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1UCBL, CNRS, LGL-TPE, Université de Lyon, 69622 Villeurbanne, France. E-mail: john-keith.magali@univ-lyon1.fr
2Institut de Physique du Globe de Paris, Université de Paris, CNRS, F-75005 Paris, France
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S U M M A R Y
In the Earth’s upper mantle, seismic anisotropy mainly originates from the crystallographic
preferred orientation (CPO) of olivine due to mantle deformation. Large-scale observation
of anisotropy in surface wave tomography models provides unique constraints on present-
day mantle flow. However, surface waves are not sensitive to the 21 coefficients of the elastic
tensor, and therefore the complete anisotropic tensor cannot be resolved independently at every
location. This large number of parameters may be reduced by imposing spatial smoothness
and symmetry constraints to the elastic tensor. In this work, we propose to regularize the
tomographic problem by using constraints from geodynamic modelling to reduce the number
of model parameters. Instead of inverting for seismic velocities, we parametrize our inverse
problem directly in terms of physical quantities governing mantle flow: a temperature field, and
a temperature-dependent viscosity. The forward problem consists of three steps: (1) calculation
of mantle flow induced by thermal anomalies, (2) calculation of the induced CPO and elastic
properties using a micromechanical model, and (3) computation of azimuthally varying surface
wave dispersion curves. We demonstrate how a fully nonlinear Bayesian inversion of surface
wave dispersion curves can retrieve the temperature and viscosity fields, without having to
explicitly parametrize the elastic tensor. Here, we consider simple flow models generated by
spherical temperature anomalies. The results show that incorporating geodynamic constraints
in surface wave inversion help to retrieve patterns of mantle deformation. The solution to our
inversion problem is an ensemble of models (i.e. thermal structures) representing a posterior
probability, therefore providing uncertainties for each model parameter.

Key words: Inverse theory; Probability distributions; Seismic anisotropy; Seismic tomog-
raphy; Surface wave and free oscillations.

1 I N T RO D U C T I O N

Seismic anisotropy reveals key insights into the Earth’s interior
structure and dynamics. In the upper mantle, the propagation of
seismic waves appears to be anisotropic, which has generally been
associated with the preferred alignment of mantle minerals (Nico-
las & Christensen 1987; Montagner 1994). This so-called intrinsic
anisotropy relates to the strain history induced by regional-scale
convection and is observable with various seismological tools, in-
cluding surface waves.

1.1 Surface wave tomography studies

Surface wave tomography offers a powerful technique to constrain
seismic anisotropy and to image the structure of the upper man-
tle at both regional and global scales. With growing amounts of

seismic data, tomographers have produced detailed models of az-
imuthal anisotropy (e.g. Debayle et al. 2005; Deschamps et al.
2008; Adam & Lebedev 2012; Yuan & Beghein 2013, 2014), and
radial anisotropy (e.g., Plomerová et al. 2002; Lebedev et al. 2006;
Nettles & Dziewoński 2008; Chang et al. 2014, 2015). Numerous
studies have inverted dispersion curves by minimizing the differ-
ence between observed and synthetic phase and/or group velocities,
proving that they can effectively constrain the depth dependence
of anisotropy (e.g., Montagner & Tanimoto 1990; Ritzwoller et al.
2002).

Seismic anisotropy can be described with 21 independent com-
ponents of the elastic tensor. In practice however, the full tensor
cannot be resolved by the seismic data independently at every lo-
cation, and generally only a restricted number of parameters are
inverted for. This is done by assuming specific symmetry classes,
or by using petrological constraints to impose relations between
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some of the parameters. Surface waves in particular are only sensi-
tive to 13 parameters that are just a linear combination of the elastic
constants (Montagner & Nataf 1986). General practices in surface
wave tomography thus investigate: (1) radial anisotropy (assuming
vertical transverse isotropy, VTI, where the axis of hexagonal sym-
metry is vertical), constrained by comparing the speed of Rayleigh
waves with that of Love waves, also known as the Rayleigh–Love
discrepancy (Babuska & Cara 1991); or (2) azimuthal anisotropy,
which deals with first-order variations of velocities as function of
the azimuth of propagation. For example, azimuthal anisotropy can
be inferred from the azimuthal terms of the Rayleigh wave phase
velocities (Smith & Dahlen 1973).

Simultaneous interpretations of radial and azimuthal anisotropy
have been the subject of extensive research (e.g. Beghein et al.
2014; Burgos et al. 2014). Joint efforts involving the use of a priori
information have already been conducted to reduce the high dimen-
sionality of anisotropic inversion. Montagner & Anderson (1989)
showed that correlations exist between the elastic constants de-
rived from petrological models, thereby reducing the total number
of free parameters to be inverted for. This motivated the devel-
opment of ‘vectorial tomography’ where it involves inverting for
seven parameters instead of 13: two angles defining the strike and
dip of the symmetry axis, three coefficients defining the strength
of anisotropy and finally two isotropic coefficients (Montagner &
Nataf 1988; Montagner & Jobert 1988). Such a medium is also
known as tilted transverse isotropy (TTI) and describes the 3-D
distributions of anisotropy. This further led to studies revealing
that deformation-induced anisotropy can be described by a TTI
medium where correlations appear to exist between P- and S-wave
anisotropy (Becker et al. 2006). Such correlations can then be ex-
ploited to further simplify anisotropic inversion. Panning & Nolet
(2008) then laid the groundwork to derive finite-frequency kernels
of surface waves that are explicitly based on a TTI medium. In
practice however, constraining the tilt may still be difficult due to
sparse azimuthal sampling, alongside other competing factors such
as non-uniqueness of the solution and poor data quality. Even so,
simultaneous inversions for radial and azimuthal anisotropy using
TTI models have already been applied at the regional scale using
probabilistic approaches to combat these shortcomings (Xie et al.
2015, 2017).

Surface wave tomography is an ill-posed inverse problem. This
arises from the uneven distribution of sources and receivers causing
limited ray path coverage, and from noise in the observed seis-
mograms. The type of spatial parametrization may also lead to
ambiguity when interpreting tomographic results. A conventional
technique is to separate the problem into two steps. The first step
is to construct velocity maps for each considered period, which is
an almost linear inverse problem. It is followed by an inversion of
each local dispersion curve to build a model of elastic parameters.
The inversion is in general performed using a linearized technique,
which favours a stable and unique solution through regularization,
for example by adding a spatial smoothness constraint on the model
parameters.

More recently, the development of probabilistic approaches using
direct sampling of the model space makes it possible to handle the
non-uniqueness of the solution and estimate uncertainties on the
inferred parameters. These methods require the evaluation of the
forward model a large number of times, and hence have a high com-
putational cost. Nevertheless, numerous works have been successful
in applying such inversion schemes to seismic data and in particu-
lar to the inversion of surface waves dispersion curves (Shapiro &

Ritzwoller 2002; Shen et al. 2012; Bodin et al. 2016; Ravenna &
Lebedev 2017; Xu & Beghein 2019).

In this study, we propose a complementary approach to estimate
the full elastic tensor. This involves the incorporation of geodynamic
and mineral physics modelling constraints: the textural evolution of
peridotite aggregates during their deformation in the convective
mantle. We propose a method to invert directly for the temperature
field that produces convective flow and texture evolution. Modelling
intrinsic anisotropy in this way removes the issue of low sensitivity
from seismic waves since the elastic tensor is not explicitly inverted
for, but instead computed directly from texture evolution models.
Additionally,the inversion is performed using a Bayesian sampling
algorithm, hence provide uncertainties on the obtained temperature
field.

1.2 Deformation-induced seismic anisotropy

In the upper mantle, the existence of large-scale anisotropy ap-
pears to be ubiquitous in regions associated with strong deformation
(McKenzie 1979). Its interpretation is based on the development of
crystallographic preferred orientation (CPO) in olivine aggregates
during their plastic deformation (Nicolas & Christensen 1987). Due
to the physical process at its origin, seismic anisotropy can be inter-
preted in terms of the strain history associated with upper-mantle
circulation.

Different proxies have then been utilized to interpret seismic
anisotropy directly in terms of mantle flow. First-order seismic ob-
servations suggest that the fast axis of azimuthal anisotropy tends
to align with horizontal mantle flow (Ribe 1989; Becker et al. 2003,
2014). However, this behaviour may not always be exhibited due
to complex local deformation mechanisms associated with CPO
evolution. Moreover, it is also important to emphasize that the de-
velopment of anisotropy relates to the history of velocity gradients
along a flow line, and not to the velocity field itself. Laboratory ex-
periments of simple shear suggest that, at low strains, the orientation
of the olivine fast axis tends to be aligned with the long axis of the
finite-strain ellipsoid (FSE, Zhang & Karato 1995; Ribe 1992). The
amplitude of anisotropy, on the other hand, can be approximated as
a monotonic function relating to the ratio between the long axis and
the short axis of the FSE (Ribe 1992; Hedjazian & Kaminski 2014).
At sufficiently large strains however, CPO evolution deviates from
the FSE due to the apparition of dynamic recrystallization. It tends
to align nearly parallel to the direction of shear instead (Zhang &
Karato 1995; Bystricky et al. 2000), although its transient behaviour
remains complex (Hansen et al. 2014a). Following this observation,
a possible proxy is to interpret the orientation of the anisotropy fast
axis as the infinite strain axis (ISA), that is, the axis of the FSE
in the limit of infinite strains (Kaminski & Ribe 2002). In practice
however, this proxy have had limited success at the global scale
(Becker et al. 2014).

For that reason, an adequate interpretation of seismic anisotropy
is usually based on numerical models of texture evolution. They
require geodynamic flow models as inputs to provide the complete
strain history. However, in some problems, the complete flow tra-
jectory is unknown or too costly to compute, and only present-day
flow is available. In this case, we propose to use a steady-state
assumption to reconstruct the deformation history. This approxima-
tion is acceptable provided that the time-scale of texture evolution
is much smaller than that of the flow fluctuations (Kaminski & Ribe
2002).
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1.3 Interpreting tomographic images with geodynamic
modelling

In order to explain surface wave anisotropy, particularly in intra-
oceanic and young continental regions, first-order interpretations
involve finite strains computed from global circulation models
(Becker et al. 2003). In their work, the density field derived from
isotropic tomography (Becker & Boschi 2002) is used to com-
pute instantaneous flow solutions in the upper mantle. Finite-strain
models derived from the flow are subsequently compared with az-
imuthal anisotropy in surface waves. However, as discussed above,
finite strain-derived models may fall short at larger strains due to
dynamic recrystallization (Zhang & Karato 1995). This urges the
use of computational strategies that incorporate texture evolution
models to estimate the level of CPO anisotropy.

Texture evolution can be modelled using micromechanical mod-
els of viscoplastic deformation of upper-mantle minerals (Tommasi
et al. 2000). One of which in particular uses a kinematic formalism
to model texture evolution of olivine aggregates by plastic defor-
mation and dynamic recrystallization (Kaminski et al. 2004). It has
been extensively applied to predict CPO-induced anisotropy from
geodynamic flow models in a forward modelling approach at the
regional (Hall et al. 2000; Lassak et al. 2006; Miller & Becker
2012; Faccenda & Capitanio 2013) and at the global scale (Becker
et al. 2006, 2008). Forward models such as this assist further in
the interpretation of seismic tomography models in terms of mantle
circulation patterns. To cite an example, CPO-induced anisotropy
resulting from to 3-D numerical simulations of subducting slabs
shows consistency with radial anisotropy patterns inferred from
global tomographic images (Ferreira et al. 2019; Sturgeon et al.
2019). However, most studies rely on visual comparisons between
CPO obtained from numerical simulations and tomographic im-
ages. To the best of our knowledge, no study yet exists where mantle
deformation has been inferred directly from seismic observations
using an inverse approach.

1.4 Geodynamic tomography

This motivated us to implement geodynamic tomography, an ap-
proach where no symmetry is imposed to the elastic tensor at the
outset, and where seismic observations are inverted with constraints
from geodynamic modelling, in a fully Bayesian parameter search
approach. To constrain the patterns of mantle deformation, we in-
vert Love and azimuthally varying Rayleigh phase velocity dis-
persion curves to retrieve the present-day thermal structure of the
upper mantle. The thermal structure relates to density anomalies
through a linear equation of state. The complete forward problem
proceeds as follows (see Fig. 1): (1) given a temperature field, we
first numerically solve an instantaneous 3-D convection problem
with temperature-dependent viscosity (Samuel 2012). (2) Using the
obtained velocity field and velocity gradient obtained, we track CPO
evolution of olivine crystals where the steady-state assumption of
the flow is implied. The result is a complete elastic tensor Sij at each
point in space (Kaminski et al. 2004). (3) The last step involves
computing synthetic surface wave dispersion curves using normal
mode summation in a spherical earth (Smith & Dahlen 1973) and
their azimuthal variations from the full Sij (Montagner & Nataf
1986).

The inversion explores the model space using a Markov chain
Monte Carlo (McMC) algorithm, and evaluates through Bayesian
inference the posterior probability of model parameters. In oppo-
sition to conventional tomography where elastic parameters are to

be inverted for, our method directly inverts for a single scalar field
(e.g. temperature anomalies) and extra information is driven by the
physics of mantle convection. The complete solution to our prob-
lem is a probability distribution of the 3-D present-day thermal
structure of the upper mantle. Since the complete elastic tensor is
computed for each sampled model, we can also obtain a posterior
distribution of the full elastic tensor. In fact, any variable that is
implicitly computed in the forward model can be expressed as a
posterior distribution in their respective model space (temperature,
flow, deformation and anisotropy). Thus, geodynamic tomography
may be viewed as a technique to reduce model dimension (i.e. the
number of inverted parameters) in the inverse problem. Our goal in
this study is to lay its proof of concept by applying it to simple syn-
thetic temperature fields. In Section 2, we explain how geodynamic
tomography is implemented, starting with the model parametriza-
tion, followed by the forward problem, the data and finally the
Bayesian inversion scheme. This is followed by Section 3, where
we apply the method to synthetic data obtained from prescribed
temperature fields. The last section discusses current limitations of
geodynamic tomography, and its potential applications to real-Earth
problems.

2 M E T H O D O L O G Y

Geodynamic tomography involves two main procedures: (1) eval-
uate the forward model completely, and (2) implement a fully
Bayesian nonlinear inversion scheme with an McMC sampling
technique. The solution of our inversion scheme is a poste-
rior distribution of thermal structures and their corresponding
uncertainty bounds. Fig. 1 illustrates the complete inversion
scheme.

2.1 Model parametrization

To parametrize the 3-D thermal structure in a Cartesian domain (x,
y, z), we build a basis containing spherical temperature anomalies,
on top of an adiabatic temperature gradient. Mathematically, this
translates to:

T (r) = Tbackground(r) +
M∑

i=1

T i
anomaly(r), (1)

where the background temperature is assumed to be linear and only
a function of depth z:

Tbackground(r) = T0 +
(

z

Ls
− 1

)
(T0 − 1200 K) , (2)

and M is the number of spherical anomalies, r = (x, y, z) defines
any point in the 3-D volume, T0 is the temperature at the bottom
(i.e. also the reference value) and Ls is the characteristic length
scale. Each anomaly has a distinct size, temperature and position.
We define the basis function for one given spherical anomaly as:

Tanomaly(r) = − Tc

2

[
1 − tanh

(
β

Ls

(
r − r0 − R

2

))]
, (3)

where Tc is maximum temperature anomaly reached at the centre
of the sphere r0 = (x0, y0, z0) and R controls its size. These five
variables are unknown model parameters to be inverted for in our
problem. The non-dimensional constant β = 20 controls the sharp-
ness of the temperature gradient. Additional details can be found in
Appendix A.
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Figure 1. Geodynamic tomography (green) in comparison with traditional tomographic techniques (red). In geodynamic tomography, the unknown model to
be inverted for is the temperature field denoted by T, whereas in traditional tomography, the model is a fourth-order elastic tensor Sij with 21 independent
coefficients. Often, tomographers assume a hexagonally symmetric medium onto Sij to reduce model complexity. The complete forward model (in green) is
cast in a Bayesian McMC framework. One of the advantages of geodynamic tomography is the reduction of unknown model parameters due to constraints
from geodynamics.

We model the medium rheology by assuming a temperature-
dependent viscosity, following the Frank–Kamenetskii approxima-
tion to Arrhenius-type viscosity. Here, we only invert for a di-
mensionless scalar constant E, which plays a similar role to the
conventional activation energy (i.e. the sensitivity of viscosity to
temperature). The viscosity field is described by:

η(r) = η0 exp

[
−E

(T (r) − T0)

T0

]
, (4)

where η0 is a reference value for viscosity. The total number of
parameters defining the model is therefore 5M + 1, and the corre-
sponding model vector m is defined as:

m = [ E, x0
i , y0

i , z0
i , Ri , T c

i , ..., x0
M , y0

M , z0
M , RM , T c

M ].

(5)

2.2 The forward problem

The forward problem involves three main steps: (1) regional flow
modelling in 3-D Cartesian coordinates, (2) modelling texture evo-
lution and computation of the full elastic tensor and (3) computation
of seismic surface wave dispersion curves. We enhance the com-
putational efficiency in Step 2 by using a surrogate model based
on an artificial neural network (ANN) to compute the deformation-
induced anisotropy.

2.2.1 Flow model

For our instantaneous flow models, we consider the buoyancy-driven
convection of a highly viscous, Newtonian and incompressible fluid
in a 3-D Cartesian coordinate system. The flow is subjected to free-
slip boundary conditions. The system of equations describing the

Table 1. Dimensional parameters that define the Rayleigh number.

Symbol Parameter Value

η0 Viscosity 1021 Pa·s
α Thermal expansion 2 × 10−5 K−1

g Gravity 9.81 m s−2

Ls Layer thickness 400 km
T0 Temperature scale 1900 K
k Thermal diffusivity 10−6 m2 s−1

ρ0 Density 3800 kg m−3

Ra Rayleigh number 1.05 × 106

flow is given by:

∇ · u = 0, (6)

and

− ∇ P + ∇ · [η(∇u + ∇uT )] + ρ g êg = 0, (7)

where u is the flow velocity, P is the dynamic pressure and êg is
a unit vector pointing towards the direction of gravity. We assume
density ρ to be a function of temperature T using a linear equa-
tion of state controlled by a thermal expansion coefficient α, where
ρ(T ) = ρ0 − ρ0 α(T − T0). The Rayleigh number, a dimensionless
quantity that relates to the level of free convection, is chosen such
that it is representative of the upper mantle (Ra = 1.05 × 106). The
dimensional values of the governing parameters are listed in Table 1.
The Stokes equations are discretized using a finite-volume approach
(e.g. Patankar 1980; Albers 2000), and are solved using the cou-
pled iterative geometric multigrid method using V-cycles (Brandt
1982; Gerya 2010), yielding linear convergence with the number
of unknowns. The complete code is parallelized with OpenMP. The
accuracy of the numerical solution has been benchmarked against
numerical and analytical solutions (Samuel 2012, 2018).
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Although the code accommodates sharp viscosity contrasts, the
latter tend to reduce the speed of convergence. Sharp viscosity
contrasts are avoided in this study since smooth thermal structures
are considered in our prior distribution. The velocity gradients are
obtained by second-order finite differences of the computed velocity
field.

2.2.2 Modelling intrinsic anisotropy

Upper-mantle minerals develop CPO due to progressive shearing
along a flow path. We initially model CPO evolution by employing
D-Rex, a kinematic model of strain-induced crystal lattice pre-
ferred orientation of olivine and enstatite aggregates developed by
Kaminski et al. (2004). The crystal aggregates respond to an im-
posed macroscopic deformation by two mechanisms: (1) dislocation
creep which induces re-orientation of each crystallographic axis
and (2) dynamic recrystallization, which allows for the evolution
of crystallographic volume fractions by grain nucleation and grain
boundary migration. In this study, we only consider pure olivine of
type-A fabric corresponding to dry upper-mantle conditions. The
raw output of D-Rex is a set of crystallographic orientations and
volume fractions for a given aggregate. Finally, its effective elastic
properties can be estimated with an averaging scheme such as the
Voigt average (Mainprice 1990). In Voigt notation, the elastic tensor
can be represented as a 6 × 6 matrix with 21 independent elastic
coefficients.

D-Rex does not account for pressure and temperature dependence
of the single crystal elastic parameters. We model the temperature
and pressure dependence of the isotropic seismic wave speeds (Vp

and Vs) using Perple X, a numerical tool that solves the Gibbs free
energy minimization problem (Connolly 2005, 2009). We use the
thermodynamic model from Stixrude & Lithgow-Bertelloni (2011).
We assume olivine mantle composition for isotropic seismic wave
speed calculations. Meanwhile, the elastic tensor given by D-Rex is
at a reference temperature and pressure. It can be decomposed into
an isotropic and anisotropic part Siso, and δS(T0, P0), respectively:

S(T0, P0) = Siso(T0, P0) + δS(T0, P0). (8)

We replace the isotropic part of the tensor with the one computed
from Perple X. To account for the pressure and temperature depen-
dence of the anisotropic part, it is scaled by the ratio between the
shear modulus μ(T, P) at the given pressure and temperature, and
the shear modulus at the reference temperature–pressure μ(T0, P0)
(Gallego et al. 2013). Other methods are available, such as the use
of first-order corrections around the elastic tensor at ambient T and
P conditions (Estey & Douglas 1986; Becker et al. 2006). Thus,
the full elastic tensor, whose isotropic part depends on pressure and
temperature is:

S(T, P) = Siso(T, P) + μ(T, P)

μ(T0, P0)
δS(T0, P0). (9)

2.2.3 Fast forward approximation for texture evolution
calculations

Sampling-based techniques such as McMC schemes can be applied
to most geophysical inverse problems provided that the parame-
ter space can be sampled efficiently. In some cases however, the
forward model is computationally expensive, and sampling-based
techniques may not be efficient at approximating a multidimen-
sional probability distribution. Fast approximations of the forward

model, such as ANN are sometimes therefore used. Such approxi-
mations, however, lead to a theoretical error (also called modelling
error). The form of these errors can be estimated and modelled as
a Gaussian probability distribution with its resulting variance be-
ing accounted for in the likelihood function during the inversion
process (Hansen et al. 2014b; Köpke et al. 2018). In our case, the
computational bottleneck is clearly the texture evolution modelling,
which we addressed by using an ANN-based surrogate model to ap-
proximate seismic anisotropy.

In the field of geophysics, these methods have already been used
to approximate the inverse function in a variety of applications in
seismology (e.g. Meier et al. 2007; Käufl et al. 2014; Hansen & Cor-
dua 2017; Hulbert et al. 2019), and in geodynamics (e.g. Shahnas
et al. 2018). Among these studies, some have already applied sur-
rogate models for fast forward approximations in sampling-based
techniques (Hansen & Cordua 2017; Köpke et al. 2018; Conway
et al. 2019; Moghadas et al. 2020).

These networks are composed of highly nonlinear functions that
can be trained to approximate a nonlinear mapping between an
input and an output (Bishop et al. 1995). To approximate such
a function, one needs to train this network given a collection of
training data consisting of a set of input and output pairs. In this
work, we replicate the operator for texture evolution, which we
now denote as gCPO. Flow streamlines with assigned local velocity
gradients are fed into the network as training inputs. The training
output contains the anisotropic part of the elastic tensor δS(T0, P0)
computed from D-Rex. The package scikit-learn in Python is used
to train the network (Pedregosa et al. 2011, see Appendix B for full
details of the method).

Once the network is trained, which we denote as the operator
gnn, we perform a simple numerical test of 3-D deformation due to
a cold spherical temperature anomaly, and applied both operators
to output seismic anisotropy. Fig. 2 shows the percentage of total
anisotropy found by the two methods. We observe comparable levels
of anisotropy. Moreover, the approximation also appears to capture
some important features such as the absence of anisotropy at the
centre, which is ascribed to the larger viscosity of the anomaly in
this region. However, the surrogate model tends to underestimate
the total anisotropy, which may be attributed to the simplicity of
the network architecture, and the number of available training data
used.

2.2.4 Predicting surface wave data

For any geographical location at the surface, we can extract the
1-D velocity profile (e.g., Sij as a function of depth) and compute
dispersion curves for Love and Rayleigh waves. The azimuthal
dependence of surface wave phase velocity can be treated as the
sum of a small anisotropic perturbation around an isotropic phase
velocity model (Smith & Dahlen 1973) giving:

c(T, θ ) = c0(T ) + c1(T ) cos(2θ ) + c2(T ) sin(2θ )

+c3(T ) cos(4θ ) + c4(T ) cos(4θ ), (10)

where T is the period and θ is the azimuthal angle.
In this work, we only invert c0(T ), c1(T ) and c2(T ) for Rayleigh

waves and only c0(T ) for Love waves. It is not common to to invert
other terms, due to low sensitivity or to high levels of noise. For
convenience, we denote isotropic Rayleigh wave phase velocity as
cR(T ) and Love wave phase velocity as cL (T ).

The different terms in eq. (10) can be computed from Sij in a fully
nonlinear fashion by normal mode summation with a Runge–Kutta
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Figure 2. Vertical cross section of the percentages of total anisotropy obtained from: neural networks (left), and D-Rex (right). The total anisotropy is derived
from the norm of the elastic tensor. The slices are oriented along the yz-plane, and taken at the centre of the x-axis (i.e. x = 200 km).

Table 2. True model parameters defining
the synthetic temperature field.

Model
parameter

Assigned
value

x0 200 km
y0 200 km
z0 200 km
R 120 km
Tc 800 K
E 11.0

matrix integration (Takeuchi & Saito 1972). We refer the reader to
Montagner & Nataf (1986) and Bodin et al. (2016) for details. The
seismic forward model is computed using a 1-D earth assumption
beneath each geographical location. We acknowledge that surface
waves velocities depend on 3-D heterogeneities, and particularly
the fact that surface wave computations exhibit nonlinearities due
to mode-coupling and finite-frequency effects (e.g. Sieminski et al.
2007; Ekström 2011). However, these approximations can be treated
as theoretical errors and can be accounted for in the Bayesian in-
version procedure.

2.3 Bayesian sampling scheme

We formulate the problem in a fully nonlinear Bayesian framework
(Box & Tiao 2011; Smith 1991; Mosegaard & Tarantola 1995),
where the predicted surface wave dispersion curves estimated for a
large ensemble of models (3-D temperature fields) are compared to
observed data. The solution of the inverse problem is the posterior
distribution p(m|d), the probability model of parameters m given
the data d. According to Bayes’ theorem, we have:

p(m|d) ∝ p(m) p(d|m). (11)

The prior distribution p(m) describes our predetermined knowl-
edge on m (i.e. the position and the amplitude of thermal anomalies,
as well as the activation energy). The likelihood function p(d|m)
describes the probability of observing the data given our current
knowledge of the model parameters.

Since our forward problem is highly nonlinear, the posterior dis-
tribution is sampled using an McMC algorithm. It involves direct
sampling of the parameter space by random iterative search, where
the distribution of the sampled models asymptotically converges
towards the posterior distribution.

2.3.1 The likelihood function

The likelihood function p(d|m) quantifies how well the model pa-
rameters explain the observed data (i.e. the ensemble of local dis-
persion curves located at the surface). Supposing that each data
type (i.e. cR and cL for isotropic Rayleigh and Love wave disper-
sion curves, respectively; c1 and c2 for Rayleigh wave anisotropy)
is measured independently, the likelihood function gives:

p(d|m) = p(cR|m) p(cL |m) p(c1|m) p(c2|m). (12)

For all dispersion curves, we assume that the errors are uncorre-
lated and follow Gaussian distributions with zero mean, and vari-
ances σ 2

cR
, σ 2

cL
, σ 2

c1
and σ 2

c2
. For isotropic Rayleigh and isotropic

Love waves cR and cL , respectively, we can express the likelihood
function as a Gaussian distribution:

p(cR,L |m) = 1

(2πσ 2
cR,L

)
N
2

exp

[−|| cobs
R,L − cR,L (m) ||2

2σ 2
cR,L

]
. (13)

Here, the likelihood function corresponds to a single dispersion
measurement where N is the number of discrete periods. The like-
lihood functions of the 2θ terms, c1 and c2, can be written in the
same manner as eq. (13).

2.3.2 A maximum-likelihood estimate of data errors

In general, it is difficult to estimate σcR,L due to the lack of knowl-
edge on the error distribution. In particular, approximating an elastic
tensor with a neural network may introduce errors that are difficult
to quantify.

In this work, we use a maximum-likelihood estimate (MLE) of the
noise parameters σcR,L and σc1,2 following the work of Dettmer et al.
(2007). This is performed by maximizing the likelihood function
over the data standard deviation. The strength of this technique is
that it is not necessary to estimate each contribution to the noise
parameters individually. Maximizing eq. (13) over σcR,L yields:

σcR,L =
[

1

N

N∑
i=1

(cobs
R,L − cR,L (m))2

]1/2

. (14)

Substituting eq. (14) onto eq. (13), and taking the log likelihood
we obtain:

ln[p(cR,L |m)] = − N

2
ln

[ N∑
i=1

(cobs
R,L − cR,L (m))2

]
. (15)

The log-likelihood functions of c1 and c2 can be defined using the
same procedure. This method has two advantages: (1) the absolute
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Figure 3. (a) Cross-sectional view in the yz-plane of the 3-D temperature field. The slice is taken at the centre of the x-axis. (b) 3-D flow velocity due to the
sinking anomaly. Largest flow magnitudes correspond to the cold anomaly.

Figure 4. Phase velocity maps resulting from one sinking anomaly at 100 s period. (a) Rayleigh wave phase velocity (km s−1). (b) Azimuthal anisotropy in
Rayleigh waves (km s−1). The solid black lines correspond to the direction of the fast propagation axis. Surface wave maps always lie along the xy-lateral plane.

value of errors need not be defined and (2) in the case of joint
inversion, we do not have to define the relative weights between
each data type. Finally, the full log-likelihood function gives:

ln[p(d|m)] = ln[p(cR |m)] + ln[p(cL |m)] + ln[p(c1|m)]

+ ln[p(c2|m)]. (16)

2.3.3 The prior distribution

In Bayesian inference, one expresses the a priori information in
terms of a probability distribution p(m). In geophysical inverse
problems, model parameters are typically given a uniform prior
distribution with given upper and lower bounds inferred from prior

knowledge (Mosegaard & Sambridge 2002). Adopting the same
formulation, the prior can be written as:

p(mi ) =
{

0 mi > mmax, mi < mmin
1


m mmin ≤ mi ≤ mmax ,
(17)

where mmax and mmin are the prior bounds for the model. Assuming
that the model parameters in our inversion are prior independent,
we can express the prior fully as:

p(m) = p(E)
M∏

i=1

[
p(xi

0) p(yi
0) p(zi

0) p(Ri ) p(T i
c )

]
, (18)

where p(E) is the prior distribution for the activation energy, and
M is the total number of spherical temperature anomalies. For an
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2084 J.K. Magali et al.

Figure 5. Synthetic surface wave dispersion curves from 10 to 200 s at a given location: (a) Rayleigh wave phase velocity, (b) Love wave phase velocity, (c)
Rayleigh anisotropy c1 and (d) Rayleigh anisotropy c2. Scatter plot: observed dispersion curve with added noise. Line plot: observed dispersion curve without
noise.

ith temperature anomaly, p(xi
0), p(yi

0) and p(zi
0) are the prior dis-

tributions for position; p(Ri) and p(T i
c ) are the prior distributions

for the size and temperature, respectively. We choose wide uniform
prior distributions. For the prior bounds, we select: (1) the length
of the spatial domain (0–400 km) for the positions x0, y0 and z0,
(2) 40–240 km for R, (3) 500–1200 K for Tc and (3) 6–12 for
E. Choosing wide bounds ensures that the model parameters are
loosely constrained from the prior, and more emphasis is given to
the information provided by the data.

2.3.4 A random walk to sample the posterior distribution

We use an McMC algorithm to sample the posterior distribution. It
begins by randomly selecting an initial temperature model followed
by the evaluation of the initial log likelihood. At each iteration, the
current model is perturbed to propose a new model. The proposal
proceeds sequentially as follows:

(i) Assign local perturbation: one sphere is randomly picked out
of M number of spheres. Once a sphere is picked, we randomly select
one of four possible ways to perturb the sphere are as follows:

(1) perturb horizontal position; i.e. x0 and y0 together;
(2) perturb vertical position z0;
(3) perturb the size of the sphere R;
(4) perturb the temperature of the sphere Tc.

Each perturbation is drawn from a univariate normal distribution
centred at the current value of the model parameter.

(ii) Perturb the activation energy: we then apply eq. (1) to de-
fine the 3-D temperature field. Alongside, we perturb the acti-
vation energy E by using a normal distribution centred at the
current value of E, and apply eq. (4) to define the 3-D viscos-
ity field. These two scalar fields are used as inputs in the flow
calculation.

If the proposed model lies within the prior bounds following
eq. (18), we evaluate the forward problem completely. The com-
puted dispersion curves from the latter are compared with the
observed data using eq. (15). The resulting likelihood is then
compared to the likelihood of the current model, and the pro-
posed model is either accepted or rejected according to an ac-
ceptance probability (Metropolis et al. 1953; Hastings 1970). If
the proposed model is accepted, it becomes the current model
for the next iteration. After a sufficient number of iterations,
the ensemble of accepted models converges towards the posterior
distribution.
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Figure 6. Posterior probability distribution in the 6-D parameter space inferred from the isotropic inversion p(m|cR, cL ). Diagonal panels show 1-D marginal
distributions for each model parameter. Off-diagonal panels show 2-D marginal distributions and depict possible trade-offs between pairs of model parameters.
The red vertical lines and the black markers indicate the true model values for the diagonal and the off-diagonal panels, respectively. The intensity pertains to
the level of posterior probability (i.e. high intensity means high probability, and thus low misfit).

3 A P P L I C AT I O N W I T H 3 - D S Y N T H E T I C
T E M P E R AT U R E F I E L D S

3.1 Inversion for one spherical anomaly

We demonstrate our proof of concept by setting up a simple temper-
ature field consisting of one spherical negative temperature anomaly
(i.e. negatively buoyant) placed at the middle of a 400 km × 400 km
× 400 km box. The setup is a very simple toy example inspired by
the work of Baumann et al. (2014) where they applied Bayesian
inversion to constrain rheology from gravity anomalies and surface
velocities.

Table 2 shows the complete list of true model parameters, and
Fig. 3 displays a cross-sectional view of the temperature field, and
its associated instantaneous velocity field.

We simulate the full forward model given the true model param-
eters to generate synthetic dispersion curves at periods between 10
and 200 s. Fig. 4 shows a map of the computed phase velocity and
azimuthal anisotropy for Rayleigh waves at 100 s. In Fig. 4(a), the
phase velocity is maximum at the middle of the region, due to the
presence of the cold anomaly underneath.

Fig. 4(b) shows a map of azimuthal anisotropy in Rayleigh waves.
Here, anisotropy is at its minimum at the centre, above where the
cold more viscous anomaly is located. As a result of this higher rigid-
ity, local velocity gradients are lower, resulting in smaller amounts
of deformation and hence lower anisotropy. Another feature is the
presence of strong anisotropy at certain locations. These regions are
points where shear deformation is at its maximum due to the con-
vergence of flow lines. On top of the level of azimuthal anisotropy
is the orientation of its fast axis. Since we expect the flow direction
to converge towards the centre when observed from the top, the fast
axis may be interpreted as the horizontal projection of the flow.

The complete data constitute a regular array of 8 × 8 locations
containing cR , cL , c1 and c2 spanning the entire surface. We empha-
size that the data generated comes from an elastic tensor computed
with D-Rex whereas during inversion, the estimated data are ob-
tained from an elastic tensor approximated by neural networks.

Finally, we added random uncorrelated noise onto cR , cL , c1

and c2. Standard deviations for Love and Rayleigh are set at σ R =
0.05 km s−1 and σ L = 0.05 km s−1, whereas σc1 = 0.01 km s−1 and
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Figure 7. Posterior probability distribution in the 6-D parameter space inferred from the anisotropic inversion p(m|cR, cL , c1, c2).

σc2 = 0.01 km s−1. Fig. 5 illustrates the resulting dispersion curves
at one given location with and without noise.

The inversion consists of 20 independent Markov chains each
containing 40 000 samples initiated at a random temperature struc-
ture. We demonstrate two cases. First is an isotropic inversion,
where no anisotropy is involved in the forward model. In this case,
it is not necessary to compute instantaneous flow and anisotropy, as
isotropic seismic velocities Vp and Vs can be directly scaled with
temperature. The inverted data are the isotropic phase velocities cR

and cL . Secondly, we present an anisotropic inversion (geodynamic
tomography). Both isotropic and anisotropic inversions are given the
same wide uniform priors allowing for more mobility when search-
ing the parameter space. We initiate geodynamic tomography by
first employing an isotropic inversion. Once the chains have con-
verged in this phase, we then start the actual anisotropic inversion
procedure.

The diagonal panels of Figs 6 and 7 illustrate the ensemble of
models recovered from isotropic inversion and anisotropic inver-
sion. The off-diagonal panels depict 2-D marginal distributions as
2-D histograms to explore possible trade-offs. The black circles
indicate the values of the true model parameters. Compared to
isotropic inversion, the width of the posterior distribution inferred
from geodynamic tomography has been reduced considerably. More

information is thus added by introducing geodynamic constraints
in the tomographic problem.

As expected, the posterior distribution on the activation energy
E in the isotropic case is flat, as isotropic velocities are only sen-
sitive to temperature and not to viscosity. Anisotropic inversion,
on the other hand, constrains E as shown in Fig. 7. The distri-
bution, however, appears to be distant from the correct value of
E. Such a behaviour is also evident in its 2-D marginal poste-
rior where the true value is outside the inferred distribution. This
clearly exhibits a bias which is deduced from the imperfections of
the neural network when computing anisotropy. This effect is elim-
inated when one uses the correct forward operator for modelling
anisotropy. Another distinct feature in these figures is the negative
trade-off between Tc and R, which may be attributed to the sym-
metry of the problem considered. An increase in temperature of
the anomaly compensates for an increase in its radius. Such trade-
offs may be reduced in the case where the true model exhibits less
symmetry.

We also plot the mean temperature models from both inversions
(see Fig. 8). The figures are obtained by averaging the temperature
values at each point. By visual inspection, anisotropic inversion
better resolves the 3-D thermal structure. This is further supported
by the standard deviation computed around the mean temperature
at a given pixel as shown in Figs 8(c) and (d). In both cases, the
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Figure 8. Upper panel: cross-sectional view in the yz-plane of the mean temperature field recovered from (a) isotropic inversion, and (b) anisotropic inversion.
Lower panel: standard deviations around the mean temperature fields from (c) isotropic inversion and (d) anisotropic inversion. These cross-sections are taken
at the centre of the x-axis.

standard deviations is higher at the centre of the box, where the
spherical anomaly is located. This is due to the variations in the
location and amplitude of the sphere in the ensemble of sampled
models. In the anisotropic case, the vertical position of the sphere
is less constrained than its horizontal position, as can be seen in the
2-D histograms. The ensemble of sampled spheres therefore share
the same horizontal position but have a variable vertical position,
which explains the shape of the standard deviation map in Fig. 8(c).
The posterior uncertainties are also relatively small compared to the
recovered temperature field, implying that sufficient information can
be retrieved from the noisy dispersion curves.

Fig. 9(a) shows the 1-D depth marginal posterior probability
profiles (see the captions for further details) for temperature, and
Fig. 9(b) for radial anisotropy ξ , peak-to-peak azimuthal anisotropy,
and the trend of the fast axis of azimuthal anisotropy at a given lo-
cation. Both methods capture the 1-D structures for temperature.
However, by adding geodynamic constraints (i.e. anisotropic inver-
sion), we observe that the temperature is much better resolved. Ad-
ditionally, we successfully recover radial anisotropy and azimuthal
anisotropy without having to explicitly invert for the elastic tensor
(see Fig. 9b). Here, due to the positioning of the chosen depth profile

for temperature (passing nearly through the centre of the anomaly),
the azimuthal anisotropy appears to be non-existent at this location.
For that reason, we consider another depth profile (x = 325 km and y
= 225 km) where azimuthal anisotropy is notable (Fig. 9b, middle).

This method also allows us to resolve 3-D structures of seis-
mic properties. In fact, any implicitly computed variable can be
restructured in 3-D. Figs 10 and 11 show the resulting structures
computed from the mean temperature model placed side by side
with that of the true model. It appears that the value of anisotropy
computed with the neural network is underestimated compared to
that of D-Rex when using the same input model. This explains why
the activation energy E resulting from the inversion is lower com-
pared to the true value: to produce larger anisotropy and replicate
the same output as obtained from D-Rex, one has to reduce the
value of E. Indeed, reducing the viscosity of the material allows for
a stronger deformation. The resulting percentage of total anisotropy
from both figures are nearly identical. Fig. 10 shows the presence of
positive radial anisotropy at the bottom, indicating horizontal flow.
Due to the imposition of free-slip boundary conditions combined
with zero normal velocities imposed on all surfaces, the flow at the
bottom of the box is oriented nearly horizontally. The negative radial
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Figure 9. Upper panel: probability density plots of temperature with depth. Lower panel: probability density plots of radial anisotropy, peak-to-peak azimuthal
anisotropy and its fast axis with depth. The depth profiles of temperature and radial anisotropy are taken nearly through the centre of the sphere. To show that
azimuthal anisotropy is also well constrained, we took a depth profile at (x = 325 km and y = 225 km), where azimuthal anisotropy is large. Geodynamic
tomography offers the capability to constrain seismic anisotropy. The solid red lines indicate the true structures.
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Figure 10. Cross-sectional view in the yz-plane of the radial anisotropy ξ inferred from (a) true model and (b) mean model. Radial anisotropy is often used as
a proxy to infer flow orientation. A ξ > 1 (positive radial anisotropy) is often interpreted as horizontal flow. A ξ < 1 (negative radial anisotropy) on the other
hand, pertains to vertical flow. A ξ = 1 indicates the absence of radial anisotropy. The cross-sections are taken at the centre of the x-axis.

Figure 11. Cross-sectional view in the yz-plane of the percentage of total anisotropy (i.e. norm of Sij) inferred from (a) true model and (b) mean model. The
absence of anisotropy at the centre corresponds to a region of minimal deformation for the cold and highly viscous anomaly. The cross-sections are taken at
the centre of the x-axis.

anisotropy we observe implies vertical flow (see Fig. 10 caption for
details). This is a result of convection cells forming at the sides of
the anomaly as it sinks. At the top of the anomaly, negative radial
anisotropy also indicates vertical flow due to downwelling. Finally
and as we expect, radial anisotropy at the middle is nearly unity due
to the presence of the more viscous anomaly. The difference in the
structures may be attributed to the following: (1) imperfections of
the forward model used in the inversion; and (2) information loss
related to data sensitivity and data noise.

We tested the convergence of the Markov chain by plotting the
estimates for data errors with MC steps. For further details, refer to
Appendix C.

3.2 Inversion for multiple spherical anomalies

This section covers the inversion for ten spherical temperature
anomalies with different properties (i.e. temperature Tc and radius
R), positioned randomly in 3-D space. Such parametrization scheme

may be essential to represent anomalies with complex shapes (e.g.
subducting slab) using a collection of several spheres with differ-
ent characteristics. The synthetic data ares generated from a true
temperature model consisting of ten spherical anomalies as well.
We compare the true temperature model with the mean temperature
models obtained from isotropic and anisotropic inversions (Fig. 12).
Even with this much more complex structure, we are able to recover
the main features of the temperature field. Also, as in the test of
Section 3, anisotropic inversion better recovers the structure than
isotropic inversion. Posterior uncertainties are represented in Fig. 13
and support this observation. However, some differences with the
exact true structure remain, even using anisotropic inversion. Sur-
face waves are long-period observations and hence, small and sharp
thermal anomalies may not be resolved. Other contributing factors
involve the very nature of the tomographic problem itself as enu-
merated earlier (e.g. data and modelling errors).

In Fig. 14, we choose one depth profile to show the 1-D marginal
posterior probability densities for temperature, radial anisotropy
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Figure 12. Isovolumetric view of the temperature fields. Left: true temperature field. Middle: mean temperature field from isotropic inversion. Right: mean
temperature field from anisotropic inversion.

and azimuthal anisotropy. The dashed black lines represent the
true model. Based on the recovered profiles, anisotropic inver-
sion resolves temperature better than the isotropic case again due
to the complementing information brought by geodynamic con-
straints. Radial and azimuthal anisotropy still appears to be tightly
constrained; however with some notable deviations from the true
model.

4 D I S C U S S I O N

4.1 Additional comments on the method

Model parametrization: the goal of this study was to test the method
in the most simple cases, and we acknowledge that our parametriza-
tion of the temperature field in terms of a sum of spherical anoma-
lies is simplistic. However, such parametrization can be applied
to invert for more complex geometries such as a detached slab, a
homogeneous plume, or upper-mantle structures beneath cratons.
A step further will be to test more realistic approaches. One pos-
sible alternative parametrization is the use of initial temperature
models inferred from isotropic tomography, and an iterative update
of the structure based on the anisotropy signature at the surface
(i.e. anisotropic surface wave dispersion curves). This, however,

may only be feasible at the global scale due to boundary effects. It
should still be possible to apply this technique at the regional scale,
but the structure of interest should be far from the borders of the
region considered in order to avoid these boundary effects. Another
simple yet effective parametrization would be to invert for constant
parameters (e.g. density and viscosity) within geometrical blocks
defined from a priori information regarding the tectonics of the
region (Baumann et al. 2014). In general, the quality of the results
will depend on the choice of the model parameters, and the prior
information available for the region of interest.

4.1.1 Neural network-based approach to texture evolution

The computational demands of direct sampling techniques such as
McMC is high, as it requires evaluating the forward model a large
number of times. Among all routines involved in the forward model,
calculating CPO anisotropy proved to be the most costly. We there-
fore devised a surrogate model that computes texture evolution via a
neural network, thus reducing the computation time by three orders
of magnitude compared to D-Rex (see Appendix B for absolute
computation times of both methods).

However, the surrogate model introduces theoretical errors,
which can be reduced by using a network architecture or a training
procedure more adapted to the problem at hand. More accurate pre-
dictions could be obtained by using a larger training data set, but
this has a higher initial computational cost. We observed that the
surrogate model does not generalize well. It has been trained for
a specific type of flow (convective flows due to spherical tempera-
ture anomalies), and thus provides correct predictions only for flow
models of the same nature. However, only these specific flow types
are tested in the McMC scheme, and it is therefore not necessary
here to have a general neural network that applies to any type of
flows.
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Figure 13. Isovolumetric view of the standard deviations around the mean temperature models. Left: standard deviation for the isotropic inversion. Right:
standard deviation for the anisotropic inversion.

The success of our synthetic tests is in some ways a proof of the
quality of the neural network. The inverted anisotropic seismic data
sets were calculated using the exact D-Rex model. Therefore, any
errors introduced by the network would manifest themselves by pro-
ducing a poor fit to the observed data. These theoretical errors have
been quantified and accounted for in the Bayesian inversion (see
Section 2.3.2). If we want to treat another problem, such as a sink-
ing slab with complex geometry, one needs to re-train the surrogate
model for the specific parametrization and prior distribution used.
A possible future avenue of geodynamic tomography that is inde-
pendent of this specific step would be to directly parametrize mantle
flow, and build a family of expected convection patterns (together
with their predicted anisotropy) to investigate flow patterns under-
neath mid-ocean ridges and subduction zones. Such parametrization
can be easily extended to the global scale by treating these patterns
in terms of source and sink models derived from prescribed plate
velocities (Bercovici 1995).

The Bayesian formulation is a practical tool to quantify and ac-
count for the theoretical errors introduced by the parametrization
choice and the surrogate model. Statistics of these errors can be
studied by comparing responses obtained with the true forward and

the surrogate models. If the distribution of residuals is approxi-
mated as a normal distribution, theoretical errors can be accounted
for in the likelihood function (Hansen et al. 2014b). However, the
size of the residual vector may not be large enough to properly
represent the statistics of errors. Here instead, we used an MLE
to implicitly account for these theoretical errors (Dettmer et al.
2007).

4.1.2 The data

In this work, we assume that the measurement errors in the
data are uncorrelated. In reality however, surface wave disper-
sion measurements are inherently smooth, and correlated both in
space and frequency. A simple improvement when modelling noise
can be made by introducing a function that varies with period
while still maintaining the assumption of uncorrelated errors, as
in the work of Ravenna & Lebedev (2017). One may proceed
a step further by constructing a covariance matrix of data noise,
more importantly when working on highly spatially correlated data
sets.
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Figure 14. Upper panel: comparison between isotropic and anisotropic inversion. Probability density plots of temperature with depth. The profiles are taken
nearly through the centre of the sphere. Lower panel: anisotropic inversion: probability density plots of radial anisotropy, peak-to-peak azimuthal anisotropy
and its fast axis with depth. All profiles correspond to the temperature profile above. The solid red lines indicate the true structures.

It is also worth mentioning that the method is not limited to the
use of a single data type (i.e. surface wave measurements) to ef-
fectively constrain the patterns of upper-mantle deformation. This
calls for the inclusion of other data types such as gravity anomalies,

surface topography and/or surface velocities in a joint or separate
approach. Such strategies have already been successfully imple-
mented to invert for the 3-D density structure of the mantle (Ricard
& Wuming 1991).
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4.2 Physical assumptions

The trade-off between physical complexity and computational cost
is evident in every geophysical problem considered. In this work,
we chose to decrease the computational cost to massively explore
the parameter space (using an inverse problem formulation) but at
the price of using simplified physical assumptions.

4.2.1 Nature of the flow model

We assumed that the flow is in steady state in order to trace the flow
streamlines, which is a pre-requisite to compute CPO anisotropy.
However, this may not be the case in regions where flow appears to
be time-dependent such as migrating trenches and mid-ocean ridges
(Heuret & Lallemand 2005; Masalu 2007). A time-dependent flow
could be implemented by accounting for the evolution of the sur-
face tectonics (Ricard et al. 1993) and the retrodiction of internal
heterogeneities (Bunge et al. 2003; Steinberger et al. 2004). Never-
theless, steady-state assumption is still valid in some places such as
intra-oceanic regions where flow has been observed to be in steady
state over the last 40 Myr (Becker et al. 2003, 2006).

Another limiting factor is the imposition of arbitrary boundary
conditions on the sides of the model domain which strongly impact
the nature of the flow. Note that the boundary conditions could be
treated as an unknown parameter to be inverted for. An obvious
way to address this issue is also to work at the global scale. In this
case, a fast and reliable method to compute geodynamic flow in a
spherical Earth is indispensable. To cite an example, semi-analytical
circulation models such as that of Hager & O’Connell (1981) can
be computed from simple density distributions assuming no lateral
variations in viscosity. However, the latter may not render a rea-
sonable assumption within the context of geodynamic tomography
since lateral viscosity variations affect the flow significantly, and
thus may also strongly influence the resulting anisotropy.

In the context of inverse modelling, the inclusion of lateral viscos-
ity variations is indeed computationally more challenging. However,
it remains attainable by performing these calculations in a coarser
grid to obtain the general pattern of the flow. This step can be fol-
lowed by interpolating the coarse grid solution on a finer grid prior
to the computation of CPO. Using iterative approaches to flow cal-
culations, another practical approach is to degrade the accuracy of
the solution should convergence be an impediment. When cast in
a Bayesian formulation, the modelling error due the approximation
of the flow can be accounted for in the inversion process, similar to
how the errors due to the ANN were dealt with (see Section 2.3.2).
Consequently, texture evolution modelling at the global scale could
reasonably be achieved from flows of this nature. The availability
of global surface wave maps on the other end should thus make
geodynamic tomography feasible at the global scale.

4.2.2 Composition of the mantle

Here, we assumed that the composition of the mantle to be olivine,
with an A-type crystal fabric, corresponding to dry upper-mantle
conditions. In the real Earth, seismic wave velocities not only de-
pend on temperature and pressure variations, but also on the com-
positional structure of the minerals. Recently, self-consistent ther-
modynamic models have already been incorporated in seismic in-
version schemes to interpret tomographic images in terms of mantle
composition (Ricard et al. 2005; Cammarano et al. 2009). While
the bulk properties (i.e. seismic wave speeds) obtained from Gibbs
minimization are isotropic, to our knowledge, deformation-induced

anisotropy has not yet been formulated cohesively with thermody-
namic models, let alone casting it in an inverse problem.

In general, intrinsic anisotropy in the upper mantle results from
complex deformation processes, which depend on a plethora of
physical parameters that may be linked to one another. Unlike con-
ventional tomographic techniques, the elastic structure recovered
in our scheme directly depends on the assumptions made on these
upper-mantle processes. As an example, one would expect that the
inclusion of enstatite in our models would dilute the overall ampli-
tude of anisotropy in surface waves. In addition, inversion results
depend on control parameters for CPO modelling such as the choice
of the slip systems of olivine. For the moment, the value of these
parameters have been chosen ad hoc, using current available knowl-
edge mostly originating from laboratory experiments, and thus can
be viewed as prior (regularization). Ultimately, the flexibility of
Bayesian inference would allows us to treat these parameters as
unknown parameters to be inverted for in geodynamic tomography.

5 C O N C LU S I O N

We have laid the groundwork for geodynamic tomography, a novel
approach that involves constraints from geodynamic modelling to
invert seismic surface waves. Imposing these geodynamic con-
straints reduces the number of model parameters to a single scalar
field (i.e. temperature) and one scalar variable (i.e. activation energy
for viscosity). The inverse problem is cast using Bayesian inference
where we directly sample the model space using McMC algorithm.
Here, instantaneous flow, deformation history, and finally seismic
anisotropy are computed in our forward problem. The model space
is reduced further by parametrizing the temperature field as a sum
of spherical temperature anomalies with variable position, size and
temperature.

We tested geodynamic tomography in simple cases, where
we successfully recovered synthetic 3-D temperature fields, by
jointly inverting fundamental mode anisotropic Rayleigh wave and
isotropic Love wave phase velocities. In the process, we are also able
to constrain the complete deformation pattern, to provide a quanti-
tative interpretation of seismic anisotropy in the mantle. Given the
Bayesian formulation, one may express the ensemble of temper-
ature models, and any implicitly computed variables (such as de-
formation or anisotropy) as posterior probability distributions, and
quantify their associated uncertainties. Geodynamic tomography is
therefore a potentially powerful technique to study the structure of
the upper mantle, and interpret seismic observations in terms of
mantle deformation patterns.
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A P P E N D I X A : PA R A M E T R I Z I N G
T E M P E R AT U R E W I T H S P H E R I C A L
A N O M A L I E S

For a given anomaly, we define a basis function corresponding to
that anomaly using eq. (3). The negative sign indicates that the
anomaly is colder than the background temperature if Tc is positive
(a negatively buoyant anomaly). Should Tc be negative, then the
anomaly adds up with the background temperature resulting to a
positively buoyant anomaly. The function is designed such that:
(1) when r − r0

Ls
> R

Ls
and tanh returns a value of nearly one,

then the temperature is just the background temperature. (2) When
r − r0

Ls
= R

Ls
, then the temperature at just half of the radius of the

anomaly is equal to Tbackground − Tc
2 . (3) Finally, when r − r0

Ls
< R

Ls

and tanh returns a value of minus one, this corresponds to the
temperature at the centre of the anomaly Tbackground − Tc.

Here, β controls the sharpness of the temperature gradient and
is held at a fixed value. Choosing a very large value for β results
in a sharp temperature gradient (see Fig. A1). In addition, opting
for a smooth function such as hyperbolic tangent avoids very sharp
viscosity contrasts when computing for the flow. The advantage of
building a basis set is to reduce the number of model parameters. In
conventional inversion schemes of scalar fields, we usually invert
for a scalar at a given grid point. Hence, the number of model
parameters depends on the grid size. In a cube, this would result to
N3 model parameters to constrain, where N3 is the size of the 3-D
block. In our case, this gives us 5M parameters to be inverted, where
M is the number of spherical anomalies. Finally, we define the 3-D
scalar temperature field as the sum of the background temperature
and the spherical anomalies as shown in eq. (1).

A P P E N D I X B : A N E U R A L
N E T W O R K - B A S E D A P P ROX I M AT I O N T O
D - R E X

In this work, we use an ANN as a surrogate model gnn, to approxi-
mate the forward operator for texture evolution gCPO. We consider
a simple architecture of feedforward neural network called a multi-
layer perceptron (MLP) with two hidden layers similar to the work
of LeCun et al. (2015) defined by:

gnn(Xl ) = Ŷl = a1

( Nh1∑
k=1

w3
kla2

( Nh2∑
j=1

w2
jka3

( Nx∑
i=1

w1
i j Xi

)))
. (B1)

The output Ŷl of the MLP is an estimate of the 21 independent
coefficients of the stiffness tensor where l is the index pertaining
to one element in the tensor. Nh1 and Nh2 are the sizes of the two
hidden layers considered, and Nx is the size of the input vector. We
design the network such that the input X contains the deformation
history along a flow streamline. The streamline is divided into 200

time steps. Each step contains one Lij matrix and one corresponding
dt. Thus, each step has 10 independent components as inputs. The
number of inputs in the neural network first layer is Nx = 2000
(see eq. B1). The functions a1, a2 and a3 are known as activation
functions whose purpose are to introduce nonlinearity to the output
of one neuron and to constrain its output to a desired range and
distribution. Here, we choose them as default rectified linear unit
functions to allow faster convergence (Pedregosa et al. 2011). Lastly,
the w’s refer to the weights which reflect the significance of a given
neuron.

To build a suitable surrogate model to D-Rex, the weights w1, w2

and w3 have to be adjusted to the proper value. This is performed
by minimizing a loss function which is the difference between the
training outputs gCPO(X) and the output of the network itself gnn(X)
using a stochastic gradient descent algorithm (Rumelhart et al.
1985). Formally, the loss function is a squared L2 norm and takes
the form:

Loss(Y, Ŷ , w) = 1

2
‖Y − Ŷ‖2

2 + λ

2
‖w‖2

2 . (B2)

The second term constrains the weights to avoid data overfitting,
where α is a regularization parameter that quantifies the degree of
penalization. The weights are updated iteratively by subtracting its
current value from the gradient of the loss function with respect to
the weights:

wi+1 = wi − ε∇lossi , (B3)

where ε is the learning rate which controls the step size for updating
the weights, and i is the iteration step. The training achieves conver-
gence when the tolerance value tol for the loss function is reached.
However, the algorithm may also be stopped once the maximum
number of iterations is reached.

The network is trained by considering 30 flow models, each
comprising M spherical anomalies to drive thermal convection.
Each sphere has a random position and size, and can either be
positively or negatively buoyant. This is to ensure that each flow
path we define is unique enough so that the network can learn
a variety of input–output combinations. Here, we acknowledge
that the choice of flow models is not enough to be able to pre-
dict seismic anisotropy in the most general case. However, in this
work, we only attempt to predict anisotropy for a small class of
flow models (convection due to a collection of spherical temper-
ature anomalies). Since only such classes of models are tested,
we can restrict ourselves to this type of model when training the
network.

One training input corresponds to one deformation history along
a streamline whereas one training output corresponds to one stiff-
ness matrix computed with D-Rex. The training set can be repre-
sented as a matrix containing the stiffness coefficients and the input
parameters given by [Yl = 1, 21, Xi=1,N x ]n=1,Ntrain where Ntrain is the
number of training sets. Thus, the training inputs are of the size
[2000, Ntrain] and the training outputs are of the size [21, Ntrain].
In this problem, 163 input–output combinations for each 3-D flow
model are used to train the network. In total, there are M = 1.2288
× 105 training sets for the network to learn from.

We adopt the Python package scikit-learn to train the network
(Pedregosa et al. 2011). Table B1 below summarizes the parameters
used to design and build the network.

The network is tested by considering a 3-D deformation due to
a sinking anomaly that is not part of the training input. Table B2
shows the computation times for computing anisotropy from both
D-Rex and neural networks. The relative speed-up of using neural
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Figure A1. 1-D temperature profiles with depth for different values of R and β. Left: β = 5. Middle: β = 20. Right: β = 50. Here, we consider a spherical
anomaly with Tc = 800 K located at the centre of the 3-D volume. The plots refer to 1-D depth profiles of temperature through the middle of the sphere at
specified values of R and β. The x- and y-axes correspond to temperature and depth, respectively. Based on our parametrization, increasing the value of R
at constant β increases the size of the temperature anomaly. At constant R, the anomalies retain their respective sizes but the temperature gradient becomes
sharper at increasing β. Thus, choosing an appropriate β is important so as to avoid sharp viscosity contrasts (since η depends on T) when computing flow. In
our inversion, we choose to fix β = 20, and invert for R.

Figure A2. 1-D marginal distribution of the difference between gCPO(X) and gnn(X) in terms of the VTI and HTI-projected elastic tensor.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/224/3/2077/6019874 by guest on 01 M

ay 2021



2098 J.K. Magali et al.

Table B1. Neural network parameters.

Ntrain Nx Ny Nh1 Nh2 λ ε tol Max iterations

1.2288 × 105 2000 21 100 50 0.1 1.0 × 10−3 1.0 × 10−4 1000

Table B2. Computation times for each subroutine in the forward model.

Routine D-Rex ANN Flow Dispersion Training

Time (s) 73919.83 21.55 6.6 119.63 603.85

networks is over three orders of magnitude compared to performing
texture evolution calculations with D-Rex. For reference, we also
give the computation times for network training, flow modelling,
as well as for surface wave dispersion curves calculations. Each
routine in the forward problem has been executed in a serial fashion
for the sake of comparison.

The elastic tensor computed from gnn is projected into both a
VTI medium, thus having elastic parameters A, C, F, L and N, and
radial anisotropy strength ξ , φ and η; and an HTI medium, with
parameters Gs, Gc, Bs and Bc. Aside from plotting the percentage of
total anisotropy (as in Section 2.2.3), we compare the results further
with D-Rex by plotting 1-D marginal distributions of the residuals

of each seismic parameter. Each parameter contains a small bias
very close to zero which is attributed to the minimization of the L2

loss function.

A P P E N D I X C : A S I M P L E T E S T F O R
C O N V E RG E N C E

Fig. C1 shows the noise estimate plotted against MC step in the
one sphere case. The standard deviation of data noise is implicitly
computed with MLE (see Section 2.3.2), and is simply given by
the level of data fit. The starting point for each plot is the iteration
at which anisotropic tomography commences. The trends exhibit
well-mixed random walk behaviours indicating that convergence
has been achieved. This level of noise estimated by MLE represents
the combination of observational errors (white noise added to the
data), and theoretical errors (errors of the surrogate model used for
texture evolution).
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Figure C1. Noise estimate with MC step for (a) Rayleigh waves, (b) Love waves, (c) c1 and (d) c2. Each coloured line plot is associated with one independent
Markov chain. Solid green line indicates the standard deviation of random errors added to the data.
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