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Received: 29 January 2021

Accepted: 19 March 2021

Published: 23 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 ALIS International, 4 Rue du Meunier, 95724 Roissy-en-France, France; Mohamed.Ould@alis-intl.com
2 Samovar, Télécom SudParis, Institut Polytechnique de Paris, 9 rue Charles Fourier,

91011 Evry-Courcouronnes CEDEX, France; Sophie.Chabridon@telecom-sudparis.eu (S.C.);
Amel.Bouzeghoub@telecom-sudparis.eu (A.B.)

* Correspondence: Mohamed.Ahmed@alis-intl.com (M.A.); Chantal.Taconet@telecom-sudparis.eu (C.T.)

Abstract: In the logistic chain domain, the traceability of shipments in their entire delivery process
from the shipper to the consignee involves many stakeholders. From the traceability data, contrac-
tual decisions may be taken such as incident detection, validation of the delivery or billing. The
stakeholders require transparency in the whole process. The combination of the Internet of Things
(IoT) and the blockchain paradigms helps in the development of automated and trusted systems.
In this context, ensuring the quality of the IoT data is an absolute requirement for the adoption of
those technologies. In this article, we propose an approach to assess the data quality (DQ) of IoT
data sources using a logistic traceability smart contract developed on top of a blockchain. We select
the quality dimensions relevant to our context, namely accuracy, completeness, consistency and
currentness, with a proposition of their corresponding measurement methods. We also propose a
data quality model specific to the logistic chain domain and a distributed traceability architecture.
The evaluation of the proposal shows the capacity of the proposed method to assess the IoT data
quality and ensure the user agreement on the data qualification rules. The proposed solution opens
new opportunities in the development of automated logistic traceability systems.

Keywords: IoT; data quality; smart contract; traceability; logistic; sensor; blockchain; supply chain

1. Introduction

In the logistic chain domain, multiple stakeholders need to exchange data about
shipments transiting from the shipper to the consignee. The data exchange purpose is to give
visibility to all the stakeholders about the shipments progress in the logistic chain and trace
the path as well as the transport conditions throughout the entire chain.

We refer to the data collected during shipments transit as traceability data, the system
in charge of collecting, saving and sharing those data as traceability system and the whole
process of data collection and processing as the traceability process.

Traditional traceability systems handle traceability data in a central system hosted by
one of the stakeholders, which constitutes a risk on the availability of the traceability data
(single point of failure). The lack of transparency in the qualification process could also
be a source of dispute on the correct application of data handling and qualification rules
agreed by all the traceability process stakeholders.

The advent of blockchain technology and smart contracts help develop new traceabil-
ity systems. Such systems allow stakeholders to achieve the secure and transparent sharing
of traceability data, using the blockchain secured and distributed ledger. In addition, smart
contracts allow stakeholders to share data handling and decision-making rules, in order to
ensure that the same agreed rules are applied by all the stakeholders.

Increasingly, IoT devices are used to automatically collect field data. Those data are
used both for traceability purpose and to take automatic decisions, such as the creation
of shipment incidents, when one or more of the negotiated shipment transport conditions
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are not respected. As a result, the human intervention is limited in the process, as well
as process error probability. To automate the traceability process decision making, new
traceability system architectures have been proposed in the literature combining smart
contracts and IoT (see, e.g., [1–4]).

However, in the existing smart contracts and IoT traceability systems literature, many
of the provided architectures propose to integrate the IoT data directly into the smart
contract (see, e.g., [1–4]). This could lead to unsound decisions taken by the smart contract
based on erroneous data collected and sent directly to the smart contract by the IoT data
sources. To overcome this issue, we propose to introduce an IoT data qualification process
in smart-contracts and IoT-based traceability architectures.

We proposed in [5] to enhance traceability architectures using blockchain, smart
contracts and IoT, combined with a lightweight IoT data qualification process. However,
in this previous work, the proposed qualification process covered only outlier measure
detection, which is only one facet of data quality. Furthermore, we did not compute the
qualification at different levels such as the measure and the sensor level. Moreover, the
IoT data qualification process was centralized at one stakeholder’s site, and there was
no guarantee for the other stakeholders on the correct execution of the agreed IoT data
qualification rules. In addition, the stakeholder in charge of the IoT data qualification
represented a single point of failure of the architecture on the IoT data qualification part.

To overcome the above limitations, the main contributions of this article are threefold:
(i) The literature review of IoT data qualification highlights that the data quality of a system
is assessed by means of several dimensions. Considering the logistic chain properties,
the first contribution is to identify the most relevant IoT data qualification dimensions
and provide measurement methods for each of them. (ii) To help the stakeholders to get
an end-to-end visibility of the data quality and to identify the quality issues causes, the
second contribution aims at measuring the data quality at four levels: IoT data events,
IoT data sources, shipments and IoT data sources-shipments associations. (iii) To ensure
the stakeholders agreement on the traceability data, the data qualification rules, and the
decisions taken based on the data, such as the creation of incidents, the third contribution
consists in integrating the data qualification measurement methods in a traceability smart
contract.

The rest of the article is organized as follows. In Section 2, we present the logistic
domain context and its requirements through an example use case. Section 3 highlights the
main research questions addressed in the paper together with their motivations. Section 4
studies the works related to the IoT data quality and the use of the blockchain to assess
this quality. In Section 5, we present the use of the selected IoT data quality dimensions to
measure the data quality. Section 6 presents the architecture of the proposed traceability
solution. The evaluation of our proposed IoT data quality assessment approach is presented
in Section 7. Finally, we conclude in Section 8 and present some future works.

2. Medical Equipment Cold Chain Use Case

In this section, we present a business-to-business logistic chain emblematic example.
Because of its specific constraints, the medical equipment cold chain is handled by specific
transport means. We chose this use case for two reasons: (1) the requirement for transport
monitoring; and (2) we worked with an ALIS customer specialized in the production of
medical equipment and we were able to discuss with this customer about their traceability
needs for this specific cold chain context.

Some of the equipment, such as perishable medical diagnostic kits used in blood tests,
needs to be transported under strict conditions with a temperature between a minimum
of +2 and a maximum of +8 ◦C. The non-compliance with this temperature interval may
render the medical diagnostic kits unusable. The stakeholders should be notified of any
temperature non-compliance.

At least three traceability stakeholders are involved in the traceability system of this
medical equipment cold chain: a shipper (at the origin of the transport request), a carrier (in
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charge of transport operation) and a consignee (the recipient of the transported equipment).
In our context, we use the term shipment to designate any object entrusted to the carrier by
the shipper, in order to be forwarded to the consignee.

The transport condition data are collected through IoT data sources declared by the
stakeholders and every IoT data source has its own data communication interval. Among
the declared IoT data sources used in our scenario, there is a connected object equipped
with sensors that accompanies the shipments and that is assigned by the shipper.

For visibility and transparency purpose, the stakeholders need to securely share all
the traceability data created manually or collected automatically by the IoT data sources.
The stakeholders need also to be sure that the traceability data processing conforms to the
rules agreed between the stakeholders.

The shipper is responsible for the shipment creation in the traceability system, with all
the data required by the carrier for the good execution of the transport operation, such as
the origin, destination, transport temperature thresholds and IoT data reception interval. In
this scenario, we focus on the management of incidents that could be detected automatically
by the traceability system, based on the data sent by the IoT data sources, such as the
non-compliance with the negotiated transport temperature interval.

The data received from the IoT data sources will be used to automatically create
incidents in the traceability process if necessary. Hence, these data should not be integrated
directly into the system. A data qualification process is required to ensure that the IoT
data quality is good enough to ensure the proper incidents detection. For this purpose, the
stakeholders should have the ability to set the required thresholds for the IoT data quality.
Thus, the data that do not meet the quality thresholds requirements could not be used in
the traceability process.

The data qualification process has many advantages: it not only provides a quality
degree to each shipment related IoT event and a performance measure of its associated data
source but also helps the users to choose the most trustworthy data source and facilitates
the detection of damaged ones in order to repair or replace them.

3. Research Questions and Motivations

Based on the above-mentioned use case, we can highlight six main research questions
addressed in this article and their motivations: (1) How accurate are the data? In other
words, do the data reflect the reality of the shipment transport operation? Measuring data
accuracy avoids the use of unreliable data. (2) Are the data complete? Indeed, the existence
of gaps in the collected data may affect the shipment traceability. (3) Are the data consistent?
The consistency issue arises when the collected data assigned to a shipment comes from
several sources with possibly discrepancies leading to incidents. In this case, an agreement
could be defined to tolerate a minimum deviation between the data, for example, a gap
of 0.5 ◦C in the temperature may be considered as acceptable. (4) Are the data timely
valid? That is, are the data compliant with the receiving window agreed between the
stakeholders? The non-respect of this interval may significantly affect the stakeholder’s
visibility and the required transparency of ongoing transport operations.

Each above question reflects a facet (dimension) of the quality process that this paper
addresses and thus the main contribution of this paper is to propose quality measures
for each dimension identified as relevant in our context namely: accuracy, completeness,
consistency and currentness. These quality dimensions are defined in the next section.

In addition, to the above quality dimensions questions, there is a concern about quality
granularity. (5) How can the system provide different levels of quality: data events, IoT data
sources and per shipment performances? This high precision quality monitoring facilitates
the identification at the right time of the data sources that need to be repaired or removed.

Finally, there is a question concerning transparency. (6) How can the data and the
data quality measurement rules be shared securely among the stakeholders to ensure their
agreement on the correct application of these rules? To address this issue, we propose to im-
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plement the above quality measures into a smart contract, in order to ensure the agreement
of all the stakeholders on the correct application of the proposed quality measures.

4. Related Works

Data quality is not a recent research topic. The first data quality studies concerned
databases. Many data quality aspects have been considered such as the accuracy, con-
sistency and reliability to improve the quality of data inputs into databases and handle
databases incompatibility and time critical delivery data [6].

With the advent of the IoT as new data sources, the existing data quality studied
aspects needed to be extended to the specificities of those new data sources. The data
collected from IoT data sources need to be controlled even more due to the limited capacity
of these sources to ensure the security and the quality of their data. The “Never trust user
input” should evolve to “Never trust things input”, as stated by Karkouch et al. [7].

Moreover, the emergence of blockchain opens new opportunities for systems that
involve multiple stakeholders. The logistic chain domain, which involves multiple stake-
holders, provides relevant use cases for this technology [8], especially for traceability
purpose [9]. The blockchain promotes the development of smart logistics [10], using smart
contracts.

Before providing a literature review, it is important first to define some terms used in
the domain of data quality and their meaning in the logistic context.

4.1. Data Quality Definitions

Data quality dimensions are attributes representing a single aspect of the data quality,
as stated by Richard Y. Wang [11]. In this work, we consider the following data quality
dimensions: accuracy, completeness, consistency and currentness.

The accuracy, as stated by ISO [12], refers to: “the degree to which data has attributes
that correctly represent the true value of the intended attribute of a concept or event in a
specific context of use”. In our context, it is difficult to know if a received measurement
reflects the real shipment situation, especially when the shipment transport operation is
ongoing. However, we can define an accuracy measurement method based on the received
measure and the measure source specifications.

The completeness, according to ISO [12], corresponds to “the degree to which subject
data associated with an entity has values for all expected attributes and related entity
instances in a specific context of use”. In our context, the completeness depicts the fact that
all the expected events have been received by a data source or a shipment according to the
update interval agreed by all the stakeholders.

The consistency, according to ISO [12], refers to “The degree to which data has attributes
that are free from contradiction and are coherent with other data in a specific context of
use”. It is also referred to as concordance in some works [13]. In our context, the consistency
dimension corresponds to the degree of coherence between IoT data events sent by different
IoT data sources and related to the same shipment.

The currentness was defined by ISO [12] as: “The degree to which data has attributes
that are of the right age in a specific context of use”. It is also referred to as timeliness,
currency, freshness, delay or contemporaneous, in some works [13,14]. In our context, an
event is considered of the right age when it is received at the expected time according to
the update interval agreed by the stakeholders and defined in the smart contract.

4.2. Related Works Study Criteria

The combination of the blockchain smart contracts and the IoT helps in the develop-
ment of trusted [15] and automated systems. However, the IoT data quality is a hindrance
to the development and adoption of this new generation of systems.

In this article, we present the works related to the IoT data quality issue according
to three criteria: (C1) the quality dimensions; (C2) the quality levels; and (C3) the use of
blockchain smart contracts for data quality management.
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4.2.1. Quality Dimensions (C1)

The IoT data quality issue has been addressed using data quality dimensions. For this
purpose, the traditional data quality dimensions [11] have been used and adapted to the
IoT context needs [13].

The definition of the IoT quality dimensions and their corresponding calculation
methods facilitates their usage and application in the target IoT based systems. Due to
the lack of works on IoT data using quality dimensions in the logistic chain context, we
selected some representative related works from other domains.

Many of the existing works show the interest of using those quality dimensions for
IoT data quality handling. In each work, the authors selected the dimensions relevant to
their domain and defined the corresponding measurement methods for the selected quality
dimensions.

Li et al. [16] defined and measured the currency, availability and validity metrics in a
pervasive environment (IoT context) and the problem of data expiration (data no longer
usable). It is worth noting that, in the traceability context, the data do not expire. It is
important to get all the data for traceability purpose even though the data received late
will have a poor currentness quality index.

Sicari et al. [17] proposed a quality-aware and secured architecture handling: accuracy,
currentness, completeness and other quality dimensions. A framework for determining the
quality of heterogeneous information sources was proposed by Kuemper et al. [18], using
the dimensions of accuracy and consistency.

To ensure a real-time data allocation and data quality in multiple partitions collection
and storage, Kolomvatsos [19] proposed a real time data pre-processing mechanism, using
Fuzzy Logic and handling the accuracy dimension.

In the domain of Ambient Assisted Living (AAL) systems, Kara et al. [20] proposed
a quality evaluation model. Their approach is based on the definition and execution of
quality metrics and the use of fuzzy logic to evaluate the metrics and decide of the data
quality level. In the same precedent domain, Erazo-Garzon et al. [21] defined, measured
and evaluated the quality of data collected from an intelligent pillbox, using seven data
quality dimensions, among them the accuracy, the completeness, the currentness and the
confidentiality.

All the above works use some of or all our required IoT quality dimensions. How-
ever, their measurements methods do not meet our needs of dimensions definition and
measurement at different levels: data event, data source and shipment.

4.2.2. Quality Levels (C2)

In the logistic chain context, the stakeholders need to be provided with a full quality
visibility at different levels of the manipulated objects. This is our second criterion (C2).
It is helpful for the data quality management and simplifies the investigation in case of
discrepancy between the stakeholders IoT data sources. Some works proposed data quality
models to handle this issue.

A generic data quality metamodel for data stream management was proposed by
Karkouch et al. [22]; in the evaluation of their work, the authors used the accuracy and
completeness dimensions. There is also the work of Fagúndez et al. [23] on a data quality
model to assess sensors data quality in the health domain, using the dimensions of accuracy,
completeness, freshness and consistency.

The above cited models do not meet our context needs. On the one hand, the data
sources in our context are reused and affected by different shipments in different transport
operations. On the other hand, to meet the criterion (C2) in our proposition, we provide
the stakeholders with a full visibility of the data quality at different object levels, using an
adequate quality model.
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4.2.3. Blockchain Smart Contracts for Data Quality Management (C3)

Traceability data need to be shared securely among the stakeholders in order to
ensure their agreement on the data quality and the correct application of the agreed data
calculation methods. This is our third criterion (C3). The following representative works
from the literature propose IoT-blockchain based architectures to handle this issue.

In the domain of crowdsensing platforms, there are many recent works, proposing to
use the blockchain in order to improve the quality of the collected IoT data, such as the
works of Gu et al. [24], Nguyen and Ali [25], Wei et al. [26], Cheng et al. [27], Huang et
al. [28], Zou et al. [29] and Javaid et al. [30]. Their propositions are based essentially on
users’ reviews, reputation and reward mechanisms to incentivize the users to improve the
quality of their provided data. Those mechanisms are not applicable in the logistic chain
context, in which the stakeholders are known and responsible of their provided data.

Casado-Vara [31] proposed an IoT data quality framework based on the use of a
blockchain, in the context of smart homes. The proposed solution is limited to the accuracy
dimension and does not involve multiple stakeholders, each having its own data sources
as is in our context.

In the context of a fish farm, Hang et al. [32] proposed a blockchain based architecture
to ensure agriculture data integrity. Their proposed fish farm architecture includes an
outlier filter, that removes measurements beyond the expected values. This outlier filter is
implemented outside the blockchain, using a Kalman filter algorithm.

Leal et al. [14] proposed a framework for end-to-end traceability and data integrity, in
the domain of pharmaceutical manufacturing. They addressed the problem of temporal and
multi-source variability using probability distribution methods. In our logistic traceability
context, we do not need to estimate sensor measurement data, so we should just report
these data as they are sent by sensors. If some data are missed or out of the expected ranges,
this results in a quality incident on which the involved stakeholders need to agree.

In our proposition, we implement the data quality measurement methods in a blockchain
smart contract in order to ensure a secured sharing and agreement of all the stakeholders
on the correct application of the measurement method and the resulting data quality.

4.3. Summary of the Related Works Study

To enhance and secure the IoT data quality in the logistic chain, we propose in this
article a data quality assessment architecture using accuracy, completeness, consistency and
currentness dimensions (C1) in a blockchain smart contract for logistic chain traceability.
The proposed architecture provides the logistic chain stakeholders with data quality visi-
bility at different levels (C2) and guarantees the user agreement on the correct quality rules
application (C3). Besides, the proposed architecture does not only increase the integrated
data quality, but also the stakeholder’s trust and adherence to the resulting automatic
decisions.

Table 1 summarizes the selected related works and how they meet the studied three
criteria.

Table 1. Related works comparison summary.

C1 (Quality Dimension) C2 (Quality Levels) C3 (Use of Blockchain Smart Contracts
for Data Quality Management)

IoT

Li et al. [16] Currentness and others Data N/A
Sicari et al. [17] accuracy, currentness, completeness and others Data and stream window N/A

Kuemper et al. [18] Accuracy and consistency Data and data source N/A
Kolomvatsos et al. [19] Accuracy Data N/A

Kara et al. [20] Accuracy, completeness and others Data N/A

Erazo-Garzom et al. [21] Accuracy, completeness, consistency (lack of
measurement method), currentness and others. Data and data source N/A

IoT Data Quality models

Karkouch et al. [22] Accuracy and completeness (in the evaluation) Data and stream window N/A

Fagúndez et al. [23] Accuracy, completeness, freshness and
consistency Data and stream window N/A
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Table 1. Cont.

C1 (Quality Dimension) C2 (Quality Levels) C3 (Use of Blockchain Smart Contracts
for Data Quality Management)

Blockchain and IoT Crowdsensing platforms

Gu et al. [24], Nguyen and Ali [25],
Wei et al. [26], Cheng et al. [27],
Huang et al. [28], Zou et al. [29]

and Javaid et al. [30]

N/A N/A
Data quality ensured through reviews,
reputations and rewards mechanisms

implemented in blockchain smart contracts

Blockchain, IoT and data qualification

Casado-Vara et al. [31] Accuracy and consistency N/A Accuracy qualified outside the blockchain
smart contract and consistency inside it

Hang et al. [32] Accuracy (outliers filtering) N/A Outlier’s filtering outside the blockchain
smart contract

Leal et al. [14] Accuracy, consistency (multi-source variability)
and currentness (contemporaneous) N/A Data qualification outside and inside the

blockchain smart contract

Our proposition Accuracy, completeness, consistency and
currentness

Data, data source, shipment
and shipment data source

relationship (equivalent to
Stream window)

Data qualified using quality dimensions
implemented in a blockchain smart

contract

5. Data Qualification Using Data Quality Dimensions

In this work, the data qualification refers to the definition of data quality measurement
methods and the application of those methods on every data received and handled by the
smart contract.

We focus on the qualification of traceability IoT data. Because these data are auto-
matically collected and used by the smart contract for the detection of incidents, their
qualification is essential for building reliable and automated traceability system.

Thanks to a data quality study adapted to the logistic chain domain, we identified:
(i) relevant IoT data quality dimensions; and (ii) their respective measurement methods.

The IoT data quality model purpose is to be implemented in the traceability smart
contract, in order to assess the shipment data quality and consequently improve the incidents
creation process. Among the quality models proposed in the literature, the model by
Karkouch et al. [22] is the closest to our above needs, and we decided to implement and
extend this model for the logistic chain domain.

As depicted in Figure 1, we added the Shipment entity to collect the data quality
at the shipment level with its own IoTQualityDimension. Furthermore, for capturing the
data quality during the association of the IoTDataSource and the Shipment, we added the
Assignment entity which reflects this temporary relationship.

Furthermore, we highlight in Figure 1 all the model entities and attributes added
for the quality assessment purpose. The main entity of this model is Shipment which
has its own IoTQualityDimension and its own IoTDataSource affected to it through the
Assignment entity. It is worth noting that the IoTQualityDimension has a weight attribute
defining the importance of the dimension according to the stakeholders needs.

In our context, we need to distinguish different application levels of each dimension,
for quality visibility at every object level. The quality index resulting from a dimension
application is calculated differently for each dimension related entity in the schema. In
some cases (detailed in the next sections), an IoTQualityDimension is not defined for
some entities of the schema. For example, the completeness dimension is not defined for
IoTDataEvent and IoTMeasure; it is used only for entities with an update time interval
constraint such as IoTDataSource and Shipment.

Moreover, we introduce in this model a qualityCon f idenceIndex, in order to provide
users with an overview of the data quality for the main objects manipulated in our trace-
ability system, which are the IoTDataSource, Shipment, Assignment and IoTDataEvent.
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Shipment

- id: Long
- pickupTimestamp: Timestamp
- deliveryTimestamp: Timestamp
- origin: String
- destination: String
- mode: String
- carrier: String

- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>
- globalDataQualityThreshold: Double
- dataQualityIndexThreshold: Double
- dataQualityIndexDimensionsThresholds: Map<String, Double>

ShipmentCondition

- id: Long
- code: String
- label: String
- min: Long
- max: Long
- stakholders: List<String>

ShipmentIncident

- id: Long
- label: String
- creationTime: Timestamp
- closingTime: Timestamp
- stakholders: List<String>

has shipmentCondition

1..1

0..*

has shipmentIncident

0..*

1..1

IoTQualityDimension

# code: String;
# name: String
# weight: Integer
# timeToleranceThreshold: Integer

+ caculateDimensionConfidenceIndex(shipment:Shipment): Double 
+ caculateDimensionConfidenceIndex(ioTDataSource:IoTDataSource): Double 
+ caculateDimensionConfidenceIndex(ioTDataEvent:IoTDataEvent): Double 
+ caculateDimensionConfidenceIndex(ioTMeasure:IoTMeasure): Double 

IoTQualityAccuracy IoTQualityCompleteness IoTQualityConsistency IoTQualityCurrentness

IoTDataSource

- id: String
- name: String
- owner: String
- startTimestamp
- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>
- measureIntervalInSeconds: Integer
- dataQualityIndexThreshold: Double
- dataQualityIndexDimensionsThresholds: Map<String, Double>

IoTDataEvent

- id: Long
- srcId: String
- timestamp: Timestamp
- receptionTimestamp: Timestamp
- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>
- dataQualityIndexThreshold: Double
- dataQualityIndexDimensionsThresholds: Map<String, Double>

IoTMeasure

- code: String
- qualityConfidenceIndex: Double
- dimensionsQualityIndex: Map<String, Double>

IoTMeasureValue

- code: String
- value: Double
- minValue: Double
- maxValue: Double
- precision: Double

Assignment

- id: Long
- startAssiTime: Timestamp
- endAssiTime: Timestamp
- confidenceIndex: Long
- dimensionsQualityIndex: Map<String, Double>
- lastReceivedEvtTimestamp: Long

DataQualityIncident

- id: Long
- label: String
- creationTime: Timestamp
- closingTime: Timestamp
- stakholder: String

has sourceQ
ualityD

im
ension

0..1

0..*

has shipm
entQ

ualityD
im

ension

0..1

0..*

has m
easureSpecifications

0..1

0..*

related

0..*

0..*

related

0..*

1..1

related

0..*

1..1

1..*

1..*

assigned
1..*

0..*

related

0..*

0..*

Figure 1. IoT Data Quality Entity class diagram.

The calculation of the quality index takes into account the weight W of dimensions
fixed by the users for IoTDataSource and Shipment. We calculate this quality index
for the IoTDataSource and Assignment as an average of their n IoTDataEvents and m
IoTQualityDimensions:

qualityCon f idenceIndex =

m
∑

j=1
(Wj ∗

n
∑

i=1
dimensionQualityIndexjIoTDataEventi

)

m
∑

j=1
Wj

(1)

For the Shipment quality index calculation, we use the quality indexes of its related
Assignment objects. Regarding the IoTDataEvent, we use the average quality of its related
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IoTMeasures. The methods used to calculate the IoTQualityDimensions are detailed in the
next sections.

The quality thresholds are set by the stakeholders to define the minimum accepted
quality index. Values that do not respect this quality will be stored for traceability purpose
but will not be used for dynamic incident detection.

To monitor the compliance of the received data according to both the quality threshold
and the Shipment transport conditions defined in the smart contract, we added in the model,
respectively, the entities: DataQualityIncident and ShipmentIncident. DataQualityIncident
results from a non-compliance with the agreed quality thresholds and ShipmentIncident
results from a non-compliance with the agreed business transport conditions. For example,
consider a IoTDataSource with an interval of possible values from 0 to 50 ◦C, and monitor-
ing a Shipment with business transport conditions of 2–8 ◦C. If this IoTDataSource sends
a temperature value of 100◦C, this value is considered as non-compliant with the quality
thresholds and generates a DataQualityIncident. However, if the sent value is 20 ◦C, it
is considered as non-compliant with the business transport conditions and generates a
ShipmentIncident.

In the next subsections, we detail how the dimensions are used to calculate the quality
indexes for the different object levels.

5.1. Accuracy

The accuracy measurement method is based on the IoTDataSource specifications
(sensor measure precision value and sensor minimum and maximum measurable values).
Using this method, we can ensure that the received measurement is a possible normal
value that can be sent by the concerned IoTDataSource.

Therefore, the received measurement could be used by the traceability smart contract,
for example to create an incident, if the received measurement is out of the ranges fixed by
the shipper for this specific measurement.

In the following subsection, we detail the accuracy calculation method depending on
the object level.

Accuracy Levels

We identify five accuracy levels: the IoTMeasureValue accuracy AccMsrVal ,
the IoTMeasure accuracy AccMsr, the IoTDataEvent accuracy AccEvt, the IoTDataSource
accuracy AccSrc and the Shipment accuracy AccShp.

The IoTMeasureValue accuracy as indicated by its name is related to only one value
of the IoTMeasure. It is used to indicate if a value of the IoTMeasure is in the range of rele-
vant and acceptable values of this specific IoTMeasureValue, based on the IoTDataSource
specifications. For example, consider an IoTMeasureValue m, with precision p, and FThmin
and FThmax are, respectively, the minimum and the maximum possible values given by the
IoTDataSource manufacturer.

We calculate the IoTMeasureValue accuracy AccMsrVal using the following formula:

AccMsrVal =


1 If (m− p) ≥ FThmin and (m + p) ≤ FThmax
m−FThmin

p if (m− p) < FThmin and m ≥ FThmin
FThmax−m

p if (m + p) > FThmax and m ≤ FThmax

0 otherwise

(2)

The IoTMeasure is composed of n IoTMeasureValues, and consequently we calculate
the IoTMeasure accuracy AccMsr as an average of all its IoTMeasureValues accuracies:

AccMsr =

n
∑

i=1
AccMsrVali

n
(3)
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The IoTDataEvent accuracy AccEvt corresponds to an overview of the accuracies
of all its related IoTMeasures. This is useful in our context where the IoTDataEvent is
considered as a coherent set of IoTMeasures. If this is not the case, the accuracy calculated at
the IoTMeasure level can directly be used, and the IoTDataEvent accuracy can be ignored.
However, for an IoTDataEvent with n related IoTMeasures, the IoTDataEvent accuracy
corresponds to the average of all the IoTDataEvent related IoTMeasures accuracies:

AccEvt =

n
∑

i=1
AccMsri

n
(4)

The IoTDataSource accuracy AccSrc gives an overview of all the IoTDataSource re-
lated IoTDataEvents accuracies, it is related to the historic of IoTDataEvents received from
the IoTDataSource. In our context, we consider that it is important to take in consideration
this historic of IoTDataEvents in the calculation of IoTDataSource accuracy, because it
indicates the reliability of the IoTDataSource since it has been deployed and used in our
traceability system.

If the users are interested only in the IoTDataSource IoTMeasures accuracies, the
accuracy calculated at the IoTMeasure level could be reused at the IoTDataSource level
in order to give them an IoTDataSource accuracy per IoTMeasure. The accuracy of an
IoTDataSource corresponds to the accuracy average of all its related IoTDataEvents:

AccSrc =

n
∑

i=1
AccEvti

n
(5)

Finally, the Shipment level accuracy emphasizes all the Shipment related IoTDataSource
accuracies for the specific time period in which the IoTDataSource is assigned to the
Shipment. Every Shipment is considered as an independent transport operation that should
have its own accuracy value.

For a Shipment with n Assignments to IoTDataSources, the accuracy AccShp corre-
sponds to the average of all the Shipment-IoTDataSource Assignments. For each Assignment
accuracy AccAssigni , the number of IoTDataEvents nEvtAssign to be considered in the accu-
racy calculation, corresponds to the number of IoTDataEvents sent by the IoTDataSource
for this specific Shipment Assignment relationship:

AccShp =

n
∑

i=1
AccAssigni

n
such as AccAssigni =

nEvtAssign

∑
j=1

AccEvtj

nEvtAssign
(6)

5.2. Completeness

The completeness measurement method calculates the gap in the data reception for
a specific object. It concerns the levels of the IoTDataSource, the Assignment and the
Shipment.

5.2.1. Completeness Levels

At the IoTDataSource level, the completeness is calculated based on the source
startTimestamp, the source measure interval I, the number of received IoTDataEvents n
from the IoTDataSource and the reception timestamp of the last IoTDataEvent lastTimestamp,
related to the IoTDataSource:

ComSrc =

{
1 If n ≥ lastTimestamp−startTimestamp

I
n∗I

lastTimestamp−startTimestamp otherwise
(7)
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The Assignment completeness ComAssign means that all the expected IoTDataEvents
of the assigned IoTDataSource Src, have been received by the Shipment during the IoTData
Source and Shipment association time period enshrined in the smart contract.

Consequently, for the Shipment, the IoTDataEvent frequency is at least one IoTData
Event per IoT update time interval I defined in the smart contract. The ComAssign highlights
for the stakeholders the capacity of each IoTDataSource to send all the expected data during
its association with a Shipment. This helps the stakeholders to decide on the reusability
of the IoTDataSource for further Shipments in the case of a good completeness value or,
otherwise, to take over the IoTDataSource in order to identify the completeness source
problem.

The ComAssign evolves during the Shipment and the IoTDataSource association time
period, and it is recalculated for every new IoTDataEvent reception at the timestamp
evtTimestamp, based on the current number of received IoTDataEvents n, the Shipment up-
date interval I, the IoTDataSource-Shipment Assignment startAssignTime and
endAssignTime timestamps.

ComAssign =



1 If n ≥ evtTimestamp−startAssignTime
I

and evtTimestamp ∈]startAssignTime, endAssignTime]
Or
n ≥ endAssignTime−startAssignTime

I
and evtTimestamp > endAssignTime

n∗I
endAssignTime−startAssignTime If evtTimestamp > endAssignTime

0 otherwise

(8)

At the Shipment level, the completeness ComShp gives an idea of the completeness
trend of all the Shipment related IoTDataSources. It is calculated as a ComAssign average of
the nAssign IoTDataSources assigned to the Shipment:

ComShp =

nAssign

∑
i=1

ComAssigni

nAssign
(9)

5.2.2. Completeness Incidents

The completeness problem reflects the missing IoTDataEvents. Many reasons could
be at the origin of missing IoTDataEvents: network errors, synchronization problems or
device malfunctions [33]. If it is not handled, missing data seriously affect the reliability of
the data collected through the IoTDataSource.

We propose to generate a completeness incident, if the completeness index of the
object fall below the completeness threshold fixed by the stakeholders. The update-missing
incident created by the smart contract will also remain there in order to trace the history of
data quality problems related to the event IoTDataSource.

5.3. Consistency

It is important to calculate the coherence degree between IoTDataEvents and to alert
the stakeholders in the case of incoherence detection. The stakeholders should take a
corrective action, such as identifying and removing failing IoTDataSource, adapting new
threshold values, etc.

The main IoTDataSource in this work is the shipper shipment connected object. How-
ever, other IoTDataSources could be added by any of the Shipment transport stakeholders.
When two or more IoTDataSources assigned to the Shipment monitor the same transport
conditions, we calculate the consistency of those IoTDataSources, by comparing their
IoTMeasures.
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The IoTMeasures comparison takes into account two tolerance thresholds: the time
tolerance threshold Ttth and the measure tolerance threshold Mtth. Those two thresh-
olds should be defined at the Shipment creation for every IoTDataSource assigned to the
Shipment, of course through a mutual agreement between the stakeholders in charge of
those IoTDataSources.

Consistency Levels

The consistency dimension concerns the levels of IoTDataEvent and Shipment. When
an IoTDataEvent Evti is received from IoTDataSource Srci at a timestamp Rti, and con-
tains a list Msri of IoTMeasures, we check if there are other IoTDataEvents related to
the Shipment and sent by other IoTDataSources, verifying that for each IoTDataEvent
Evtj, received from IoTDataSource Srcj at the timestamp Rtj and containing a list Msrj of
IoTMeasures: 

Srci 6= Srcj

|Rti − Rtj| ≤ Ttth

Msri ∩Msrj 6= ∅

(10)

where IoTMeasures are compared using their codes (see Figure 1).
If there is only one IoTDataSource for the Shipment, or there are no IoTDataEvents

verifying the above conditions, then there is no consistency calculation to do. Otherwise,
the IoTDataEvent consistency is calculated using the following method:

ConEvti =



1 ∀m ∈ Msri ∩Msrj, |Valmi −Valmj | ≤ Mtth Valmi is the value of m in Msri, and

Valmj is the value of m in Msrj

NbConEvti
NbEvt NbConEvti is the number of events

concordant with Evti, and NbEvt
is the total number of events
verifying the above consistency
conditions

(11)

The Shipment consistency ConShp gives an overview of the Shipment data consistency
between all the IoTDataSources related to the Shipment and monitoring the same transport
conditions. It is calculated as an average of the Shipment related Assignments consistency:
ConAssign.

ConShp =

n
∑

i=1
ConAssigni

n
such as ConAssigni =

nEvtAssign

∑
j=1

ConEvtj

nEvtAssign
(12)

5.4. Currentness

In the logistic traceability context, the currentness dimension may not be critical.
Indeed, the most important is to detect incidents, even though the data are received late.
However, currentness may reveal incidents concerning data acquisition. Thus, the stake-
holders define the Shipment currentness threshold according to the use case.

5.4.1. Currentness Levels

We consider the following currentness levels: IoTDataEvent, IoTDataSource and
Shipment.

For an IoTDataEvent Evti, the currentness CurEvti is calculated based on the previous
IoTDataEvent reception timestamp ti−1, the update interval defined in the smart contract
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I, the expected next IoTDataEvent timestamp ti+1 which is equal to ti−1 + 2 ∗ I and the
current IoTDataEvent reception timestamp ti.

CurEvti =

{
1− |(ti−1+I)−ti |

I If ti ∈]ti−1, ti+1[

0 otherwise
(13)

For the Shipments, the interval I is a shipper requirement that should be met through
the sending of an IoTDataEvent to the smart contract, every time that this interval has
elapsed. Consequently, the currentness indicates not only the quality of the data but also
the meet degree of one of the more important shipper requirements defined in the smart
contract, the Shipment update interval I.

Furthermore, the CurEvti at the IoTDataSource level is calculated using the same
above method, but it is worth noting that the IoTDataSource has its own update interval
that could be different from the Shipment update interval.

Regarding the IoTDataSource, the currentness corresponds to the degree to which the
IoTDataSource has met the update interval time requirement, in the entire history of its
related IoTDataEvents, including the last received IoTDataEvent.

The currentness dimension helps the users in the choice of the IoTDataSources to be
assigned to the Shipment, users will always choose the IoTDataSource with the highest
currentness among the available IoTDataSources. The IoTDataSource currentness CurSrc
is calculated as the average of all the IoTDataSource related IoTDataEvents:

CurSrc =

n
∑

i=1
CurEvti

n
(14)

From the Shipment perspective, the currentness indicates the degree to which the
shipper update time interval requirement has been met for the Shipment by all its related
IoTDataSources, during the Shipment-IoTDataSource association time period. To measure
the currentness performance of the Shipment-IoTDataSource association, the currentness
calculated for this association CurAssign is saved in the Assignment object.

The CurAssign is useful when the Shipment stakeholders need to investigate a low
Shipment currentness, as it helps to identify the Shipment related IoTDataSource(s) respon-
sible(s) of the low currentness value. The Shipment currentness CurShp corresponds to the
average CurAssigni of all its n related Assignment objects. The CurAssign is calculated as a
CurEvtj average of the nEvtAssign IoTDataEvents received from the IoTDataSource for the
Shipment, during their Assignment association:

CurShp =

n
∑

i=1
CurAssigni

n
such as CurAssigni =

nEvtAssign

∑
j=1

CurEvtj

nEvtAssign
(15)

5.4.2. Currentness Incidents

There are two currentness control points, the reception of the IoTDataEvent by the
stakeholder IS (shipper IS, carrier IS or consignee IS) and the reception of the IoTDataEvent
by the smart contract. In case of non-reception of the IoTDataEvent by the stakeholder IS,
this leads to a missing update on the smart contract side.

The IoTDataSource is configured to send an IoTDataEvent every n seconds. If this
interval has elapsed and no new IoTDataEvent has been received from the IoTDataSource,
the situation is considered as a missing update problem.

The missing update is not critical if the IoT update interval Isc of the smart contract
is larger than n seconds, because the smart contract generally does not wait for a new
IoTDataEvent as long as this update interval does not expire.

In contrast, if the update interval is equal to n seconds, the stakeholder IS notifies
the smart contract in the case of missing data. Once notified, the smart contract assigns
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a missing update related incident to the IoTDataSource owner. The origins of this kind
of incidents are multiple; for example, the IoTDataSource is not able to connect to the IoT
network, the IoTDataSource has internal problem or an IoT cloud data platform problem.

6. The Distributed Architecture of the Traceability System

This section presents the architecture of the proposed traceability solution and its
main components: the blockchain smart contract and the IoT data sources.

To respond to the identified criteria for secured traceability data, data qualification
and transparency, we propose a distributed, secured and trusted architecture, based on the
use of blockchain smart contracts, as depicted in Figure 2. The main components of this
architecture are a smart contract shared by all the stakeholders and IoT data sources. The
arrows in this figure indicate data transmission directions.
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Figure 2. Distributed architecture of the traceability system.

For the smart contract component, we chose to work on a Hyperledger Fabric
blockchain [34]. It is a permissioned blockchain that presents many advantages in com-
parison to the other blockchains, among them: a node architecture based on the notion of
organization to establish a trust model more adapted to the enterprise context, the support
of the Go, Javascript and Java languages for writing smart contracts and a parameterized
consensus protocol [5].

The smart contract is installed on the top of a blockchain involving all the stakeholders.
This smart contract holds all the rules about the collected traceability data management,
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the incident management and the IoT data qualification. Those rules have been validated
by all the traceability system stakeholders.

IoT data sources are assigned to each shipment. They are responsible of the field data
collection about the shipment transport conditions.

It is worth noting that the three stakeholders depicted in Figure 2 are given as examples.
As many stakeholders as needed may be added to this architecture. The addition of
stakeholders is enabled by the underlying Hyperledger Fabric- based architecture [34].
In addition, the maximum number of stakeholders in the context of logistic chain is limited.
For example, in our use case, this number is of the order of tens stakeholders.

The stakeholders to be added to this architecture are those who need to participate
in the traceability process. They are added before the creation of any shipment transport
operation in which they will be involved.

6.1. The Smart Contract

Smart contracts are “trusted distributed applications” [34]. They are secured by the
underlying blockchain and the peers consensus mechanism. In the transport traceability
context, we need a distributed and secured application to share traceability data among all
the traceability process stakeholders and ensure their agreement on the shared data quality
and the incidents created based on this data.

We proposed in [5] to implement a lightweight IoT data qualification application and
a traceability smart contract handling all the shipment transport operation process. The
implemented smart contract allowed the stakeholders to define all the transport conditions
terms, update the transport status and transport related milestones status, integrating
IoT data about the shipment transport operation progress and creating both manual or
automatic transport related incidents.

The contractual constraints, negotiated between stakeholders, are enshrined in the
smart contract, and should be respected by all the stakeholders. Any gap between those
constraints and the data provided by a stakeholder results in a non-compliance incident
created automatically by the smart contract. The contractual constraints are communicated
to the smart contract by the shipper system at the shipment creation time.

In this article, we extend the traceability proposal presented in [5] to overcome two
important limitations. (i) The IoT data qualification is centralized at the shipper side, and
there is a lack of guarantees for the other stakeholders on the good execution of the agreed
IoT data quality calculation rules. (ii) The lightweight IoT data qualification module is
limited to data outlier’s detection.

Therefore, we propose in this work to enhance the IoT data application through the
implementation of the quality model presented in Section 5, into the traceability smart
contract. This allows ensuring the stakeholders agreement on the correct application of the
data qualification rules. The data qualification module is also improved by the integration
of the accuracy, completeness, consistency and currentness dimensions.

IoTDataEvents that do not conform to the defined IoT quality model constraints
generate DataQualityIncident visible by all the stakeholders. They are not discarded but
saved in the blockchain for audit purpose.

As examples of decisions taken automatically by the smart contract based on the
received events, Table 2 shows some temperature events values received by the smart
contract, their Quality Indexes (QI) and their corresponding decisions. For these examples,
we consider multiple IoT data sources with manufacturer temperature specifications in-
terval of [0 ◦C, 50 ◦C]. Those data sources are assigned to a shipment with a temperature
conditions transport interval of [2 ◦C, 8 ◦C]. The quality dimensions’ weights are set to 4
for accuracy, 4 for consistency and 1 for Currentness. If the event QI is below the quality
index threshold (0.7) a DataQualityIncident is generated for the event. Consequently, the
event QI is calculated as follows:

EventQI =
4 ∗ (AccuracyQI) + 4 ∗ (ConsistencyQI) + 1 ∗ (CurrentnessQI)

9
(16)
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where 9 is the sum of dimensions’ weights (4 + 4 + 1).

Table 2. Smart contract decisions examples.

Received Temperature
Events Values Accuracy QI Consistency QI Currentness QI Event QI Smart Contract Decision

10 ◦C 1 1 1 1 Create a ShipmentIncident

−20 ◦C 0 1 1 0.55 Create an accuracy DataQualityIncident

Many times −20 ◦C from the
same source 0 1 1 0.55

Create an accuracy DataQualityIncident, and
finally a completeness DataQualityIncident at

the Source-Shipment Assignment level

Event1 of −20 ◦C from a source 1
and Event2 of 10 ◦C from a

source 2

0 for Event1
and 1 for
Event2

0.5 for both 1 for both
0.33 for Event1

and 0.77 for
Event2

Create a consistency and accuracy
DataQualityIncident from Event1 and a

ShipmentIncident from Event2

10 ◦C received late from
one source 1 1 0 0.88 Create a ShipmentIncident

6.2. The IoT Data Sources

In the proposed traceability architecture, the IoT data could be received from many
IoT data sources. Each stakeholder could decide to assign an IoT data source that it owns
to a shipment in which it has a stakeholder role, at any time during the shipment progress in
the logistic chain. The only condition to do so is that the IoT data source and the shipment
have already been created in the smart contract.

The assignment of an IoT data source to a shipment is for a limited period. Every data
source assigned to a shipment sends IoT data about the shipment transport conditions at a
fixed time interval defined in the shipment smart contract instance.

If a data-related incident is detected by the smart contract, it is automatically affected
to the IoT data source owner declared in the smart contract. The smart contract has
a detailed description of the IoT data source specifications collected at the data source
creation in the smart contract. This is a requirement for the correct application of the data
quality measures.

The shipper in our context has a principal IoT data source which is the shipment
connected object accompanying the shipment. The role of this object is to collect data about
the shipment transport conditions, throughout the transport operation.

To send the collected data to the shipper IS (Information System), the connected object
uses an LPWAN (Low Power Aera Network) network Gateway, which transmits the
received messages to the IoT Cloud Data Platform (IoTCDP) before their reception in the
shipper IS.

The shipper IS sends the received messages to the shipper node including the connected
object id of the messages. This connected object id is used by the smart contract to link the
received IoT messages to the right shipment in the smart contract. In this context, the data
are pushed by the IoT object. The pull/push of data from/to the connected object is out
of the scope of our work. The shipment connected object collects data about the shipment
pickup, transport and delivery conditions.

Each stakeholder could declare other IoT data sources, such as IoT data sources related
to factories, warehouses, transport vehicles, etc. In general, every data source that can
collect and send automatically measurements about the shipments could be declared by
the stakeholder as an IoT data source. Moreover, all IoT data sources, except the shipment
connected object, help to collect data about the shipment conditions in a specific segment of
the transport operation. Only the shipment connected object that accompanies the shipment
continues to collect data about the shipment transport conditions during the whole transport
operation.

7. Evaluation

The objectives of this section are: (i) to evaluate the proposed quality measures; (ii) to
evaluate the impact of the IoT data quality module on the number of created incidents; and



Sensors 2021, 21, 2239 17 of 25

(iii) to evaluate the impact of the IoT data quality module on the IoT data event insertion
time in the blockchain.

We evaluated our proposed quality measures to measure their pertinence and perfor-
mance. We also monitored the number of quality incidents created to highlight the impact
of the quality module. The number of shipment incidents was also monitored to emphasize
the impact of the quality module on the business decisions.

The IoT data event insertion time in the blockchain was also measured in our tests,
firstly with the quality module activated and then with the quality module inactivated, in
order to evaluate the impact of our proposed quality module on the data event insertion
time and ensure the final users that this time is acceptable while ensuring the quality.

7.1. Smart Contract Architecture

For the implementation purpose, we used the same architecture used in our previous
work on the traceability using smart contracts and IoT [5]. It is an architecture based
on the use of Hyperledger Fabric as the blockchain implementation, with three peers
(stakeholders): a shipper, a carrier and a consignee. On the top of this blockchain, we
implemented our traceability and IoT data qualification smart contract.

The smart contract used in this evaluation was developed on the top of a Hyperledger
Fabric blockchain, using the Fabric Java Framework. We used in this evaluation a Virtual
Machine (VM) with the characteristics depicted in Table 3.

Table 3. Test VM characteristics.

Characteristic Details

OS Ubuntu 18.04.4 desktop amd64
CPU 4 CPU Intel(R) Core™ i7-8565U
RAM 8 G
Virtual Disk 50 G

Furthermore, we set the Hyperledger Fabric block creation timeout to 1 s and the
maximum number of transactions per block to 15. This means that, after the reception
of a new transaction, the system will trigger the block creation either after a time wait of
1 s or after a total number of 15 new transactions is reached. In addition, we used in this
evaluation the Raft consensus algorithm, with a unique ordering service node [5].

In the existing traceability smart contract [5], we added many new methods such
as createDataSource and assignDataSource. The createDataSource method inserts the data
source given as input in the blockchain. The assignDataSouce method assigns an existing
IoT data source to an existing shipment, using their IDs. Based on the quality measures
proposed in this article, we updated the addIoTEvent method with the following new
functionalities: (i) calculate the event quality measures; and (ii) update the IoT data source
and the quality measures of the shipments related to this IoT data source.

7.2. Evaluation Experimental Choices

Due to a lack of real data to evaluate the proposed architecture in our use case, we
chose to simulate our use case data with a well-known dataset in the IoT domain. The
Intel Berkeley dataset is a collection of sensor data, collected by Intel research team in the
Intel Berkeley Research lab, between 28 February and 5 April 2004 [35]. An example of the
dataset content is depicted in Table 4.
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Table 4. Samples of the Intel Berkeley dataset.

Date Time Event ID Sensor ID Temperature Humidity Light Voltage

12 March 2004 16:29:04.084098 39302 1 21.8308 43.5855 165.6 2.53812
14 March 2004 15:45:11.669786 44974 2 26.9464 41.814 264.96 2.54901
19 March 2004 19:01:21.094445 59766 3 21.9092 45.1103 39.56 2.44412

. . . . . . . . . . . . . . . . . . . . . . . .

To adapt this dataset to our context, we considered every sensor as an IoT data source.
This gives us 54 data sources to be handled. For the shipments, we used every 24 h of sensor
data collection as a shipment, which results in 2052 shipments (54 sensors multiplied by 38,
the number of data collection days), for the whole dataset.

Furthermore, we considered only the temperature measures in this evaluation because
it is the main measure for our use case, but the module could be used to handle any other
measure type.

We began the evaluation phase by defining the user’s quality thresholds requirements
for all the data sources and shipments. We used the same threshold for the data sources,
the shipments and the four quality dimensions. We made a series of tests by varying the
defined threshold, going from 0 (no quality constraints) to 1 (strict quality), to show the
impact of those thresholds on the number of created quality and shipments incidents.

In Table 5, we establish a classification of data quality indexes for our dimensions
and objects. This classification helps in the presentation and the analysis of the evaluation
results.

Table 5. Quality indexes and thresholds classification.

Data Quality Index and Threshold Interval Label Code

[0, 0.5) Poor quality P
[0.5, 0.7) Low quality L
[0.7, 0.9) Good quality G
[0.9, 1] High quality H

We chose the following weights for the quality dimensions based on their importance
for the use case in the context of the medical equipment cold chain: a weight of 4 for the
accuracy, the completeness, and the consistency, which are the most important for our
users, and a weight of 1 for the currentness, which is not as critical as the other dimensions,
as explained in Section 5.

For the shipment incidents, we chose an accepted temperature interval of 20 to 25 ◦C
based on the work of Hui et al. [36]. Beyond this temperature interval, if the received event
quality is compliant with the shipment quality threshold, this event results in a shipment
incident created for all the shipments that have an active assignment relationship with the
event data source.

There was no information in the dataset about the sensor’s precision value. Conse-
quently, we chose to set this value to 0.5 ◦C, which is a recurrent value in the temperature
sensors.

In the following evaluation results, we did not take into account the sensor 5 from
which we did not see any event. We also ignored some other events with the sensor IDs 55,
56 and 58, because in the dataset reference the number of sensors was only 54, and events
coming from the same sensor with the same event number (113,474 events in the dataset).

There were also 355 events in the dataset that we could not parse correctly due to their
data presentation errors and 526 incomplete lines, from which we could not get all the
event required data. This results in a total of 2,199,327 events integrated correctly in our
quality tests, from a total of 2,313,682 events present in the dataset.

We used the event timestamp in the dataset as an event reception timestamp in this
evaluation. Moreover, we used this timestamp to order and identify the events, for shipment
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incident creation and closing purpose. The results of this choice were 10,299 duplicated
events, because they had the same timestamp as previously received events from the same
sensor.

Furthermore, we use the quality threshold to define the stakeholder’s requirement for
the quality indexes of events to be integrated in the data source or sent to shipments. All the
events with a quality index below the defined quality threshold value results in a quality
incident and are not used to create shipment incidents in case of non-compliance with the
agreed transport conditions. If the quality incident is detected by the data source, it will
not send the event to its related shipments.

7.3. Results Concerning the Accuracy, Completeness and Currentness Dimensions

Firstly, regarding the accuracy, the sensors used to collect the Intel Berkeley dataset, a
valid temperature value should be in the range of 0–50 ◦C according to [37], otherwise we
consider this temperature as inaccurate.

Regarding the completeness, we used the following parameters: the update interval
of 31 s, the maximum timestamp among the already integrated events timestamps, the
start IoT data source and the shipment start timestamp. We set the IoT data source start
timestamp at 28 February 2004 at 00:00:00 am, and, for the shipment, the start timestamp is
the shipment date and the start time set at 00:00:00 am and the end at 11:59:59 pm.

Concerning the currentness, we used the measure interval of 31 s given for the dataset.
We used this same update interval for the data sources and the shipments. In our tests, we
did not consider the difference that could exist between the event reception timestamp
and the event production timestamp. This difference could affect the test and need to be
addressed in future works.

Table 6 shows the classification of quality results obtained for the sensors (data
sources), regarding the different quality dimensions defined in this work and using multi-
ple quality threshold values. Those results show that in the 53 retained sensors: 42 have a
good accuracy, 29 have a poor completeness and 29 have a lower currentness.

Table 6. Sources quality evaluation results.

Quality Threshold Accuracy Completeness Currentness Quality Index

0, 0.5, 0.7, 0.9 and 1 0P 1L 43G 9H 29P 22L 2G 0H 1P 29L 20G 3H 0P 38L 15G 0H

Regarding the global sensor quality index, most sensors (38) have a low-quality index.
If the quality threshold is set to a good quality value (e.g., 0.7), only 15 sensors are usable,
and, in the case of threshold of high quality (e.g., 0.9), there is no usable sensor in this
dataset.

Thanks to the quality module, all the events with a quality incident problem are not
integrated into the shipments assigned to the event data source, and this keeps the shipment
events quality at the level fixed and agreed by all the stakeholders. For example, in the
case of Sensor 45, when we set the quality threshold at 1, 9% of the events received from
this sensor have not been integrated into the source related shipments, due to their quality
problems.

In Table 7, we can clearly see the impact of the threshold choice on the percentage
of quality incidents. This percentage represents the events that do not respect the agreed
quality thresholds. The events are filtered at the data source level according to the selected
quality threshold value.
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Table 7. Quality and shipments incidents results according to the quality threshold.

Shipments Quality
Threshold

Percentage of Quality
Incidents

Percentage of Shipments
Incidents

0 0 0.21
0.5 25 0.4

0.7, 0.9 and 1 21 0.3

Consequently, the percentage of quality incidents drops from around 25% of the total
received events for a threshold at 0.5 to around 21% when the quality threshold was greater
or equal to 0.7. The percentage of shipment incidents evolution is not linear due to the
shipments number evolution depending on the selected quality threshold, as depicted in
Table 8.

Table 8. Shipments events number evolution.

Shipments Quality
Threshold

Number of Shipments
Without Any Event

Number of Shipments with
at Least One Event

0 421 1631
0.5, 0.7, 0.9 and 1 821 1231

Regarding the shipments quality results, it is important to note that there were 421
shipments for which we did not receive any event, no matter what the quality threshold
value was. This number increases to 821 shipments, when we set the quality threshold at
0.5, 0.7, 0.9 or 1, as depicted in Table 8. Consequently, we did not consider those shipments
in the following shipment quality results, because all our quality dimension calculations are
based on the events values and timestamps.

Table 9 shows that the percentage of shipments with a high accuracy level increase as
the shipments quality thresholds increases, and this is the same for the currentness. The
percentage of events with a poor completeness index increases due to events blocked by
the quality threshold at the data source level.

Table 9. Shipments quality evaluation results.

Quality Threshold Accuracy (in %) Completeness (in %) Currentness (in %) Quality Index (in %)

0 26P 1L 1G 72H 48P 29L 19G 4H 18P 30L 40G 13H 27P 16L 44G 13H
0.5, 0.7, 0.9 and 1 0P 0L 0G 100H 64P 19L 17G 1H 12P 32L 41G 15H 2P 47L 42G 10H

The shipment quality index also is improved by the quality threshold increase; for
example, we went from 27% of poor data quality shipments when the quality threshold was
at 0 to only 2%, when the quality threshold was up to 0.5.

7.4. Results Concerning the Consistency Dimension

For the consistency evaluation, we selected four groups of sensors placed in proximity
zones, as depicted in Figure 3: {1, 2, 3}, {11, 12, 13}, {15, 16, 17} and {49, 50, 51}. For each
group, we linked each sensor to all its related sensors shipments in the same sensors group.
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Figure 3. Intel Berkeley sensors arrangement diagram.

The total number of shipments related to the selected groups was 456 (12 sensors
multiplied by 38 data collection days). There were 84 shipments related to those groups, for
which we did not receive any event from the sensors, whatever the quality threshold value.
This number increases to 171 shipments when we set the quality threshold at 0.5, 0.7, 0.9 or
1, due to the events quality filtering at the data source level.

Furthermore, we set in this evaluation the tolerance time interval to 31 s and the
consistency tolerance temperature to 0.5 ◦C. This means that two events are considered as
eligible to the consistency test only when their timestamps difference is lower than 31 a,
and they are considered as concordant if their reported temperatures difference is lower
than 0.5 ◦C.

Table 10 summarizes the consistency evaluation results for the selected sensors groups.
The group {1, 2, 3} has at least 76% of its shipments with a high consistency index. Those
results show that the events reported by the group {1, 2, 3} were more concordant than
those reported by the other groups.

Table 10. Shipments consistency evaluation results.

Quality Threshold Sensors Group Consistency (in %)

0 {1, 2, 3} 0P 3L 21G 76H
{11, 12, 13} 0P 0L 73G 27H
{15, 16, 17} 0P 0L 74G 26H
{49, 50, 51} 0P 0L 68G 32H

0.5, 0.7, 0.9 and 1 {1, 2, 3} 0P 0L 15G 85H
{11, 12, 13} 0P 0L 62G 38H
{15, 16, 17} 0P 0L 88G 12H
{49, 50, 51} 0P 0L 81G 19H

The consistency results for the selected groups were generally good to high, except
for 3% of shipments related to the group {1, 2, 3}, when the quality threshold was at 0. This
shows the impact of the quality threshold on the consistency quality results.

7.5. Impact of the IoT Data Quality Module on the IoT Data Event Insertion

For the smart contract IoT data quality evaluation, and due to our blockchain architec-
ture response time (around 1 s per operation), we selected a sample of 3000 events from
the dataset. This sample corresponds to the first 1000 events received from the Sensors 1–3
on 28 February 2004.
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The average response time of the addIoTEvent using the 3000 events data sample was
around 1.7 s, with an average standard deviation of 0.174 s. When we disabled the quality
module, with the same data sample, the average response time of this method drops to
around 1.6 s, with an average standard deviation of 0.158 s.

This result shows that our quality module adds only around 0.1 s to the event inte-
gration time. The additional quality module cost is acceptable regarding the data quality
improvement brought by this module.

7.6. Related Works Discussion

As shown in Section 4, the works of Casado-Vara et al. [31], Hang et al. [32] and
Leal et al. [14] are the closest to our work.

Casado-Vara et al. [31] proposed a vote method to address the accuracy and the
consistency problems. Their vote method is based on the game theory to find a cooperative
temperature among all the used temperature sensors. It is not applicable in our context,
because we have different data sources owned by different stakeholders, and we need to
report all the data sent by those data sources for audit purpose.

In the case of discrepancy between the stakeholder’s data sources related to the same
shipment, we need to trace this discrepancy, and, if it goes below the fixed quality threshold,
a corresponding quality incident is created by the smart contract. However, the vote
method in [31] could be used in the very specific case of many shipments with similar
data sources, the same shipper, the same carrier and from which we want to have a global
measure trend.

Hang et al. [32] proposed a Hyperledger Fabric based architecture. This blockchain
implementation choice is perfectly adapted to our B2B use case, and we used the same in
our proposed architecture. However, they only addressed the accuracy problem (outlier
filtering) using the Kalman filter.

Besides, the standard version of Kalman filter did not meet our needs, because the
outlier interval limits are not fixed and evolve according to the received data. This could be
problematic when the Kalman filter goes in fail mode, as stated by Berman [38]. The usage
of an assisted version of the Kalman filter needs to be explored in future work.

Leal et al. [14] proposed using an Ethereum traceability-based architecture. Their
Ethereum choice is justified by the solution monetization goal. However, in our use case,
we chose to work with Hyperledger Fabric which does not need any cryptocurrency
management and has an organization architecture more adapted to our B2B logistic chain
context, in terms of data access levels management.

In addition, Leal et al. [14] addressed the accuracy, consistency and currentness
problems using probability distribution methods, but they did not provide further details
about their application and evaluation of those methods.

Furthermore, the authors of [14] proposed to filter the data inside and outside the
blockchain, which is a good idea, and we already have in our architecture the inside
blockchain data filtering. Besides, we need to explore the adding of a data filtering first
level outside the blockchain, in future works.

The outside blockchain filtering needs to be done carefully, because it should not
prevent the blockchain from getting the required traceability data; although, in some cases
these data will be outliers, they need to be traced for further audit purposes.

7.7. Conclusions on the Evaluation

This evaluation section demonstrates the pertinence of the proposed IoT data quality
module and the impact of this module on the data to be used in the traceability smart
contract. The entire data qualification process is executed in a secured and distributed
application on which users agree on every datum to be included, on its qualification process
and decisions to be taken based on this datum.

It is worth noting that the choice of the quality thresholds has a huge impact on the
data filtering process set at the data source level. The events with a quality index below
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the defined quality threshold will never be sent to the shipment. This leads directly to data
loss at the shipment level. For this reason, stakeholders may prefer selecting a good quality
threshold ([0.7,0.9]), rather than a high one ([0.9,1]).

Although the proposed architecture evaluation shows encouraging results, this archi-
tecture still needs to be tested in a real-life scenario with more data and stakeholders to get
more information about its real performances.

8. Conclusions and Future Works

In this article, we propose a distributed architecture and a smart contract to enhance
the IoT data quality in the context of logistic traceability. The proposed architecture uses a
model of IoT data quality with four main data quality dimensions: accuracy, currentness,
completeness and consistency.

We also propose an approach for the calculation of the selected data quality dimen-
sions. The dimensions calculation results are used in our traceability smart contract to set
and control the data quality of events, data sources, shipments and shipments data sources
associations.

The proposed architecture ensures the stakeholders agreement on the data quality
calculation and application rules, and consequently their trust in the decisions taken
automatically by the traceability smart contract. We evaluated our proposed IoT data
quality assessment architecture based on an online available dataset, and the results show
the relevancy of this architecture.

This work could be extended by evaluating the scalability of the proposition when
adding more stakeholders. The approach used to calculate the quality dimensions could
be combined with algorithms, such as DBSCAN [39] or an assisted version of the Kalman
filter [40], to improve the quality index calculation.

The blockchain data charge could be alleviated by adding in this architecture a first
level of data filtering on each stakeholder side. The IoT data sources’ security and interop-
erability also need to be addressed. Finally, the architecture evaluation needs to be done in
a real-life scenario to ensure its performance in the context of logistic chain traceability.
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8. Suciu, G.; Nădrag, C.; Istrate, C.; Vulpe, A.; Ditu, M.; Subea, O. Comparative Analysis of Distributed Ledger Technologies. In
Proceedings of the 2018 Global Wireless Summit (GWS), Chiang Rai, Thailand, 25–28 November 2018; pp. 370–373. [CrossRef]

9. Pournader, M.; Shi, Y.; Seuring, S.; Koh, S.L. Blockchain applications in supply chains, transport and logistics: A systematic
review of the literature. Int. J. Prod. Res. 2020, 58, 2063–2081. [CrossRef]

10. Issaoui, Y.; Khiat, A.; Bahnasse, A.; Ouajji, H. Smart logistics: Study of the application of blockchain technology. In Proceedings of
the 9th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare
(ICTH-2019), Coimbra, Portugal, 4–7 November 2019. [CrossRef]

11. Richard, Y.; Wang, D.M.S. Beyond Accuracy: What Data Quality Means to Data Consumers. J. Manag. Inf. Syst. 1996, 12, 5–33.
12. ISO 25012: Quality of Data Product. Available online: https://iso25000.com/index.php/en/iso-25000-standards/iso-25012

(accessed on 26 December 2020).
13. Liu, C.; Nitschke, P.; Williams, S.; Zowghi, D. Data quality and the Internet of Things. Computing 2019. [CrossRef]
14. Leal, F.; Chis, A.E.; Caton, S.; González–Vélez, H.; García–Gómez, J.M.; Durá, M.; Sánchez–García, A.; Sáez, C.; Karageorgos, A.;

Gerogiannis, V.C.; et al. Smart Pharmaceutical Manufacturing: Ensuring End-to-End Traceability and Data Integrity in Medicine
Production. Big Data Res. 2021, 24, 100172. [CrossRef]

15. Byabazaire, J.; O’Hare, G.; Delaney, D. Data Quality and Trust: Review of Challenges and Opportunities for Data Sharing in IoT.
Electronics 2020, 9, 2083. [CrossRef]

16. Li, F.; Nastic, S.; Dustdar, S. Data Quality Observation in Pervasive Environments. In Proceedings of the 2012 IEEE 15th
International Conference on Computational Science and Engineering, Paphos, Cyprus, 5–7 December 2012; pp. 602–609.

17. Sicari, S.; Rizzardi, A.; Miorandi, D.; Cappiello, C.; Coen-Porisini, A. A secure and quality-aware prototypical architecture for the
Internet of Things. Inf. Syst. 2016, 58, 43–55. [CrossRef]

18. Kuemper, D.; Iggena, T.; Toenjes, R.; Pulvermueller, E. Valid.IoT: A Framework for Sensor Data Quality Analysis and Interpolation.
In Proceedings of the 9th ACM Multimedia Systems Conference, MMSys ’18, Amsterdam, The Netherlands, 12–15 June 2018;
Association for Computing Machinery: New York, NY, USA, 2018; pp. 294–303. [CrossRef]

19. Kolomvatsos, K. A distributed, proactive intelligent scheme for securing quality in large scale data processing. Computing 2019,
101, 1687–1710. [CrossRef]

20. Kara, M.; Lamouchi, O.; Ramdane-Cherif, A. A Quality Model for the Evaluation AAL Systems. In Proceedings of the 7th
International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-
2017), Lund, Sweden, 18–20 September 2017. [CrossRef]

21. Erazo-Garzon, L.; Erraez, J.; Illescas-Peña, L.; Cedillo, P. A Data Quality Model for AAL Systems. In Information and Communication
Technologies of Ecuador (TIC.EC); Fosenca, C.E., Rodríguez Morales, G., Orellana Cordero, M., Botto-Tobar, M., Crespo Martínez, E.,
Patiño León, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 137–152.

22. Karkouch, A.; Mousannif, H.; Al Moatassime, H.; Noel, T. A model-driven architecture-based data quality management
framework for the internet of Things. In Proceedings of the 2016 IEEE 2nd International Conference on Cloud Computing
Technologies and Applications (CloudTech), Marrakech, Morocco, 24–26 May 2016; pp. 252–259.

23. Fagúndez, S.; Fleitas, J.; Marotta, A. Data Stream Quality Evaluation for the Generation of Alarms in the Health Domain. J. Intell.
Syst. 2015, 24, 361–369. [CrossRef]

24. Gu, X.; Peng, J.; Yu, W.; Cheng, Y.; Jiang, F.; Zhang, X.; Huang, Z.; Cai, L. Using blockchain to enhance the security of fog-assisted
crowdsensing systems. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), Vancouver,
BC, Canada, 12–14 June 2019; pp. 1859–1864. [CrossRef]

25. Nguyen, D.; Ali, M.I. Enabling On-Demand Decentralized IoT Collectability Marketplace using Blockchain and Crowdsensing.
In Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [CrossRef]

26. Wei, L.; Wu, J.; Long, C. A Blockchain-Based Hybrid Incentive Model for Crowdsensing. Electronics 2020, 9, 215. [CrossRef]
27. Cheng, J.; Long, H.; Tang, X.; Li, J.; Chen, M.; Xiong, N. A Reputation Incentive Mechanism of Crowd Sensing System Based

on Blockchain. In Proceedings of the 6th International Conference on Artificial Intelligence and Security (ICAIS 2020), Hohhot,
China, 17–20 July 2020; Springer: Singapore, 2020; pp. 695–706. [CrossRef]

28. Huang, J.; Kong, L.; Dai, H.; Ding, W.; Cheng, L.; Chen, G.; Jin, X.; Zeng, P. Blockchain-Based Mobile Crowd Sensing in Industrial
Systems. IEEE Trans. Ind. Inform. 2020, 16, 6553–6563. [CrossRef]

29. Zou, S.; Xi, J.; Wang, H.; Xu, G. CrowdBLPS: A Blockchain-Based Location-Privacy-Preserving Mobile Crowdsensing System.
IEEE Trans. Ind. Inform. 2020, 16, 4206–4218. [CrossRef]

30. Javaid, A.; Zahid, M.; Ali, I.; Khan, R.; Noshad, Z.; Javaid, N. Reputation System for IoT Data Monetization using Blockchain.
In Proceedings of the 14th International Conference on Broad-Band Wireless Computing, Communication and Applications
(BWCCA), Antwerp, Belgium, 7–9 November 2019; Lecture Notes in Networks and Systems Series; Springer: Cham, Switzerland,
2019; Volulme 97, pp. 173–184. [CrossRef]

http://dx.doi.org/10.1016/S0378-7206(02)00043-5
http://dx.doi.org/10.1016/j.jnca.2016.08.002
http://dx.doi.org/10.1109/GWS.2018.8686563
http://dx.doi.org/10.1080/00207543.2019.1650976
http://dx.doi.org/10.1016/j.procs.2019.09.467
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012
http://dx.doi.org/10.1007/s00607-019-00746-z
http://dx.doi.org/10.1016/j.bdr.2020.100172
http://dx.doi.org/10.3390/electronics9122083
http://dx.doi.org/10.1016/j.is.2016.02.003
http://dx.doi.org/10.1145/3204949.3204972
http://dx.doi.org/10.1007/s00607-018-0683-9
http://dx.doi.org/10.1016/j.procs.2017.08.354
http://dx.doi.org/10.1515/jisys-2014-0166
http://dx.doi.org/10.1109/ISIE.2019.8781332
http://dx.doi.org/10.1109/GIOTS.2019.8766346
http://dx.doi.org/10.3390/electronics9020215
http://dx.doi.org/10.1007/978-981-15-8086-4_65
http://dx.doi.org/10.1109/TII.2019.2963728
http://dx.doi.org/10.1109/TII.2019.2957791
http://dx.doi.org/10.1007/978-3-030-33506-9_16


Sensors 2021, 21, 2239 25 of 25

31. Casado-Vara, R.; de la Prieta, F.; Prieto, J.; Corchado, J.M. Blockchain Framework for IoT Data Quality via Edge Computing. In
Proceedings of the BlockSys’18: 1st Workshop on Blockchain-Enabled Networked Sensor Systems, Shenzhen, China, 4 November
2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 19–24. [CrossRef]

32. Hang, L.; Ullah, I.; Kim, D.H. A secure fish farm platform based on blockchain for agriculture data integrity. Comput. Electron.
Agric. 2020, 170, 105251. [CrossRef]

33. Mary, I.P.S.; Arockiam, L. Imputing the missing data in IoT based on the spatial and temporal correlation. In Proceedings of the
2017 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), Bangalore, India, 2–3 March 2017;
pp. 1–4.

34. Androulaki, E.; Barger, A.; Bortnikov, V.; Cachin, C.; Christidis, K.; De Caro, A.; Enyeart, D.; Ferris, C.; Laventman, G.; Manevich,
Y.; et al. Hyperledger Fabric: A Distributed Operating System for Permissioned Blockchains. In Proceedings of the Thirteenth
EuroSys Conference—EuroSys ’18, Porto, Portugal, 23–26 April 2018; pp. 1–15. [CrossRef]

35. Madden, S. Intel Lab Data. Available online: http://db.csail.mit.edu/labdata/labdata.html (accessed on 15 December 2020).
36. Hui, Z.; Fred, B.; Ed, A.; Yongchao, Z.; Darryl, D.; Xiang, Z.; Maohui, L. Reducing building over-cooling by adjusting HVAC

supply airflow setpoints and providing personal comfort systems. In Proceedings of the 15th Conference of the International
Society of Indoor Air Quality & Climate (ISIAQ), Philadelphia, PA, USA, 22–27 July 2018.

37. MPR/MIB User’s Manual. Available online: http://www-db.ics.uci.edu/pages/research/quasar/MPR-MIB%20Series%20
User%20Manual%207430-0021-06_A.pdf (accessed on 6 January 2021).

38. Berman, Z. Outliers rejection in Kalman filtering—Some new observations. In Proceedings of the 2014 IEEE/ION Position,
Location and Navigation Symposium—PLANS 2014, Monterey, CA, USA, 5–8 May 2014; pp. 1008–1013. [CrossRef]

39. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining KDD’96, Portland, OR,
USA, 2–4 August 1996; Simoudis, E., Han, J., Fayyad, U., Eds.; AAAI Press: Portland, OR, USA, 1996; pp. 226–231.

40. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]

http://dx.doi.org/10.1145/3282278.3282282
http://dx.doi.org/10.1016/j.compag.2020.105251
http://dx.doi.org/10.1145/3190508.3190538
http://db.csail.mit.edu/labdata/labdata.html
http://www-db.ics.uci.edu/pages/research/quasar/MPR-MIB%20Series%20User%20Manual%207430-0021-06_A.pdf
http://www-db.ics.uci.edu/pages/research/quasar/MPR-MIB%20Series%20User%20Manual%207430-0021-06_A.pdf
http://dx.doi.org/10.1109/PLANS.2014.6851466
http://dx.doi.org/10.1115/1.3662552

	Introduction
	Medical Equipment Cold Chain Use Case
	Research Questions and Motivations
	Related Works
	Data Quality Definitions
	Related Works Study Criteria
	Quality Dimensions (C1)
	Quality Levels (C2)
	Blockchain Smart Contracts for Data Quality Management (C3)

	Summary of the Related Works Study

	Data Qualification Using Data Quality Dimensions
	Accuracy
	Completeness
	Completeness Levels
	Completeness Incidents

	Consistency
	Currentness
	Currentness Levels
	Currentness Incidents


	The Distributed Architecture of the Traceability System
	The Smart Contract
	The IoT Data Sources

	Evaluation
	Smart Contract Architecture
	Evaluation Experimental Choices
	Results Concerning the Accuracy, Completeness and Currentness Dimensions
	Results Concerning the Consistency Dimension
	Impact of the IoT Data Quality Module on the IoT Data Event Insertion
	Related Works Discussion
	Conclusions on the Evaluation

	Conclusions and Future Works
	References

