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In the recent years, several citizen science platforms for biodiversity monitoring have emerged. These platforms represent a 

powerful tool for collecting biodiversity data for researchers and increasing the knowledge of participants. Typical 

biodiversity data are species names observed at a given time and place by numerous participants. The use of photos to 

document observations allows data validation, in particular validation of species identification, a key aspect needed for the 

quality control of such databases. However, the increasing amount of data collected represents a major challenge given the 

limited number of co-opted experts dedicated to data validation. Therefore, detecting miss identifications can be very 

helpful to focus the limited expert workforce on dubious identifications. In this paper, we test various machine learning 

approaches to detect miss-identifications in such databases based on various features extracted form the history of 

validated observations. The proposed model can be used to automate the data validation process in the SPIPOLL platform.    

1. Introduction iNaturalist,1 eButterfly,2 BirdLab, HerpMapper,3 iSpot4 and 

SPIPOLL5 are few from many Citizen science (CS) platforms dedicated to 

biodiversity observation. These platforms allow collecting biodiversity data 

from numerous participants, and contribute to raise public awareness and 

increase knowledge on biodiversity issues. For example: eButterfly collect 

butterfly pictures from many volunteers, to provide data about butterfly 

abundance, in order to determine how climate change may be impacting 

butterfly distribution. BirdLab allows participants to collect bird pictures and 

play a collaborative game in order to understand the behaviors and the 

feeding strategy of birds. HerpMapper aims to gather and share information 

about reptile and amphibian observations across the planet. iSpot and 

iNaturalist iSpot aim to collect data of any creature in nature across large 

temporal and geographic scales. In these platforms, people upload their 

observations of wildlife and help each other to identify it. Each user can 

change its identifications many times forming an identification history. In 

addition to other  

 

available tools, iNaturalist offers an automated species identification 

computer vision tool. Similarly to previous CS, SPIPOLL collect data of 

flowering plants and insect pollinating it from many participants, in order to 

study changes in pollinator assemblages across space and time. In the 

SPIPOLL, after taking picture of pollinators on flowers and sharing it on the 

website, users are asked to identify each photographed insect, using an 

interactive identification key containing more than 600 insect names. Users 

can change their identifications, following the advices from the comments or 

the suggestions of other participants. After that, experts validate or correct 

the identifications. Data quality represents a critical aspect for the success of 

any CS project (Bonney et al., 2009). Improving data quality represents a big 

challenge in order to increase researchers’ confidence in the gathered data 

from a big numbers of participants with varying levels of expertise. In 

particular, it is difficult for a limited number of co-opted experts to validate 

the gathered data manually. In addition, studies (Deguines et al., 2018) have 

shown that users increase their expertise while participating and that the 

speed of learning depends on the insect, as difficulty of identification varies  
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Fig. 1. The general process of the SPIPOLL.   

among insects. As a consequence, it might be useful to detect potential miss-

identification and to focus the limited expert workforce on them. To do so, 

we trained several ML algorithms to predict if the identification is correct or 

not in order to validate the obtained data. These algorithms are trained using 

a set of extracted features from the set of users’ observations. The following 

of this paper is organized as follows: Section 2 provides an overview of the 

related work in the area of answer predictions. Section 3 presents the 

general structure of the SPIPOLL website. Section 4 introduces the details of 

our prediction model. Section 5 describes the experimental setup and 

obtained results. Finally, we provide some concluding remarks in Section 6.  

2. Related work  

In recent years, various works have been done in the area of answer 

predictions. Most of these works consist of using a set of features from the 

historical forum data to train a machine-learning algorithm to predict the 

best answer for a posted question. The chosen answer is supposed to be the 

best among multiple answers. The main difference between the works lies in 

the chosen features. Jenders et al. (Jenders et al., 2016) proposed a machine-

learning model to predict the correct answer on the Massive Open Online 

Courses (MOOCs) platform. They have used the forum thread, the users’ 

participation and the textual content of the questions and answers to train 

the model. Yang et al. (Yang et al., 2011) analyzed the set of not answered 

questions of Yahoo! Answers platform, to extract features from different 

perspectives, such as: topic feature, asker history feature, question time and 

question length features. These features have been used to train a machine- 

learning model to predict the best answer. Shah et al. (Shah and Pomerantz, 

2010) proposed a model for predicting the answers quality for community-

based question answering (CQA) platforms. They extract various features 

from questions, answers and the users who posted them, such as the length 

of the answer, the length of the question, number of comments for the 

question and the achieved level of the answerer. They have trained a 

number of classifiers using these features, to select the best answer. Zhu et 

al. (Zhu et al., 2009) proposed a multi-dimensional model for estimating the 

quality of answers in social Question & Answer (Q&A) sites in the context of 

eLearning. The proposed model has been trained using several dimensions 

(features) such as the informativeness of the answer, the completeness of 

the answer, the readability of the answer and the truthfulness of the answer. 

Liu et al. (Liu et al., 2008) proposed a model for asker satisfaction prediction 

using three different families of classification algorithms. These algorithms 

have been trained using several features such as question-answer 

relationship, asker user history, answerer user history and textual features. 

Tian et al. (Tian et al., 2013) developed a model for predicting the best 

answer on (CQA) platforms. The model was trained using three principals’ 

features: the answer context, the question-answer relationship and the 

answer content. The experiments were conducted using a dataset from the 

Stack Overflow platform. Zhou et al. (Zhou et al., 2012) exploited three 

categories of user profile information to improve the answer ranking 

prediction process on (CQA) services. Three user profile information 

categories have been defined: level-related, engagement-related and 

authority-related. Unlike the previous approaches, we used different kind of 

features such as the environment features and the observation features and 

time features. Rather than using a CQA platform, we apply our prediction 

model to validate the biodiversity data gathered in a CS platform, the 

SPIPOLL.  
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3. The general structure of the SPIPOLL  

SPIPOLL is an SC platform created by the National Museum of Natural 

History (MNHN) and the Office for Insects and their Environment (Opie), to 

collect data on flowers and pollinating insects in metropolitan France. The 

collected data improve the users’ knowledge about insect pollinators and 

allow scientists to assess the abundance variations of pollinator 

communities. In the SPIPOLL, each user (observer) is asked to take pictures 

of all insects visiting chosen flowering plant, for a certain period of time. The 

collected pictures of insects and flowering plant are then uploaded on the 

SPIPOLL website to form a photographic collection. Nowadays, the SPIPOLL 

database contains more than 31,329 photographic collections and 307,719 

insects’ pictures. After data collection, observers are asked to identify insects 

and flowering plants, using an online identification key. Finally, a group of 

entomologists from the OPIE validate the identifications. In the SPIPOLL, 

users can also comment pictures and collections, and add doubts in the 

identified photos if they are not sure about identifications. Observers can 

change their initial identifications if they think that it was not correct. Fig. 1 

represents the general process of the SPIPOLL.  

4. Our prediction model  

4.1. Prediction problem  

4.1.1. Problem definition  

In our proposed model, we forge the prediction problem as a supervised 

learning binary classification problem. Definition: “True identifications 

Prediction”. Given a training set of validated observations, the prediction 

task aims to explore the newly posted observations by the observers and 

predict whether they will be good identified or not. For our training data, the 

identification is considered true, if it is identical with the validation.  

4.1.2. Classification algorithms  

We use eight algorithms provided in the scikit-learn library (Pedregosa et 

al., 2011) to perform classification experiments: (1) Naïve bays (NB): A simple 

probabilistic classification method based on Bayes’ theorem. (2) Decision 

Trees (DT): which creates a prediction model based on decision tree. Each 

node in this tree represents a feature and each leaf represents an outcome. 

(3) Support Vector Machines (SVM): which uses a separating hyperplane to 

make the classification. (4) Stochastic Gradient Descent classifier (SGD): a 

linear classifier that uses SGD for training. (5) Logistic Regression CV (LRCV): 

this uses a cross-validation estimator. (6) Random Forest (RF): this creates a 

set of decision trees and merges them together to obtain a more accurate 

prediction model. (7) K- nearest neighbor (KNN): this is based on features 

similarity between the neighbors to classify a given data point. (8) Multi-

layer Perceptron classifier (MLP): a neural network classification model.  

4.2. Features description  

We exploit the provided data on the SPIPOLL platform, to extract various 

features. We distinguish insect feature, user features, observation features, 

time features, and environment features. All of these features are available 

at observation time. The detailed list of features is reported in Table 1. 

Except user features, identification history features, insect feature and the 

number of days between the picture validation and the picture identification, 

we transform the other features into binary features (dummy variables). 

Each distinct category from these features will represent an attribute in our 

training dataset.  

Table 1  
The detailed list of features: Insect feature (IF), User features (UF), Time features (TF), 

Observation features (OF), Identification history features (HF) and Environment features 

(EF).   

 
User features (UF)  
UF: User expertise  Proportion of true identifications per target insect.  

UF: Number of 

observations  
Number of observations per target insect.  

UF: Total observations  

Time features (TF)  

Total number of observations for the whole insects.   

TF: Observation season  The season of the observation.  

TF: Observation time  Time of the day of the observation.  
TF: Observation delay  Number of days between the identification and the actual day 

(for the training data is the number between the identification 

and the validation).   
Observation features (OF)  

OF: Observation  Duration of the observation session.  
protocol  

OF: Insects count  Number of existing insects on the collection. OF: 

Camera type  Smartphone or professional camera.   

Identification history features (HF)  
HF: Identification  The rank of the target identification on the re-identification rank 

 sequence.  
HF: Doubt presence  The presence or absence of doubt on the observation.   

Environment features (EF)  
EF: Flower type  Spontaneous or planted.  
EF: Flower shade  The presence or absence of shade on the flower.  

EF: Temperature  Weather temperature (10–20◦, 20–30◦ 
…etc.).  

EF: Wind  The wind speed (strong, low, continuous …etc.).  
EF: Habitat type  The environment type (rural, garden, urban …etc.).  Insect feature 

(IF)  Identification ease score of the insect.   

 

Insect feature describe the identified insect in the target picture. This 

identification is given by the observer who has taken and uploaded the 

target picture in the SPIPOLL platform. This feature gives information about 

the ease score of the identified insect tx. This score is high when the insect is 

easy to identify and is low when it is hard to identify. This score is calculated 

as follows:  

Number of tx pictures with true identifications 

ease(tx) =  (1)  

Total number of tx validated pictures 

User features describe the user who has identified the target picture. 

These features give information about the user expertise on the target 

insect, the total number of user observations for the whole insects and the 

number of user observations for the identified insect. The expertise of the 

user n (Un) for the insect m (txm) is calculated as follows:  

Number of correct identifications posted on txm by Un 

Expertise(Un,txm

)=
 

Totale number of identifications posted on txm by Un 

(2)  

Time features give information about the timing of the posted pictures. 

Among these features, there is the season of the observation and the time of 

the day of the observation. We suppose that the picture difficult to identify 

will require more time to be validated than other pictures. Hence, we have 

added as feature, the number of days between the picture validation and the 

picture identification.  

Observation features include the observation protocol feature, the insect 

count feature and the camera type feature. The observation protocol 

represents the duration of each observation session. It can be flash for short 

observation session and long for long observation session. The insects count 

represents the number of insects included in the collection of the target 

picture. The camera type can be smartphone or professional camera. 

Pictures taken with professional camera are supposed to be more clear and 

easy for identification than smartphone pictures.  

Features  Description  
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Identification history features include the identification rank feature, the 

doubt presence feature. In the SPIPOLL, each picture can be re-identified 

many times by the observer. The identification rank represents the rank of 

the target identification on the re-identification sequence before the final 

validation. For example, the ranks of the first and the second identification 

will be one and two respectively. In the SPIPOLL, users can add doubt on 

each picture if they think that it contains wrong identification. Hence, we 

have decided to add this important information to our other features. For 

each re-identification sequence, the doubt can occur before or after each 

identification in the sequence. Hence, we have separated the doubt feature 

into two features: 1- The “doubt-before” feature: to describe any doubt 

happened before the identification. 2- The “doubt-after” feature: to describe 

any doubt happened after the identification. Each identification on the re- 

identification sequence will be inserted to data in different ways. For an 

identification I1 that is between two doubts, four different lines will be 

inserted to data as follows: 1- line 1: without doubts, 2- line 2: with “doubt-

before, 3- line 3: with “doubt-after” and 4- line 4: with “doubt- after” and 

“doubt-before”. Fig. 2 shows the lines extraction process from an 

identification between two doubts.  

Environment features give information about the environment of the 

observation and the weather condition during the time of the observation. 

These features include the flower type feature, flower shade feature, the 

temperature feature, the wind feature and the habitat type feature. The 

flower type can be spontaneous or planted. The flower type can be 

spontaneous or planted. The flower shade cans affect the  

Table 2  
Average precision values of the personalization approach.    

 Accuracy  Precision  Recall  F1  

NB  0.71  0.74  0.72  0.73  

DT  0.93  0.93  0.93  0.93  
SVM  0.90  0.91  0.91  0.91  
SGD  0.74  0.73  0.53  0.61  
LRCV  0.91  0.92  0.91  0.91  
RF  0.89  0.90  0.90  0.90  
KNN  0.82  0.83  0.83  0.83  
MLP  0.71  0.73  0.71  0.72   

identification process. We believe that it is easy to identify the insect when 

the picture is brighter and without shadow. The temperature represents the 

temperature of the weather during the observation session. The wind is an 

important environmental factor that has high impact on the clearness of the 

picture. Picture 

taken during a 

session with high 

wind speed have 

probably low 

quality than 

picture taken in 

stable weather. 

Habitat type 

represents the 

environment 

type where the 

picture has been 

taken.  

5. Experiments  

5.1. Experimental 

setup  

We now 

describe the 

metrics used for 

the evaluation, 

the datasets, and 

methods 

compared in the experimental results of Section 5.  

5.1.1. Datasets  

The experiments were based on the SPIPOLL dataset described. This 

dataset contains 31,329 collections, 307,719 pictures (observations), 76,288 

comments and 1455 users. This data been collected from a sample of the 

SPIPOLL database from April 2010 to October 2017. Among the 307,719 

observations, there are 155,560 validated observations. 68% of the validated 

observations have been identified correcly by users.  

In our study, we use only the set of validated observations. 70% of data 

will be used for training and 30% of data will be used for testing.  

5.1.2. Evaluation metrics  

We evaluate the performance for each classification based on four 

evaluation metrics: Precision, Recall, accuracy and F1 score. The precision 

measures the fraction of the predicted identifications that are correct. The 

recall measure the fraction of all correct identifications that were correctly 

predicted by the system. The F1 score is the geometric mean of Precision and 

Recall measures. The accuracy is the proportion of correct predictions to the 

total number of input samples. Table 2 reports the accuracy, the precision, 

the recall, and the F1 score of the classification algorithms, by using all 

features set. For the KNN algorithm we choose k = 3 because it gave better 

results than the other cases.  

 

Fig. 2. Lines extraction process from an identification between two doubts.   
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For the MLP we choose 30 hidden layers because it gave better results than 

the other cases. From the obtained results, we can see that most algorithms 

give good performance for the prediction of observation quality. Result 

indicated that DT algorithm had better performance than the other 

algorithms. This is due to the fact that the tree structure of the DT improves 

the classification process and protect against skewed distributions. In 

addition, DT can easily handle with mixture of continuous and categorical 

features.  

5.2. Experimental results  

We have also reported the importance of each features group in the 

prediction process in Table 3. From this table we can see that the difference 

in accuracies and F1 scores among the whole algorithms was very significant 

when we use different set of features.  

For all algorithms, user features (UF) contribute more than the other features 

groups for increasing the prediction accuracy. The UF allow the RF and the 

SVM algorithm to give their highest accuracy (F1 = 0.95 for RF and F1 = 0.92 

for SVM). This suggests that identifications given by expert users are likely to 

Table 3  
Accuracy and F1 score according the used features set. G1: includes UF and IF. G2: includes TF and EF. G3: includes OF and HF. G4: includes HF, UF and IF. G5: includes OF, TF and UF.    

 Metric  UF  TF  OF  HF  EF  IF  G1  G2  G3  G4  G5  

NB  Accuracy  0.53  0.76  0.65  0.69  0.65  0.65  0.53  0.76  0.69  0.54  0.76  

 F1  0.59  0.82  0.79  0.80  0.79  0.79  0.59  0.82  0.80  0.60  0.82  

DT  Accuracy  0.91  0.79  0.65  0.69  0.66  0.78  0.91  0.78  0.69  0.93  0.78  

 F1  0.93  0.85  0.79  0.81  0.78  0.83  0.93  0.83  0.81  0.95  0.83  

SVM  Accuracy  0.90  0.75  0.65  0.69  0.65  0.68  0.89  0.76  0.69  0.90  0.74  

 F1  0.92  0.81  0.79  0.81  0.79  0.79  0.92  0.82  0.81  0.92  0.80  

SGD  Accuracy  0.44  0.74  0.65  0.68  0.65  0.67  0.67  0.71  0.69  0.50  0.75  
 F1  0.32  0.80  0.79  0.81  0.79  0.79  0.79  0.76  0.81  0.42  0.81  

LRCV  Accuracy  0.89  0.76  0.50  0.69  0.55  0.68  0.90  0.76  0.69  0.90  0.76  

 F1  0.92  0.82  0.57  0.80  0.62  0.77  0.91  0.81  0.80  0.92  0.82  

RF  Accuracy  0.93  0.76  0.65  0.69  0.65  0.70  0.93  0.65  0.69  0.93  0.65  
 F1  0.95  0.82  0.79  0.80  0.79  0.78  0.95  0.79  0.80  0.95  0.79  

KNN  Accuracy  0.84  0.76  0.43  0.69  0.60  0.75  0.84  0.79  0.58  0.85  0.79  
 F1  0.87  0.82  0.49  0.81  0.70  0.82  0.88  0.84  0.67  0.89  0.84  

MLP  Accuracy  0.65  0.62  0.65  0.69  0.66  0.70  0.65  0.45  0.69  0.48  0.54  
 F1  0.79  0.65  0.79  0.81  0.78  0.79  0.79  0.40  0.81  0.56  0.57  

Average  Accuracy  0.76  0.74  0.60  0.68  0.63  0.70  0.79  0.70  0.67  0.75  0.72  
 F1  0.78  0.79  0.72  0.81  0.75  0.79  0.84  0.75  0.78  0.77  0.78   

 

 

Fig. 3. Accuracy depending on the fraction of used data for training.   
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be true. With UF and G1 features, the RF algorithm performs better than DT. 

This could be because of the increasing of users’ observations and expertise 

with time, from biological point of view. From a statistical point of view, RF 

algorithm aggregates many decision trees and takes average of many 

answers given by individual models. The time features (TF) also contribute 

significantly, suggesting that observation with true identification is usually 

taken in specific season, period of time and a small observation delay. Most 

algorithms give similar and tolerable accuracy with using the insect feature 

(IF) and the Identification history features (HF). This suggests that 

observation with true identification is usually for insects easy to identify and 

contains less number of doubts. For most algorithms, the accuracy increase 

when we combine the user features (UF) with the insect feature (IF). The 

combination of the observation features (OF) the time features (TF) and the 

Environment features (EF) give tolerable accuracy but less than accuracy 

when we use only the TF. This is due to negative effect of the EF and the OF 

on the TF in the prediction process. The combination of the UF, the IF and HF 

allows the DT, the SVM, the LRCV, the RF and the KNN algorithm to give their 

best performance. This suggests that these three feature sets can be used for 

the prediction process, rather than using the whole feature set.  

We have also studied the effect of changing the fraction of data used for 

training on the performance of the classification algorithms in the prediction 

process. By varying the amount of data used for training and testing, we 

obtained different accuracies for each algorithm in each case. Fig. 3 shows 

the obtained accuracies according the fraction of used data for training for 

each algorithm. From this figure, we can see that the DT, the RF and the 

LRCV algorithm outperform the other algorithms, regardless of the amount 

of training data. Uncommonly, after using only 10% of data (15,556 entries), 

these algorithms are capable to reach a high accuracy (near or superior than 

90%). These three algorithms with the NB algorithm have also a stable 

performance comparing to the other algorithms that have unstable 

performance with the increase of the amount of training data. This proves 

the efficiency of the DT, the RF, the LRCV and the NB with binary 

classification problems. The SVM algorithm reaches its high and stable 

performance from 70% of used data. The SVM outperforms the RF algorithm 

with 70% of used data and give similar performance with the RF with 80% of 

used data. The performance of the RF algorithm saturates very quickly (from 

40% of used data), with the increase of the amount of training data. The SGD 

gives its best performance with 40%, 60% and 70%. The MLP gives its best 

performance with 60% of data.  

6. Conclusion  

In this paper, we presented, to our knowledge, the first approach for 

automating data validation in citizen science platforms for biodiversity 

monitoring. The gathered insight from this study can be applied to optimize 

the validation process in different citizen science platforms, by choosing the 

best features and the best algorithms. Several kinds of features have been 

used to train different machine learning algorithms. Each group of features 

has been grouped in one. These features have been extracted from the set of 

users’ observations, the characteristics, the environment and time of the 

observation and the insects’ identification ease. The trained machine 

learning algorithms have been used to predict if the identification is true or 

not in order to validate the obtained data. Our experiment has shown that 

the user features and the environment features are important for the 

prediction task. The obtained results have shown also that the most of used 

algorithms give high prediction accuracy, particularly the decision tree 

algorithm, which outperforms the other algorithms. In our future work, we 

plan to develop similar model to predict the answers quality in a crowd 

sourcing platform.  
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