models: an elastic model and an elastoplastic model with isotropic strain-hardening.

Depending on the value of the parameters (and more specifically the yield strength), different scenarios

are thus presented. The parameters summarized in Table 1 lead to different states: a plasticization of the160

bolt during the adhesion phase of the bolted assembly elements called Scenario 1, and plasticization of the

bolt during the micro-slip phase called Scenario 2. The evolution of the applied load F as a function of the

tangential displacement gap norm ||gT || for the different scenarios are then presented in Figure 2.

Depending on the geometrical parameters, materials and coefficients of friction involved in the assembly, it

is therefore shown that different non-linear phenomena can occur independently of each other. More precisely,165

two phenomena are identifed. The transition from an adherent state to a so-called micro-slip state governed
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Extraction of the average
displacement of the
nodes of the plate

ux = uy = uz = 0

F = F y

x

yz

Figure 1: View cut of the elementary single lap bolted joint

Scenario 1 Elastic behavior Plastic behavior

Ebolt (GPa) 210 210

Yield strength σy (MPa) - 550

Strain-hardening modulus H (GPa) - 2.1

Scenario 2

Ebolt (GPa) 210 210

Yield strength σy (MPa) - 700

Strain-hardening modulus H (GPa) - 2.1

Table 1: Bolt material parameters

by friction phenomena and represented by a slope break in Figure 2a and Figure 2b plays a major role on

the global behavior of the assembly [1]. Simulaneously, the assembly behavior is influenced by the plastic

behavior oh the screw. In this study, we are then interested in taking into account the elastoplastic behavior

of the bolt. Friction [1] and plasticity must then be treated in parallel using separate behavioral models.170

2.2. Connector model implementation assumptions

The strategy for modeling the connector from the previous FE model is presented Figure 3. In particular,

the main features of a two-node FE connector are defined. It includes kinematic couplings connected to the

connector nodes, which impose kinematic relationships between the degrees of freedom of the coupling zones

and those of the connector nodes. These coupling areas model the interactions between the screw head and175

nut with the assembled elements. Finally, a connector links the nodes. It takes into account all non-linear

phenomena in the vicinity of the bolt. More precisely, it takes the form of a user element that computes for

6



0.000 0.005 0.010 0.015 0.020

||gT 
|| (mm)

0

200

400

600

800

1000

1200

1400

1600

F
(N

)

Elastic behavior

Isotropic strain-hardening

Perfect plasticity

(a) Scenario 1

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

0

250

500

750

1000

1250

1500

1750

2000

F
(N

)

Elastic behavior

Isotropic strain-hardening

Perfect plasticity

||gT 
|| (mm)

(b) Scenario 2

Figure 2: Evolution of the applied load F as a function of the tangential displacement gap norm ||gT || for different values of

bolt plasticity parameters

each iteration of the global solver a tangent matrix and a residue in accordance with the stress state of the

bolt and the frictional interface.

Bolt substitution
Kinematic couplings Connector Connector nodes

Figure 3: Bolt substitution by a two-node connector model and kinematic couplings

The modeling choices and key assumptions are the following:180

• Under small perturbations assumption, it is assumed that the two assembled plates remain in a linear

elastic behavior range.

• The preload introduced in the first calculation step is taken into account in the normal behavior of

the connector. An elastoplastic behavior with isotropic strain-hardening is chosen for the bolt. The
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plasticity criterion, detailed in Section 3, considers in particular the tensile/compression, bending,185

and torsional solicitations.

• In the so-called connector modeling (Figure 3), the friction phenomena are treated only in the user

element. Frictionless contact conditions are thus used at the interface of the assembled elements instead

of the frictional contact. This assumption is based on the study of the contact area size and the pressure

distribution in this area, which shows that the effects of friction are localized near the contact area,190

and, consequently, can be encapsulated in the connector modeling. This amounts to consider that

micro-slip phenomena only occur at the interface of the assembled elements, so that there is always

adhesion between the screw head/nut and the plates.

• The interactions between the screw head and the nut with the assembled elements are modeled thanks

to classical functionalities available in existing FE software: in an average sense with a Distribution195

Coupling or in a more rigid way with a Multi-Point Constraints or a Kinematic Coupling in ABAQUS

[32]. In this study, it is chosen to use rigid connections, considering that the bending under screw and

nut is taken into account in the preliminary identification phase.

• The behavior of the bolt is assimilated to the behavior of an elastoplastic Timoshenko beam with linear

isotropic strain-hardening. The parameters governing the plastic evolution will thus be determined200

directly from the material parameters of the bolt. The detail of the integration of the elastoplastic

constitutive law is specified in Section 3.

2.3. Phenomena separation

In the following, bold lowercase is used for vectors. A quantity a evaluated at time increment k will

be denoted by a(k). Quantities related to the normal behavior (i.e. in the bolt axis) such as the normal205

displacement jump gN will be noted with an N subscript, and tangential quantities in the plane normal to

the bolt axis such as the displacement jump gT will be noted with a T subscript.

The coordinates of the connector nodes x1 (resp. x2) are then calculated by adding to their initial position

x1,(0) (resp. x2,(0)) the displacements u1 (resp. u2). The rotations of the master nodes are similarly defined,

so that in the current configuration, φ1 (resp. φ2) is determined by adding the rotation increment θ1 (resp.210

θ2) to the reference configuration φ1,(0) (resp. φ2,(0)).

Moreover, under the hypothesis of small perturbations, the normal direction of the bolt is considered as

fixed, and is then calculated from the initial state, as shown in Figure 4. The normal direction n is then

defined under the small-perturbations assumption by:

n ≈ n(0) =
x2,(0) − x1,(0)

‖x2,(0) − x1,(0)‖
(1)

Normal and tangential displacement jumps are then defined with respect to the definition of n by

g = u2 − u1 = gnn+ gT (2)

with gT · n = 0

The treatment of the problem of the frictional interface in the plane normal to n, as well as the identifi-

cation of the characteristic parameters, are detailed in [1]. The main principles are recalled in Section 3.5.
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tcT
fs

Frictional interface

(x1,(0),� 1,(0)) 

Initial configuration Deformed configuration

Elastoplastic
Timoshenko beam

Figure 4: Connector behavior model with plasticity in the bolt where fs and cT represent the threshold function and the

interface stiffness of the frictional behavior introduced in[1]

The main contribution of the present article consists in improving the model proposed in [1] by intro-215

ducting an elastoplastic Timoshenko beam model to account for plasticity phenomena within the bolt, as

highlighted in blue in Figure 4. The phenomenological approach presented has indeed highlighted the

fact that, according to the assumptions of Section 2.2, plasticity and friction phenomena could be treated

separately.

3. Connector behavior model220

The elastoplastic behavior law and its local integration are presented in this section. In particular, a

plasticity criterion is presented, based on the beam quantities of tension/compression, bending and torsion.

3.1. Elastoplastic constitutive relation with isotropic strain-hardening

The beam behavior law links the beam generalized stresses vector tbolt to the vectors of generalized strain

ε and its plastic part εp by:

tbolt = H.(ε− εp) (3)

In the rest of the study, it is assumed that the generalized stresses required to describe the plasticity

phenomenon are the normal stress N , the two bending moments Mfy and Mfz and the torsional moment

Mx. This hypothesis corresponds to a pure bending phenomenon, which leads to the nullity of the last two

terms of εp in (4), which means that the plastic shear deformation is thus neglected. The terms of the

equation (3) are then written as follows in (4), as a classic Timoshenko-type beam element with the obvious

notations where x, y and z correspond to the local frame of the beam and where x is collinear to the neutral

9



fiber of the beam.

tbolt =



N

Mfy

Mfz

Mx

Ty

Tz


H =



ES 0 0 0 0 0

0 EIy 0 0 0 0

0 0 EIz 0 0 0

0 0 0 GC 0 0

0 0 0 0 kySG 0

0 0 0 0 0 kzSG


ε =



εx =
∂u

∂x

χy =
∂θy
∂x

χz =
∂θz
∂x

χx =
∂θx
∂x

εy =
∂uy
∂x
− θz

εz =
∂uz
∂x

+ θy


εp =



εpx

χpy

χpz

χpx

0

0


(4)

The terms contained in the matrix H depict the elastic beam behavior: E represents the Young’s modulus,

S its cross-section, Iy and Iz the bending moments, G the shear modulus, C the torsion constant, ky and kz225

the shear correction coefficients.

3.2. Threshold function and isotropic strain-hardening

The threshold function is based on a limit tensile force Np, limit bending moments Mpy and Mpz and

a limit torsional moment Mpx depending only on the section geometry and material used. This modeling

choice is explained by the fact that the normal stresses are much higher than the shear stresses following the230

introduction of a preload, and it was therefore chosen for a sake of simplicity to not include the shear forces

Ty and Tz in the plasticity criterion.

For a beam characterized by a circular cross-section area S, a radius R and made of material with yield

strength σY , the characteristic values are expressed using the beam quantities as in (5) :

Np = Sσy Mey =
Iyσy
R

Mpy = ϕMey Mez =
Izσy
R

Mpz = ϕMez Mpx = Cσy (5)

The term ϕ is called plastic shape factor and depends only on the shape of the beam section [33]. In the

case of a circular section, it is demonstrates in Appendix A that it is equal to
16

3π
.

Isotropic strain-hardening is characterized by the Q(p) function dependent on cumulated plasticity p. A

linear isotropic strain-hardening is chosen, such that

Q(p) = S(σy +Hp) (6)

The term H in (6) is defined as the strain-hardening modulus. It is constant in the case of linear strain-235

hardening.

The plasticity criterion P defining the elasticity surface depends on the generalized stresses bolt tbolt and

internal variables characterizing plasticity and is inspired by [34]. It is then written:

P (tbolt, p) = F (tbolt, p)−Q(p) (7)

= Np

√(
N

Np

)2

+

(
Mfy

Mpy

)2

+

(
Mfz

Mpz

)2

+

(
Mx

Mpx

)2

−Q(p) (8)

The chosen plasticity model is an associated plasticity model: P = 0 defines both the yield surface and

the plastic flow. Hill’s principle leads to the law of normality, which implies that the vector of generalized

plastic strain velocities ε̇p is normal to the yield surface. Moreover, it was assumed that the plasticization

was not progressive: the section is either fully elastic or fully plastic.240
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The constitutive evolution equations can then be written as follows:

ε̇p = ṗ
∂P

∂tbolt
(9)

In addition, the complementarity conditions (Kuhn-Tucker’s conditions) must be satisfied, i.e.

ṗ ≥ 0 ; P (tbolt, p) ≤ 0 ; ṗ.P (tbolt, p) = 0 (10)

The p parameter represents the magnitude of the plastic strain increment. It is obtained using a radial

return mapping algorithm detailed in Appendix B.

3.3. Numerical integration of the plastic law

This section presents the computation of generalized stresses from a generalized strain increment, using

a classic backward Euler implicit scheme. It lies in the determination of the plastic multiplier ṗ in (9).245

3.3.1. Definition of a plastic flow direction

The diagonal matrix A is introduced such that:

A =



1 0 0 0 0 0

0
Np
Mpy

0 0 0 0

0 0
Np
Mpz

0 0 0

0 0 0
Np
Mpx

0 0

0 0 0 0 0 0

0 0 0 0 0 0


(11)

and A.tbolt is denoted by t̂bolt, such that:

P (tbolt, p) =
∥∥∥t̂bolt∥∥∥−Q(p) (12)

One can show that:

∂P

∂tbolt
=
∂
∥∥∥t̂bolt∥∥∥
∂tbolt

=
∂
∥∥A.tbolt

∥∥
∂tbolt

= AT
t̂bolt∥∥∥t̂bolt∥∥∥ (13)

Thus, by finally noting nplas =
t̂bolt∥∥∥t̂bolt∥∥∥ the plastic flow direction, one gets:

∂P

∂tbolt
= ATnplas (14)

3.3.2. Trial state and resolution with Newton secant method

The integration on the element is carried out using 3 Gauss points. The generalized constraints ti,(n+1)

are thus evaluated at each Gauss point i (with i ∈ [1, 3]) from the nodal displacement vector of the element.

It is proposed to carry out an elastic prediction and to write the associated trial state, assuming that the

considered strain increment remains elastic, i.e.

tbolt,tri,(n+1) = H(εi,(n+1) − εpi,(n)) (15)
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The update of generalized constraints vector tbolti,(n+1) is then achieved from tbolt,tri,(n+1). The value of ∆pi for250

each Gauss point is then computed respectively thanks to a search of zeros by secant Newton of the scalar

functions f(∆pi) detailed in Appendix B. The resolution of this system concludes the local integration at

a Gauss point by obtaining the values of ∆pi for the considered generalized strain increment.

3.4. Tangent matrix

The algorithm must then return to the global solver a tangent matrix and a residue associated with the255

bolt element. The following section details the calculations.

The tangent matrix KT of the element for a generalized strain increment is obtained using the evaluation

of the elastoplastic tangent operator Hepi at each Gauss point.

It is shown in Appendix C that for a pure elastic strain increment at a Gauss point (without any

plasticization), the elastoplastic tangent operator is then written

Hepi = H (16)

On the other hand, when plasticization occurs at a Gauss point, i.e. for P (tbolt,tri,(n+1), pi,(n)) > 0, the

elastoplastic tangent operator depends on the plastic flow direction by :

Hepi = H.

Id −
∂P

∂tbolt
⊗ ∂P

∂tbolt

∂P

∂tbolt
H

∂P

∂tbolt
− ∂P

∂p

H

 (17)

The tangent matrix of the element is then computed by integration over the length of the beam using 3

Gauss points. In a similar way, the nodal forces are computed by integration on the Gauss points. Details of260

these calculations are recalled in Appendix C .

The local integration algorithm for the plasticity law for a time increment, and the computation of the

tangent matrix and the residue for the global solver can be summarized as in Algorithm 1.

3.5. Coupling with friction phenomena

In addition to the plastic behavior of the bolt, the friction phenomena in the vicinity of the bolt are taken265

into account with a radial return mapping algorithm. It is indeed possible to formulate Coulomb’s laws (or

other behavioral equations for friction) within an algorithm similar to the one used to solve an elastoplastic

problem.

The key idea of the elastoplastic approach detailed in [1] is a split of the tangential slip gT into an elastic

(or adhesive) part geT and a plastic (or sliding) part gsT . A threshold function fs monitoring the transition270

from the adherent state to the sliding state therefore depends on the resultant of the normal contact forces

pN , a friction coefficient µ and the internal tangential force denoted by tT . The update of the tangential

stress tT,(n+1) is carried out by a radial return mapping algorithm based on an integration (backward Euler)

of the evolution equation for the plastic slip. More precisely, the quantity of ttrT,(n+1) which exceeds the

tangential load allowed according to Coulomb’s law µ pN,(n+1) is used to adjust loads leading to tT,(n+1) and275

leads to the increase of the slip (inelastic) part of the relative tangential motion gsT,(n+1).

The global tangent matrix to be returned by the routine is the addition of the tangent matrix KboltT given

in Algorithm 1 for the bolt, and the one presented in [1] for the frictional interface, while the residual,

similar to internal forces, is the sum of the two residuals resulting from these algorithms.
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Algorithm 1 Integration algorithm for the plasticity law of the bolt for a time increment

Require: εpi,(n), pi,(n)

For each Gauss point i

Compute trial state : tbolt,tri,(n+1) = H(εi,(n+1) − εpi,(n))
Compute trial threshold function : Pi(t

bolt,tr
i,(n+1), pi,(n)) =

∥∥∥t̂bolt,tri,(n+1)

∥∥∥−Q(pi)

if Pi ≤ 0 then

εpi,(n+1) = εpi,(n)

pi,(n+1) = pi,(n)

Hepi = H

else

Computation of ∆pi with Appendix B

Computation of nplas =
t̂bolt∥∥∥t̂bolt∥∥∥

εpi,(n+1) = εpi,(n) + ∆pinplas

pi,(n+1) = pi,(n) + ∆pi

Hepi = H.

Id −
∂P

∂tbolt
⊗ ∂P

∂tbolt

∂P

∂tbolt
H

∂P

∂tbolt
− ∂P

∂p

H


end if

Compute the tangent matrix for the global solver with Appendix D

KboltT =
∫ L
0

BTHB dx =
L

2

3∑
i=1

ωiB
T

(
1 + ξi

2
L

)
.Hepi .B

(
1 + ξi

2
L

)
Compute residual for the global solver with Appendix D

Fboltint =
L

2

3∑
i=1

ωiB
T

(
L

1 + ξi
2

)
Hepi (εi − εpi )

13



The overall algorithm of the connector is thus summarized in Algorithm 2. The identification of the280

connector parameters introduced in Algorithm 2 is also detailed in [1].

Algorithm 2 Connector algorithm

Require: εpi,(n), pi,(n),g
s
T,(n)

Compute bolt state

Use Algorithm 1

Get KboltT ,Fboltint

Compute frictional interface state (see [1] for details)

Compute trial state

ttrT,(n+1) = cT

(
gT,(n+1) − gsT,(n+1)

)
f trs,(n+1) =

∥∥∥ttrT,(n+1)

∥∥∥− µpN,(n+1)

nT,(n+1) =
ttrT,(n+1)∥∥∥ttrT,(n+1)

∥∥∥
if f trs,(n+1) ≤ 0 then

gsT,(n+1) = gs,trT,(n+1)

tT,(n+1) = ttrT,(n+1)

KfrT = cT

 PT −PT

−PT PT


else

Radial return mapping procedure

λ =
f trs,(n+1)

cT
=

∥∥∥ttrT,(n+1)

∥∥∥− µpN,(n+1)

cT
gsT,(n+1) = gsT,(n) + λnT,(n+1)

tT,(n+1) = cT

(
gT,(n+1) − gsT,(n+1)

)
KfrT = cT

 PT

−PT

I3 − nT ⊗ nT 03

03 03

(PT −PT
)

end if

Ffrint =


−tT,(n+1)

03

tT,(n+1)

03


Compute connector quantities

KT = KboltT + KfrT

Fint = Fboltint + Ffrint

4. Numerical examples

4.1. Validation of the elasto-plastic law on a single lap four-bolt joint under shear loading

The validation of the connector model is first performed on the model described Figure 5. It is an

assembly of two aluminum plates by four bolts. The dimensions of the assembled parts, as well as the screw285
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and the nut are specified. On the connector model, the red areas correspond to the kinematic connection

areas from the mesh to the master nodes, symbolized by blue dots.

Bolt 1 Bolt 2 Bolt 3 Bolt 4

Connector 1 Connector 2 Connector 3 Connector 4

x

y

F = F yu = v = w = 0

10

5

7.3

23.25

93

6

Bolt 1 Bolt 2 Bolt 3 Bolt 4

Connector 1 Connector 2 Connector 3 Connector 4

x

y

u = 0 u = ud yBolt 1 Bolt 2 Bolt 3 Bolt 4

Connector 1 Connector 2 Connector 3 Connector 4

x

y

u = 0 u = ud y

z

Figure 5: Description of the 3D reference model and the connector model for the single lap four-bolt joint under shear loading

In the first calculation step, the bolts are subjected to a preload equivalent to 10 kN. The assembly is

then subjected to a loading-unloading shear cycle as shown in Figure 5. The left end of the bottom plate

is clamped. The assembled plates are made of aluminum (E = 70 GPa, ν = 0.3) and the bolts are made290

of steel (E = 210 GPa, ν = 0.3). For the reference model, the friction coefficient between the plates, under

the screw heads and under the nuts is fixed at 0.1. As a reminder, all contacts are frictionless contacts for
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the simulation with connectors. Moreover, only the bolts have an elastoplastic behavior. The assembled

plates remain in the elastic range. The elements used for the simulation are hexahedral elements of order 2

(C3D20). The simulation is divided into 200 time increments of equal duration.295

The evolutions of the norm of the tangential displacement jumps of each bolt/connector are compared

to the force imposed at the end of the top plate and are depicted in Figure 6. Four simulations are then

presented: the reference model with fully elastic bolts and bolts with an elasto-plastic behavior, and the

model with elastic connectors and elasto-plastic connectors.
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Figure 6: Evolution of the tangential displacement gap for each bolt/connector

One can observe a micro-sliding phase of bolts 1 and 4 preceding the one of bolts 2 and 3 for the same300

preload value. The same asynchronous evolution of the sliding of each associated connector is similarly

observed. This evolution has been studied analytically in the work of [35] and was numerically highlighted

in [1].

The importance of taking into account the elasto-plastic behavior of bolts is also illustrated on Figure 6.

The value of the yield strength (σY = 800 MPa) was chosen so that the bolts do not plasticize during305
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the preload phase. On the other hand, they plasticize when the prescribed shear loading reaches 1800 N.

Comparisons between models show excellent agreement for both elastic and elastoplastic simulations.

The gains in terms of computation time as well as the number of solver iterations are presented in Table 2.

Computations were performed with 16 GB of RAM memory on a node of two Intel Xeon 6148 2.40 GHz

processors. The speed-up observed for this example is equal to 5.13 for the elastic case, and equal to 5.08 for310

the elastoplastic case. This is a satisfactory result, which is mainly explained by a significant decrease of the

number of degrees of freedom (gain of 4.2), but also by a reduction of the number of solver iterations thanks

to the reduced number of contact interactions between the assembled plate (frictionless contact) as well as

the fast integration of frictional and plasticity phenomena at the connector/user-element level compared with

the 3D reference model.315

Model CPU time (s) Number of dof Nb. of Newton iterations

3D Reference - Elastoplastic 1.21 105 1.03 106 490

Connector - Elastoplastic 2.38 104 2.44 105 396

3D Reference - Elastic 1.18 105 1.03 106 471

Connector - Elastic 2.30 104 2.44 105 289

Table 2: Comparison of computation time

4.2. Manifold test-case

4.2.1. Presentation

The test-case presented in this section is a multi-bolted assembly of a manifold. The assembly contains

55 bolts to secure the 4 tubes constituting the manifold. Figure 7 shows the loading and the boundary

conditions for the test case. The dimensions of the bolts used in this test case are identical to those used320

in Section 4.1. The bolts numbering for the presentation of the results is shown Figure 8. Each bolt is

first preloaded with a value of 10 kN before the application of the external load. The manifold is made of an

elastic material with Young’s modulus E = 70 GPa and Poisson’s ratio ν = 0.3, and the bolts are made of

an elasto-plastic material (E = 210 GPa, ν = 0.3), and a yield strength σy equal to 800 MPa.

The friction coefficient at each contact surface is chosen equal to 0.1 for the 3D reference simulation, and325

all contacts are frictionless for the simulation using the connector model. To appreciate the influence of the

elastoplastic behavior, results for two different connector models are proposed: a connector model whose

beam is purely elastic, and a second model taking into account plasticity phenomena. As a reminder, the

assembled elements have a linear elastic behavior.

In each simulation, the elements used are C3D20 elements, which are hexahedral elements of order 2.330

Meshes are conformal at the contact surfaces. A 50 kN force F is applied on the top tube of the manifold,

and the 4 lower tubes are clamped as shown in Figure 7.

4.2.2. Result of the simulations

Comparisons between the reference model and connector models are made for the proposed load case.

The results are proposed at two different instants: after the preload step, and then, after the applied shear335
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Figure 7: Description of the manifold geometry and applied boundary conditions
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Figure 8: Bolt numbering in the top-view along x-direction for the manifold structure of Figure 7
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load.

Figure 9a introduces the comparison of the Von Mises stress fields at the end of the loading step. The

reference model is presented by masking the bolts, in order to be able to appreciate the behavior of the nodes

under the screw head and under the nut. Both models provide very similar results. A similar comparison for

the displacement fields is presented Figure 9b. The very small differences between the two models validate340

the approach proposed in this work.
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Figure 9: Quantity comparison at the global scale

The local behavior of each bolt is shown in Figure 10, according to the bolt numbering of Figure 8.

Figure 10a shows the evolution of the axial displacement jump gN after the preload step, and after the

load application. In order to highlight the contribution of the connector elasto-plastic behavior, the load

19



1

2

3

4

5

6

7
8

9
10

11
12131415161718

19
20

21
22

23

24

25

26

27

28

29

30

31

32

33

34
35

36
37

38
39 40 41 42 43 44 45

46
47

48
49

50

51

52

53

54

55

−0.030
−0.025

−0.020
−0.015

−0.010

Reference model

Elasto-plastic connector model

Elastic connector model

1

2

3

4

5

6

7
8

9
10

11
12131415161718

19
20

21
22

23

24

25

26

27

28

29

30

31

32

33

34
35

36
37

38
39 40 41 42 43 44 45

46
47

48
49

50

51

52

53

54

55

−0.030
−0.025

−0.020
−0.015

−0.010

Reference model

Elasto-plastic connector model

Elastic connector model

1

2

3

4

5

6

7

10
11

12131415161718
19

20
21

22
23

24

25

26

27

28

29

30

31

32

33

34
35

36
37

38
39 40 41 42 43 44 45

46
47

48
49

50

51

52

53

54

55

0.0000
0.0001

0.0002
0.0003

0.0004
0.0005

Differences between preload and loading steps 
for the elastic connector model                  8

(a) Normal displacement jump of each bolt/connector after preloading (left) and after loading (right)

1

2

3

4

5

6

7

8
9

10
11

121314151617
18

19
20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37
38

39
40 41 42 43 44 45

46
47

48
49

50

51

52

53

54

55

0.02
0.04

0.06
0.08

0.10

Reference model

Elasto-plastic connector model

Elastic connector model

1

2

3

4

5

6

7

8
9

10
11

121314151617
18

19
20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37
38

39
40 41 42 43 44 45

46
47

48
49

50

51

52

53

54

55

0.02
0.04

0.06
0.08

0.10

Reference model

Elasto-plastic connector model

Elastic connector model

(b) Norm of the tangential displacement jump of each bolt/connector after preloading (left)

and after loading (right)

Figure 10: Normal and norm of the tangential displacement jumps for the 3D reference model and the connector model
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value (50 kN) has been chosen so that plasticity occurs for some bolts. The norm of the tangential displace-345

ment jump ‖gT ‖ is then represented in Figure 10b for 3 models: the 3D reference model including bolts

with elastoplastic behavior, a so-called elastic model using connectors that only take into account friction

phenomena but not those related to plasticity, and a model including connectors capable of reflecting the

elasto-plastic behavior of the bolt and the frictional interface contribution. The differences obtained between

the two connector models underline the contribution of the implementation of the elasto-plastic behavior in350

the connector. The normal and the norm of the tangential displacement jumps of the elastic connector model

are very small, which explains why green curves are very similar in Figure 10. Thus, it can be observed

that for all bolts that have plasticized, the elastic connector model is not able to reflect the load distribution

in the structure.

The local behavior difference of each bolt/connector can be explained by the complex geometry of the355

model under consideration. For example, it is interesting to note that bolts/connectors 7 and 33 of Figure 8

are the most distanced from the centre of the assembly, and are the most solicited for the two models. In the

same way, the bolts/connectors 20 and 47 are more central and are less stressed in both configurations. The

influence of the plasticization, and thus a loss of stiffness, of a few bolts on the overall structure is observed.

The figure on the right-hand side of Figure 10a shows, for example, that bolts 2 to 8 have not plasticized360

because the elastic and plastic curves coincide, whereas bolt 32, for example, has plasticized to a large extent

because of its location as shown in Figure 8. The results given by the two models are in good agreement,

because load transfers among bolts are thus adequately represented. On the other hand, the purely elastic

model is not able to adequately represent the phenomena for bolts where the plastic behavior occurs, and

significant differences from the reference model are then observed.365

4.2.3. Comparison of the performances

Simulations were performed with 128 GB RAM on 32 cores of a node of two 2.40 GHz Intel Xeon 6148

processors.

Table 3 presents the relative differences on the previous quantities of interest for the applied load. It

can be seen in Figure 9 that these maximum values are reached near the clamping for the Von Mises stress,370

and near the applied loading for the displacement magnitude.

Quantity Displacement magnitude Von Mises stress Tangential displacement gap

Maximum relative difference (%) 1.5 1.7 9.5

Table 3: Relative differences on maximum values between the reference and connector models

It highlights the fact that the connector model adequately depicts not only the local behavior of each

substituted bolt, but also the global behavior of the assembly. The most important stresses are observed

in the same areas and are very close for each model. The maximum of the displacement magnitude is also

in adequacy for each model. The design of bolted structures with complex geometry and various loads is375

thus simplified with the proposed connector model. Taking into account the elasto-plastic behavior in the

connector is essential when the loads become important and strongly impact the local behavior of the bolted

joint.
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Table 4 presents a comparison of the performance of the different models used.

Reference model Elasto-plastic connector Elastic connector

Number of d.o.f. 5.6 M 3.7 M 3.7 M

Number of Newton solver iterations 256 166 126

CPU time (s) 8.46 105 2.45 105 2.35 105

Speed-up - 3.45 3.6

Table 4: CPU time comparison of elasto-plastic reference and connector models simulations for a manifold assembly

The speed-up factors can change significantly, depending on the reference mesh. For example, if the bolts380

were meshed in a much more refined manner, the gain in terms of the number of degrees of freedom would

have been greater, thus increasing the speed-up factors. It is also interesting to note that the connector

model does not require a mesh as fine as the reference model to converge, thanks to the substitution of

frictional contact conditions by frictionless contact. An additional acceleration factor could then be obtained

by meshing the bolted structure more coarsely. However, it was chosen not to modify the initial mesh of the385

reference model for the presented results.

The global Newton solver requires fewer convergence iterations for the connector model than for the refer-

ence model. This is due to the fact that some non-linearities (frictional contact, plasticity) are encapsulated

and integrated locally at the connector level, and not in the global model.

For the same reason, it can also be observed that the elasto-plastic connector does not require much more390

CPU time or iterations than the elastic connector. The reason is that the integration of the plastic behavior

by searching for zeros by secant Newton is performed locally in the user-element subroutine, and requires

only a negligible amount of CPU time.

Profits obtained in terms of CPU time are very satisfactory. Table 5 describes the performances of the

connector model in terms of memory space. It must be compare with other connector models, such as the395

BARC connector resulting from the work of [36] implemented in SAMCEF [37]. The performances of the

connector proposed in this work are thus interesting, in particular in terms of data setting and memory

required to carry out the simulations.

Reference model Connector model Gain

Input file size 169 MB 110 MB 53%

Output file size 10 GB 9.1 GB 9%

Memory required 64 GB 43 GB 49%

Pre-processing time 85 s 50 s 70%

Table 5: Performance comparison between the reference and the connector models for the manifold test-case

The small differences the reference and connector models highlighted, coupled with the profits in com-

puting time attest to the interest and efficiency of the proposed connector.400
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5. Conclusion

The phenomenological analysis of an elementary bolted assembly and the non-linear phenomena governing

its behavior has been studied in order to propose a non-linear FE connector model.

If the consideration of friction phenomena in the connector had already been explained in [1], plasticity

phenomena were not treated. The separation of the different phenomena has been proposed in this article,405

allowing the integration of the bolt elasto-plastic behavior, in addition to the treatment of the frictional

contact at the interfaces. These are treated using a threshold function related to beam quantities. The

integration of constitutive laws is introduced with dedicated fast algorithms.

The comparison on bolted structures representative of industrial assemblies between a full 3D reference

model and a model using the proposed connector validates the proposed approach. Physical phenomena410

studied are thus highlighted on models containing several million of degrees of freedom, including complex

geometries and loading cases. A significant reduction of the calculation time is observed, while guaranteeing

a satisfactory quality of the results, especially in terms of normal and tangential gaps at the bolt level.

The implementation of the connector model in ABAQUS has made it possible to highlight the excellent

compromise between calculation time and the accuracy of the obtained results. The relative deviations of415

the computed displacement and stress fields are indeed less than 2% between models.

Future work will focus on the need for industry to further reduce calculation times. The treatment of

bolted joints undergoing large displacements or rotations will be addressed in future work. A sensitivity

analysis of connector parameters to several input factors (discretization, preload, plate thickness...) is also

envisaged. Finally, other non-linear phenomena, such as bolt failure or contact between the screw body and420

the bore as a result of bolt macro-slip, can be also investigated.
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Appendix A : Plastic shape factor for a circular beam section

For a beam subject to pure bending by a bending moment Mfz, the stress σxx varies linearly in a section

proportionnaly to quadratic bending moment Iy according to the relation:

σxx = −Mfz

Iz
y (18)

Plasticity initiates when the limit value σY is reached. Thus, for a circular beam cross section with radius

R, one has:

σY =
Mez

Iz
R (19)

or

Mez =
σY Iz
R

=
σY πR

4

4R
=
σY πR

3

4
(20)

In addition, the section is fully plasticized when :
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• σxx(y) = σY for −R ≤ y ≤ 0

• σxx(y) = −σY for 0 ≤ y ≤ R

By definition,

Mfz =

∫
S

σxx(y)y dS. (21)

Thus by symmetry,

Mpz = 2

∫ π

θ=0

∫ R

r=0

σY r sin(θ) r dθ dr =
4

3
σYR

3 (22)

It finally comes
Mpz

Mez
= ϕ =

16

3π
which depends only on the geometrical characteristics of the section.430

Appendix B : Radial return mapping algorithm

One proposes to carry out an elastic prediction and to write the associated trial state, i.e.

tbolt,tr(n+1) = H(ε(n+1) − εp(n)) (23)

and therefore:

tbolt(n+1) = H
(
ε(n+1) − εp(n+1)

)
(24)

= tbolt,tr(n+1) − H∆εp(n+1) (25)

= tbolt,tr(n+1) − H∆p
∂P

∂tbolt

∣∣∣
(n+1)

(26)

tbolt(n+1) = tbolt,tr(n+1) −∆p HATnplas,(n+1) (27)

with
∂P

∂tbolt
= ATnplas by definition of nplas. Consequently, one gets:

Atbolt(n+1) = Atbolt,tr(n+1) −∆p AHATnplas,(n+1) (28)∥∥∥Atbolt(n+1)

∥∥∥nplas,(n+1) = Atbolt,tr(n+1) −∆p AHATnplas,(n+1) (29)

By multiplying (29) by nplas,(n+1), one gets:∥∥∥Atbolt(n+1)

∥∥∥ = Atbolt,tr(n+1) .nplas,(n+1) −∆p nTplas,(n+1)AHATnplas,(n+1) (30)

By introducing the diagonal matrix D = AHAT , and by noting that
∥∥∥Atbolt(n+1)

∥∥∥ = Q(p + ∆p), one finally

gets:

∆p nTDn = t̂bolt,tr(n+1) .n−Q(p+ ∆p) (31)

Let us express the quantities nTDn and t̂bolt,tr.n as a function of ∆p in the case of a linear isotropic

hardening.

The equation (29) gives an expression of n(n+1) (which will be denoted by n in the following to lighten

the notations):

n = (Q(p+ ∆p)1 + ∆p D)
−1

t̂bolt,tr. (32)

24



Thus, with the rule of summation of index i:

nTDn = di (Q(p+ ∆p) + ∆p di)
−2

(̂t
bolt

i )2 (33)

t̂bolt,tr.n = (Q(p+ ∆p) + ∆p di)
−1

(̂t
bolt

i )2 (34)

The scalar equation (31) to be solved in ∆p may then be written:

∆p
(
di (Q(p+ ∆p) + ∆p di)

−2
(̂t
bolt,tr

i )2
)

= (Q(p+ ∆p) + ∆p di)
−1

(̂t
bolt,tr

i )2 −Q(p+ ∆p) (35)

By factoring the terms in (̂t
bolt,tr

i )2, one gets:(
di∆p

(Q(p+ ∆p) + ∆p di)
2 −

1

Q(p+ ∆p) + ∆p di

)
(̂t
bolt,tr

i )2 = −Q(p+ ∆p). (36)

Thus, (
− Q(p+ ∆p)

(Q(p+ ∆p) + ∆p di)
2

)
(̂t
bolt,tr

i )2 = −Q(p+ ∆p) (37)

One finally obtains the expression of f(∆p) that we have to zero:

f(∆p) = 1− (̂t
bolt,tr

i )2

(Q(p+ ∆p) + ∆p di)
2 (38)

The function f(∆p) of unknown ∆p has thus as explicit expression

f(∆p) = 0 = 1− N tr2

(Q(p+ ∆p) + ES∆p)
2 −

N2
p

M2
py

M tr
fy

2(
Q(p+ ∆p) + EIy

N2
p

M2
py

∆p

)2

− N2
p

M2
pz

M tr
fz

2(
Q(p+ ∆p) + EIz

N2
p

M2
pz

∆p

)2 −
N2
p

M2
px

M tr
x

2(
Q(p+ ∆p) +GC

N2
p

M2
px

∆p

)2

(39)

The resolution scheme is finally based on a zero search of the function f(∆p). This equation is solved by a

secant Newton method, which requires two initial points to be given. ∆p is positive, and the maximum value

of ∆p corresponds to a full plastic increment. The research interval for the (positive) solution of f(∆p) = 0

is thus [0,∆p1] with

∆p1 =
|F bolt,tr(n+1) )−Q(p(n))|

ES
=
‖H.∆ε‖
ES

. (40)

6. Appendix C : Elastoplastic tangent modulus435

The computation of the tangent operator consists of linking the quantity ṫbolt to the quantity ε̇. In the

elastic case, the relationship is simply:

ṫbolt = Hε̇ (41)

This relationship is no longer exact in the case where the strain increment is plastic.

In addition, the coherence conditions make it clear that if P (tbolt, p) = 0, then Ṗ (tbolt, p) = 0, which leads

by differentiating to:
∂P

∂tbolt
ṫbolt +

∂P

∂p
ṗ = 0 (42)
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hence,
∂P

∂tbolt
H

(
ε̇− ṗ ∂P

∂tbolt

)
+
∂P

∂p
ṗ = 0 (43)

which gives the expression of ṗ:

ṗ =

∂P

∂tbolt
Hε̇

∂P

∂tbolt
H

∂P

∂tbolt
− ∂P

∂p

(44)

One finally gets the expression of the tangent operator:

ṫbolt = H.(ε̇− ε̇p) (45)

= H.(ε̇− ṗ ∂P

∂tbolt
) (46)

= H.

Id −
∂P

∂tbolt
⊗ ∂P

∂tbolt

∂P

∂tbolt
H

∂P

∂tbolt
− ∂P

∂p

H

 ε̇ (47)

One can finally replace the partial derivatives by their respective expressions, noting that:

∂P

∂tbolt
= ATn (48)

∂P

∂p
= −SH for a linear isotropic strain-hardening (49)

in order to get:

ṫbolt = H.

[
Id −

ATnnTA
nTAHATn + SH

H

]
ε̇ (50)

The elastoplastic tangent modulus is therefore finally written as follows:

Hep = H.

[
Id −

ATnnTA
nTAHATn + SH

H

]
(51)

The tangent matrix of the element is then computed by integration over the length of the beam using 3

Gauss points by:

KT =

∫ L

0

BTHB dx =
L

2

3∑
i=1

ωiB

(
1 + ξi

2
L

)T
.Hepi .B

(
1 + ξi

2
L

)
(52)

where ωi and ξi respectively represent the Gauss weights and Gauss points, and where B symbolizes the matrix

linking the nodal displacements U to the generalized strain εi at each Gauss point, detailed in Appendix

D such that:

εi = BiU (53)

In a similar way to get the tangent matrix of the element, the nodal forces are computed by integration

on the Gauss points by:

Fint =
L

2

3∑
i=1

ωiB
T

(
L

1 + ξi
2

)
Hepi (εi − εpi ) (54)

Appendix D : Behavior matrix of a Timoshenko beam

The vector of the nodal displacements of the beam element gathers the nodal displacements and rotations

of the two master nodes, and is written:

UT =
(
u1x u1y u1z θ1x θ1y θ1z u2x u2y u2z θ2x θ2y θ2z

)
(55)
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The functions used to approximate the displacement field within the element are order-one polynomials for

traction/compression and torsion, and order-three polynomials for bending.

The test functions to be chosen must satisfy the equilibrium equations without right-hand side, i.e. for

example in the case of bending in the plane (xOz):

Ψ′′ + ω′ = 0

EIyω
′′ − kzSG(Ψ′ + ω) = 0

where Ψ represents the test functions for the displacements, and ω those for the rotations. The test functions440

will therefore explicitly depend on the geometrical and material characteristics of the beam. The value of the

constants of each shape function is then determined using the boundary conditions leading to the expression

of the following shape functions.

By denoting
12EIy
kzSGL2

by Φy, let us choose the following pairs of test functions (Ni(x), Ni+4(x)) corre-

sponding respectively to the degrees of freedom u1,z, θ1,y, u2,z, θ2,y of the element.445

Similarly, the pairs of test functions chosen for the bending phenomenon in the plane (xOy) are identical,

except for the sign: (N3, N7), (−N4, N8), (N5,−N9) and (−N6, N10). For the displacements:

N3(x) =
1

1 + Φy

[
2
( x
L

)3
− 3

( x
L

)2
− Φy

x

L
+ (1 + Φy)

]
N4(x) =

L

1 + Φy

[
−
( x
L

)3
+

4 + Φy
2

( x
L

)2
− 2 + Φy

2

x

L

]
N5(x) =

1

1 + Φy

[
−2
( x
L

)3
+ 3

( x
L

)2
+ Φy

x

L

]
N6(x) =

L

1 + Φy

[
−
( x
L

)3
+

2− Φy
2

( x
L

)2
+

Φy
2

x

L

]
For the rotations:

N7(x) =
6

L(1 + Φy)

x

L

[
1− x

L

]
N8(x) =

1

1 + Φy

[
3
( x
L

)2
− (4 + Φy)

x

L
+ (1 + Φy)

]
N9(x) =

−6

L(1 + Φy)

x

L

[
1− x

L

]
N10(x) =

1

1 + Φy

[
3
( x
L

)2
+ (−2 + Φy)

x

L

]
One deduces the expression of the displacement u of a point located on the neutral fiber at the abscissa
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x in function of the components of U:



ux

uy

uz

θx

θy

θz


=



N1 0 0 0 0 0 N2 0 0 0 0 0

0 N3 0 0 0 −N4 0 N5 0 0 0 −N6

0 0 N3 0 N4 0 0 0 N5 0 N6 0

0 0 0 N1 0 0 0 0 0 N2 0 0

0 0 N7 0 N8 0 0 0 N9 0 N10 0

0 −N7 0 0 0 N8 0 −N9 0 0 0 N10


.



u1x

u1y

u1z

θ1x

θ1y

θ1z

u2x

u2y

u2z

θ2x

θ2y

θ2z



(56)

Finally, by writing the generalized strain vector ε as:

ε =



εx =
∂ux
∂x

χy =
∂θy
∂x

χz =
∂θz
∂x

χx =
∂θx
∂x

∂uy
∂x
− θz

∂uz
∂x

+ θy


, (57)

and thanks to (56), the matrix B is then obtained by writing:

ε =



∂

∂x
0 0 0 0 0

0 0 0 0
∂

∂x
0

0 0 0 0 0
∂

∂x

0 0 0
∂

∂x
0 0

0
∂

∂x
0 0 0 −1

0 0
∂

∂x
0 1 0


u = BU (58)

(59)

with:

B =


N1,x 0 0 0 0 0 N2,x 0 0 0 0 0
0 0 N7,x 0 N8,x 0 0 0 N9,x 0 N10,x 0
0 −N7,x 0 0 0 N8,x 0 −N9,x 0 0 0 N10,x

0 0 0 N1,x 0 0 0 0 0 N2,x 0 0
0 N3,x+N7 0 0 0 −(N4,x+N8) 0 N5,x+N9 0 0 0 −(N6,x+N10)
0 0 N3,x+N7 0 N4,x+N8 0 0 0 N5,x+N9 0 N6,x+N10 0

 (60)
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