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Enhancing and controlling parametric instabilities in mechanical systems
Alvaro A. Grandi,Suzie Protière,Arnaud Lazarus

• Modulating the energy landscape of a system in time induces parametric instabilities
• Operating close to an unstable equilibrium greatly enhance parametric instabilities
• Those extreme parametric instabilities allow us to design new synchronization rules
• We apply them to control the dynamics of an electromagnetic pendulum
• These concepts should allow for new dynamic functionalities in soft structures
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ABSTRACT
We gain new fundamental insights on parametric instabilities that are at the heart of many physical
phenomena from the dynamic buckling of slender structures in periodic compression to the emergence
of Faraday waves or the spontaneous symmetry breaking in Floquet time crystals. Combining theo-
retical models and precision desktop experiments, we explain how to periodically vary the evolution
function of a dynamical system to enhance and get control on parametric instabilities. We show on
a proof of concept that is an electromagnetic pendulum: i) how to observe extremely high orders of
parametric resonance, even in the presence of dissipation, ii) how to trigger and efficiently sustain the
natural vibrations of an oscillator. The presented concepts being universal, they could offer new dy-
namical functionalities in various fields and at any scale, from actuation in soft robotics to vibrational
motions in microelectromechanical resonators.

1. Introduction
Parametric instabilities can develop in any dynamical sys-

tem whose local evolution function is periodically varied in
synchrony with one of its natural time scale [1]. In practice,
the evolution rule is varied by modulating a physical param-
eter of the system: a child can pump a playground swing by
periodically squatting and standing, thus slightly varying the
moment of inertia of the swing as a pendulum [2]; Faraday
waves can emerge by vertically oscillating a layer of fluid,
thus modulating the effective gravity felt by the perturbed
surface waves [3, 4, 5, 6] and a slender structure under pe-
riodic compressive loads can dynamically buckle due to the
small variations of its apparent flexural rigidity [7, 8]. This
concept being universal, parametric instabilities are encoun-
tered in various scientific areas from gravitational waves de-
tectors [9] to plasma [10] or Micro Electro Mechanical Sys-
tems (MEMS) [11, 12]. By nature, parametric oscillators
should allow for the design of complex stability diagrams in
the modulation parameters space with numerous parametric
instability tongues that could be exploited for promising dy-
namical functionalities. But apart in MEMS thanks to their
extremely low damping [11, 13] and Floquet time crystals
[14, 15], because they are many-body coupled oscillators
with low dissipation [16], classical parametric instability re-
gions are actually rather rare and barely controllable.

In this work, we investigate what features of paramet-
ric systems are essential to practically tailor the shape and
number of their parametric instability tongues. We focus on
a single linear oscillator and study the instability thresholds
and dynamical responses of an electromagnetic pendulum to
experimentally illustrate our theoretical concepts. We find
that by carefully choosing the physical parameter to greatly
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vary the evolution function of a linear dynamical system, it is
possible to enhance and fully control parametric instabilities.
For instance, it becomes simple to trigger extremely high
super-harmonic instability regions or to practically use any
periodic modulation functions to achieve interesting cyclic

a)

b)

Figure 1: Linear stability of a mass locally moving in a har-
monically varying potential p =

1
2
(�2 + �2 cos(�))�2. a) Four

qualitative scenarios depending on �2 and �2. Black lines show
p =

1
2
�2�2, red dashed lines p =

1
2
(�2+�2)�2 and blue dashed

lines p =
1
2
(�2 − �2)�2. A: �2 < 0, �2 < −�2. B: �2 < 0,

�2 > −�2. C: �2 > 0, �2 > �2. D: �2 > 0, �2 < �2. b) Linear
stability diagram of the Mathieu equation Eq.(1) in the mod-
ulation parameter space (�2, �2). Triangle, circle, cross, square
represent classic experiments on parametric instability.
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motions. This work brings new physical insights on para-
metric instabilities and show that new dynamical function-
alities can emerge when one periodically change the local
evolution function about the equilibrium point of a dynami-
cal system. The presented energetic concepts being univer-
sal, they could apply at any scale and in various fields, from
electronics to physics or biology. In mechanics, possible ap-
plications range from the original realization of cyclic mo-
tions such as frequency dividers or clocks in MEMS to effi-
cient dynamical actuation between equilibrium positions in
soft robotics.

2. From classical to extreme parametric
systems
The simplest linear model to get physical insights in the

stability behavior of parametric systems is a mass locally
moving in a harmonic potential whose curvature is period-
ically varying with time as illustrated in Fig.1a). Denot-
ing �(�) and �̇(�) the dimensionless position and velocity
of the mass about the equilibrium �(�) = �̇(�) = 0, the
total energy of the system can be expressed as the sum of
a kinetic and potential part, respectively reading c =

1
2 �̇
2

and p =
1
2 (�

2 + �2 (�))�2 where  (�) =  (� +  ) is a
 -periodic modulation function between +1 and −1 and �2
and �2 are the local curvatures of the potential. The linear
equation of motion deriving from this energetic model reads

�̈(�) +
(

�2 + �2 (�)
)

�(�) = 0 (1)
which is an Initial Value Problem in the form of a linear ODE
with periodic coefficient. We recall the solution of Eq.(1)
can be sought in the Floquet form �(�) = p(�)es� + p̄(�)e−s�
where p(�) = p(� +  ) is a  -periodic complex eigenfunc-
tion and s is a complex eigenvalue called the Floquet ex-
ponent [17, 18]. Fig.1b) shows the numerical evolution of
� = max(ℜ(±s)) as a function of modulation parameters �2
and �2 in the classic “Mathieu” case where  (�) = cos(�)
and  = 2�. The color dots � > 0 indicate solutions �(�)
diverging from �(�) = 0, i.e. a particle that is locally unsta-
ble, when the white regions � = 0 indicate quasi-periodic
oscillating solutions �(�) about �(�) = 0, i.e. a marginally
stable particle.

The particular case �2 = 0 corresponds to the classic har-
monic oscillator where the mass is either marginally stable
when �2 > 0 or locally unstable when �2 < 0. The gen-
eralized case �2 > 0 models parametric oscillators and de-
tails on the rationalization of classic experiments by Eq.(1)
are given in Appendix A. For �2 < 0, it is eventually pos-
sible to dynamically stabilize the naturally diverging mass
[18, 19], but in a very small region of the modulation pa-
rameter space and only if �2 > |�2|, i.e. if the curvature
of the potential is at least shortly positive (see cases A and
B in Fig.1). The classic “Kapitza’s pendulum” experiment
[20, 21] that consists in stabilizing an inverted pendulum
by modulating the gravitational energy potential through the

vertical oscillation of its pivot point is indicated by a black
square in the stability diagram of Fig.1b) [22]. The case
�2 > 0 and �2 > �2 (case D in Fig.1) corresponds to classic
parametric instabilities characterized by disconnected insta-
bility tongues whose tips originate, for � → 0, at � = 0.5k
with k a positive integer. The ktℎ instability region indicates
the emergence of 2 or  -periodic motions depending if
k is odd or even, respectively. Classic experiments on the
emergence of Faraday waves [23] or the parametric pump-
ing of “O Botafumeiro” from Santiago de Compostella [2]
are represented by green circles and blue triangles, respec-
tively, in Fig.1b). Super-harmonic parametric instabilities
in MEMS [13] are also represented in the same figure by red
crosses. Finally, case C corresponds to periodic modulations
that are so large, that the curvature of the potential in Fig.1a)
is shortly negative. This is the case of few Faraday instabil-
ity experiments when the acceleration of the shaker is such,
than the effective gravity is negative for a short time, i.e. the
fluid tends to vertically escape the recipient against gravity
[23].

Figure 2: The experimental Floquet oscillator under study
is a planar pendulum with a metallic marble that is symmet-
rically placed between two identical attracting electromagnets
whose attracting force depends on the imposed electrical cur-
rent I (see sketch in inset). The scalar !2(I), characterizing
the local evolution function of the electromagnetic pendulum,
drastically depends on the constant control parameter I .

It is clear from Fig.1b) that parametric instabilities usu-
ally exploited in mechanical Floquet systems are the ones
close to the tips of the instability tongues. In fact, when pe-
riodically varying the length of a pendulum, the accelera-
tion of a shaker or the membrane stiffening of a micromet-
ric plate, it is either impractical or energetically too costly
to maintain a large variation of the evolution function of a
system over relatively long periods of time, i.e. having both
large �2 and �2. And since because of inherent damping,
there is an exponential narrowing of the tips of the tongues
with increasing instability region number k [11], macroscopic
systems are typically limited around the first instability re-
gion and higher orders parametric resonances have only been
observed in MEMS thanks to their extremely large quality
factors [11, 13]. In Fig.2, we propose an experiment where
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parametric instabilities are enhanced. The setup consists of
a 2D pendulum: a metallic marble with radius 0.6 cm is at-
tached to a string of length l = 4.3cm. The marble is sym-
metrically placed between two electromagnets (with typical
holding force of 1000 N) that are separated by a distance
d = 4 cm. Upon a given electrical current I , the magnets
are turned ON and both attract the marble. The local evo-
lution function of this electromagnetic pendulum is charac-
terized, for a given control parameter I , by locally perturb-
ing the pendulum from its trivial vertical equilibrium posi-
tion with a small initial angle �(0) at time t = 0. We find
linear angular responses can be written in the form �(t) =
�(0)ℜ(e−i

√

!2(I)t)where!2(I) is shown in Fig.2. Two qual-
itative responses are observed: below I < Ic , the pendulumis harmonically oscillating in the form �(t) = �(0) cos(!(I)t)
with a natural frequency !(I) that decreases as I increases.
Above a critical current Ic , the pendulum locally diverges
in the form �(0)e!(I)t, eventually choosing one or the other
side depending of initial symmetry imperfections. Because
the bifurcation at I = Ic is sub-critical, there is always a
“jump” of !2(I) around Ic where our experiment is imper-
fection sensitive.
a)

ω2(0)

ω2(I)

Figure 3: Sketch of the input-output synchronization that
would be required for parametric pumping in the case of a
time-periodic system with a square wave modulation function
T1 = T2 = T ∕2. To amplify any small perturbation about the
equilibrium �(t) = 0, one needs to turn the magnets ON (de-
crease effective gravity) when the pendulum height is minimal,
just before the mass goes up, and turn them OFF (put back
strong gravity) when the pendulum height is maximum, just
before the mass goes down.

3. Beyond the tip of the parametric instability
tongues
Unlike classical parametric systems, it is straightforward

with the system of Fig.2 to fully explore regions A − D of
Fig.1b) by periodically varying the electrical current I below
or above Ic . In this work, we modulate !2(I(t)) in a square
wave fashion as shown in Fig.3 (case D) and 5a) (case C).
Precisely, we turn the electromagnets OFF (I = 0) and ON
(I ≠ 0) during T1 and T2 seconds, respectively, so that the
modulation period is T = 2�∕Ω = T1 + T2. The linear
equation of motion of this two-state oscillator reads simply

{

�̈(t) + !2(0)�(t) = 0 during T1,
�̈(t) + !2(I)�(t) = 0 during T2.

(2)

Introducing the dimensionless time � = Ωt, the square wave
modulation function  (�) = +1 during 1 = 2�T1∕T and
 (�) = −1 during 2 = 2�T2∕T and the dimensionless
modulation parameters

�2 =
!2(0) + !2(I)

2Ω2
, �2 =

!2(0) − !2(I)
2Ω2

, (3)

Eq.(2) can be reduced in the dimensionless form of Eq.(1)
which, in the case of a piecewise modulation function  (�),
is called the Meissner equation [1]. On top of being easy to
experimentally implement, a squarewave parametric oscilla-
tor can be analytically solved [24, 25]. Notably, introducing
� = i

√

�2 + �2 and � = i
√

�2 − �2, the analytical growth
rate � = max(ℜ(±s)) of the Floquet forms of Eq.(1) reads
� = |ℜ( 12� ln(

Δ±
√

Δ2−4
2 ))| where

Δ=2cosh(�1) cosh(�2)+(
�
�
+�
�
) sinh(�1) sinh(�2). (4)

Evolution of � is shown in Fig.4a) for T1 = T2 = T ∕2
in an extremely extended parameter space (�2, �2) (two or-
der of magnitude more as compared to the stability chart of
Fig.1b)). We recognize the ktℎ instability tongues originat-
ing at � = 0.5k for � → 0 like for the Mathieu equation,
although the tongues are here tailored in discrete pockets.
We found that the discrete location of those instability pock-
ets can be rationalized by the input-output synchronization
sketched in Fig.3. Parametric pumping is achieved by drop-
ping the effective gravity (magnets ON) when the pendulum
has minimal potential energy, i.e. at �(t) = 0, and putting
back strong gravity (magnets OFF) when potential energy
is maximum, i.e. when �(t) is an extremum. For example,
Fig.3 illustrates the most efficient pumping at the origin of
the classic primary instability tongue, that consists in turn-
ing the magnets ON and OFF every quarter of a cycle of
the pendulum’s response. But many higher super-harmonic
modes of parametric amplification are theoretically possi-
ble that can verify the aforementioned input-output synchro-
nization. Knowing the electromagnetic pendulum has a nat-
ural period 2�∕√�2 + �2 when OFF during 1 = � and
2�∕

√

�2 − �2 when ON during 2 = �, those modes need
to fulfill

(2m − 1)2�

4
√

�2 + �2
= � and (2n − 1)2�

4
√

�2 − �2
= � (5)

where m and n are positive integers and m > n, i.e. �2 >
�2. As the mode numbers (m, n) are varied, Eq.(5) gives
us a new discrete design rule in the (�2, �2) space to eas-
ily locate the center of the instability pockets as shown by
the grey dots in Fig.4a). Physically, (2m − 1) and (2n − 1)
represent the number of quarters of a cycle of the pendu-
lum’s response one can fit in the modulation periods T1 and
T2, respectively. Fig.4b) shows four experimental dynami-
cal responses whose transient regimes are representative of
the many parametric instabilities observed in the electro-
magnetic pendulum of Fig.2. As expected, the parametric
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Figure 4: Triggering extremely high orders of parametric resonances. a) Stability diagram of the Meissner equation Eq.(1)
showing �, up to 0.4, in the extremely extended (�2, �2) space. Grey dots (m, n) represent the discrete solutions of Eq.(5). Green
crosses represent the experimental parameters expressed in the (�2, �2) space. Inset zooms on the classic first instability regions.
b) Dynamical responses of the electromagnetic pendulum of Fig.2 when !2(I(t)) is modulated in a square wave fashion with
T1 = T2 = T ∕2. b1) A classic “(1, 1)” parametric amplification obtained for !(0) =

√

g∕l ≈ 15.15 rad/s, !(I) ≈ 6.8 rad/s and
T ≈ 0.33s. b2) A (2, 1) parametric instability obtained for !(0) ≈ 15.15 rad/s, !(I) ≈ 6.8 rad/s and T ≈ 0.62s. b3) A (15, 7)
parametric pumping obtained for !(0) ≈ 15.15 rad/s, !(I) ≈ 6.5 rad/s and T ≈ 6.02s. b4) A (25, 12) parametric amplification
obtained for !(0) ≈ 15.15 rad/s, !(I) ≈ 6.5 rad/s and T ≈ 10.16s.

pumpings at the origin of the observed limit cycles are in
good qualitative agreement with the synchronization princi-
ple illustrated in Fig.3. Expressing the experimental modu-
lation parameters !(I) and Ω associated with the responses
of Fig.4b) in the dimensionless form �2 and �2 thanks to
Eq.(3), we report experimental data (green crosses) in the
stability diagram of Fig.4a) and find excellent agreementwith
the expected (m, n) parametric pumping mode from Eq.(5).
The parametric instability of Fig.4b1), found in the classic
primary instability region k = 1, leads to a sub-harmonic
2T -periodic limit cycle. Fig.4b2) corresponds to a (m, n) =
(2, 1) unstable parametric mode, located in the instability re-
gion k = 2, and leads to a T -periodic limit cycle as expected
since m is even (see movie 1 in [26]). Fig.4b3) and Fig.4b4)
display a (15, 7) and (25, 12) parametric pumping mode re-
spectively, leading to extremely high super-harmonic 2T -
periodic motions since m is odd in both cases. Since the in-
stability region number follows k = m+ n− 1, the response
of Fig.4b4) (see movie 2 in [26]) is actually located in the
36tℎ instability tongue as shown in Fig.4a); an achievement
since, to our knowledge, the record k = 28 was observed in
a MEMS in 2016 [13]. It is beyond the scope of this paper to
report the plethora of parametric instabilities existing in this
fundamental electromagnetic pendulum, as suggested by the
impressive number of instability pockets in Fig.4a), but the
various motions displayed in Fig.4b) already highlights the
potential of extreme parametric instabilities for new dynam-
ical control in mechanical systems.

4. Triggering and sustaining a natural
oscillation
Another overlooked limit that could be useful inmechan-

ical Floquet systems is the almost “impulse train” case illus-
trated in the sketch of Fig.5a). Here, the magnets are almost
continuously OFF, except for every period T1 ≈ T where
they are turned shortly ON during T2 with a current I . Our
system is a locally stable pendulum, characterized by a har-
monically damped oscillating perturbation with natural pe-
riod T0 = 2�∕!(0), except every period T1 where the lo-
cal evolution function of the pendulum is shortly but drasti-
cally changed. This original scenario is still theoretically de-
scribed by the governing equations Eqs.(1)-(4). Notably, the
analytical growth rate � as a function of (�2, �2) is given in
Fig.5a) for T1 = 0.98T and T2 = 0.02T . Now the paramet-
ric instability tongues are thin parallel regions whose “left”
frontiers correspond to the black lines √�2 + �2 = 0.5k,
that have been obtained by introducing the limits 2 → 0 and
1 → 2� in Eq.(4). This stability diagram actually means
one should be able to parametrically amplify the harmonic
perturbation with natural period T0 as soon as T ≈ 0.5kT0,where k is the positive integer representing the instability
tongue number.

As a proof of concept, we show in Fig.5b) the experi-
mental response of the electromagnetic pendulum (charac-
terized by a natural period T0 = 2�∕

√

g∕l = 412 ms and
a natural frequency f0 = 1∕T0 = 2.43 Hz) when the mag-
nets are continuously OFF except every T ≈ T1 ≈ 1220 ms
where I ≈ 1.2 A during T2 ≈ 25 ms (see movie 3 in [26]).
Expressing the experimental parameters !(0) = 2�f0, !(I)and Ω = 2�∕T in the dimensionless form �2 and �2 thanks
to Eq.(3), we report experimental data (green cross) in the
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Figure 5: Triggering a "natural” limit cycle. a) Stability di-
agram of the Meissner equation Eq.(1) in the “impulse train”
case when T1 = 0.98T and T2 = 0.02T . Black lines show the
limit T1 → T and T2 → 0. The green cross represents the exper-
imental modulation parameters associated with the response
shown in b) Left: experimental response observed when the
electromagnetic pendulum is OFF during T1 ≈ 1.22 s and ON,
with I ≈ 1.2 A (I > Ic) during T2 ≈ 0.025 s (≈ 0.02T1). In-
set zooms on the T -periodic limit cycle. Red lines represent
the very short time the magnets are ON. Right: Fast Fourier
Transform of the permanent regime of the response. The black
dashed-line represents the value of the natural frequency of the
pendulum when the red ones represent the secondary harmon-
ics f0 ± ℎf , where f = 1∕T and ℎ is an integer.

stability diagram of Fig.5a). We find, as expected since the
applied modulation period T is 6th time slower than half
the natural period of the pendulum, that the limit cycle of
Fig.5b) results from a parametric resonance of order k = 6.
Since k is even, we expect to trigger a T -periodic limit cycle
which is confirmed by the FFT of the experimental perma-
nent regime in Fig.5b) that shows spectral rays located every
f0 ± ℎf with ℎ an integer and f = 1∕T . Interestingly, the
limit cycle is very close to a purely sinusoidal motion with
a fundamental frequency f0 since the amplitudes of the sec-
ondary harmonics weight no more than 3% of the fundamen-
tal one. Actually, as illustrated by the inset of Fig.5b) that
displays the last three periods of the recorded experimental
response, the triggered limit cycle is the free damped oscilla-
tion of the pendulumwith natural period T0 that is "reset” ev-ery 3T0 thanks to the synchronized impulse of input energy
represented by red vertical lines. Every T ≈ 0.5kT0, thesame periodically reseted natural sinusoidal motion could be
triggered and sustained with the difference that the growth

rate of the transient oscillations decreases with k until even-
tually no instability occurs for large k = kmax because of
insufficient energy exchanges (see Appendix B for the case
T ≈ 6T0). To increase themaximum order of observed para-
metric resonance kmax, one could increase theQ factor of the
pendulum or the current intensity I . Interestingly, unlike the
classic resonance phenomenon, the bandwidth of this para-
metric resonance, i.e. the width of the instability tongues
of Fig.5a), depends on the “width” of the imposed impulse
train and not on the Q factor: the shorter the impulse train,
the shorter the periodic energy exchange and the thinner the
instability regions. Another useful property is the tuning ca-
pabilities offered by this system: bymaintaining themagnets
almost continuously ON with I < Ic instead of OFF with
I = 0 as in Fig.5a), one could efficiently trigger and sus-
tain any sinusoidal oscillations with angular frequency !(I)
between !(0) and almost 0, as suggested by Fig.2. For sys-
tems like MEMS that are tiny beam or plate resonators with
enormousQ factors (because they operate in Ultra HighVac-
uum) driven by periodic electrostatic fields, an application of
this particular parametric pumping could allow to efficiently
generate highly super-harmonic sinusoidal signals with ex-
tremely tunable fundamental frequencies.

5. Conclusions and perspectives
Based on a better fundamental understanding of para-

metric oscillators, we have shown through theoretical and
experimental proofs of concepts, how to extremely enhance
and better control parametric instabilities. The presented
concepts being universal, they could apply to any dynamical
systems with a natural cycle which time scale could be pe-
riodically varied: from resonant MEMS to purely electronic
circuits or lasers where researchers are often seeking for new
dynamical functionalities to exploit, but also non engineered
systems such as business cycles or circadian rhythms.

Quasi-static symmetry breaking like buckling allows, th-
rough the slow variation of a single parameter, to switch
from one unstable to a new stable equilibrium configuration,
albeit with a unique time scale mainly determined by the
growth rate of the diverging instability. Parametric instabil-
ity is a dynamic symmetry breaking that, upon the periodic
variation of a parameter, should allow for even more control
on switchings between equilibrium or time periodic configu-
rations, as soon as one modulates the evolution function of a
system close to its diverging instability. Since elastic buck-
ling has been shown to enable actuations of soft machines
[27] or structures [28], the application of extreme parametric
instabilities to those fields should improved actuation, espe-
cially in time.
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A. Rationalization of the instability
thresholds of classical parametric systems
We rationalize various experiments from the literature

with the linear parametric oscillator governed by Eq.(1) of
the manuscript. All experimental data can then be repre-
sented in the same stability diagram.
A.1. Faraday instability

The first experimental demonstration of a parametric be-
havior was made by Faraday in 1831. His experiment con-
sists in creating a wave motion in a fluid by vertically oscil-
lating it.

!"#! cos #'
Γ

Vibrating pot

h

)(#)
,

-, /

!(#)

Figure 6: Experimental setup to observe Faraday instability.
A fluid is placed over a vibrating pot with a frequency of ex-
citation ! and an acceleration of the excitation Γ. The fluid
is characterized by : a(t) the amplitude of displacement of the
surface, ℎ the depth of the fluid,  the surface tension, � the
density of the fluid, � the wavelength and g the gravitational
acceleration.

Based on the work of Benjamin and Ursell [4] and con-
sidering only the first mode, the evolution of the amplitude
of displacement of the surface of the fluid for the Faraday
instability reads
d2a(t)
dt2

+k tanh(kℎ)
(

k2
�
+ g − Γ cos(!t)

)

a(t) = 0 (6)

where k = 2�∕� is the fluid wavenumber and the dispersion
equation for capillaro-gravitational waves is

! =

√

k tanh (kℎ)
(

g +
k2
�

)

. (7)

By implementing a change of variable � = !t and using
a first approximation for small angles �(�) = a(�)∕�, we are
able to write Eq.(1) in the standard dimensionless form of
the manuscript:

�̈(�) +
(

�2 − �2 cos(�)
)

�(�) = 0

with �2 =k tanh (kℎ)
!2

(

g +
k2
�

)

and �2 = k tanh (kℎ)Γ
!2

.

Experimental parametric parameters �2 �2
f = 20 Hz ; Γ = g m.s−2 0.249 0.196
f = 80 Hz ; Γ = 4g m.s−2 0.250 0.201
f = 120 Hz ; Γ = 7.5g m.s−2 0.251 0.232
f = 160 Hz ; Γ = 12.5g m.s−2 0.250 0.267

Table 1
Experimental parameters for the Faraday instability used by
Protière [23] and corresponding values of the dimensionless
modulation parameters �2 and �2. Data points presented in
Fig.1 of the manuscript.

(8)
An experimental study of Faraday instability is presented

in the work of Protière [23]. The properties of the fluid are:
surface tension  = 0.0209 N∕m, density � = 0.965 × 103
kg.m−3, the depth of the fluid is ℎ = 4×10−3m and the gravi-
tational acceleration is g = 9.81m.s−2. Using the dispersion
equation of capillary-gravitational waves Eq.(7) with the ex-
plicit form of parametric parameters of Eq.(8), we are able
to calculate in Table 1 the dimensionless parameters (�2, �2)
for each experimental point that are then reported in the Fig.1
of the manuscript.
A.2. Parametric pendulum

The system is a pendulum where the pivot point is verti-
cally oscillating as shown in Fig.2.

,

%(#)

0

1

& cos *#
Figure 7: Experimental setup and parameters for a parametric
pendulum. The frequency of excitation is ! and the amplitude
of excitation is A. The pendulum is characterized by its length
L, mass m and �(t) the angular displacement measured from
the vertical position. The gravitational acceleration is g.

The undamped equation of motion for this system is the
following

I
d2�(t)
dt2

+ mL
(

g − A!2 cos!t
)

sin �(t) = 0 (9)

where I is the moment of inertia and the rest of the parame-
ters are defined on Fig.2. In this case parametric instabilities
are used to trigger the motion of the pendulum in the equi-
librium position � = 0. By linearizing Eq.(9) about � = 0
(approximation of small angles for the angular displacement
�(t)) and upon the change of variable � = !t, we are able
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Experimental parametric parameters �2 �2
f = 0.22 Hz ; A = 2.9 m 0.244 0.141

Table 2
Experimental parameters used by San Martin [2] and corre-
sponding values of the dimensionless modulation parameters
�2 and �2. Data point presented in Fig.1 of the manuscript.

to write Eq.(9) in the form of the Mathieu equation of the
manuscript:

�̈(�) +
(

�2 − �2 cos(�)
)

�(�) = 0

with �2 = g
L
1
!2

and �2 = A 1
L
.

(10)

An experimental example of this system is the giant censer
(“O Botafumeiro”) from Santiago de Compostella presented
in the work of San Martin [2]. The length of the pendulum
isL = 20.6m, the mass ism = 56.5 kg and the gravitational
acceleration is g = 9.81 m.s−2. The dimensionless experi-
mental parameters are calculated using the experimental val-
ues of San Martin [2] and Eq.(10) and are reported in Table
2.
A.3. Inverted pendulum

The system is an inverted pendulumwhere the pivot point
is vertically oscillating (the displacement is often imposed
by a shaker). In this case parametric instabilities are used to
stabilize the naturally diverging equilibrium.

Vibrating pot

,
!"#! cos #'
Γ

0

1%(#)

Figure 8: Experimental setup and parameters for stabilizing
an inverted pendulum. The inverted pendulum is placed over
a shaker with a frequency of excitation !, an amplitude of
excitation A and an acceleration of excitation Γ = A!2. The
pendulum is characterized by its length L, mass m and �(t) is
the angular displacement measured from the vertical position.
The gravitational acceleration is g.

The undamped equation of motion for this system is the
same presented for the parametric pendulum Eq.(9) but in
this case the considered equilibrium position is � = �. By
linearizing Eq.(9) about this equilibrium position (approx-
imation of small angles for the angular displacement �(t))
and upon the change of variable � = !t, we are able to write

Experimental Parametric parameters �2 �2
f = 157.17 Hz ; Γ = 61.3 m.s−2 0.050 0.31

Table 3
Experimental parameters used by Smith [22] and values of the
corresponding dimensionless parameters �2 and �2. Data point
presented in Fig.1 of the manuscript.

Eq.(9) in the form:
�̈(�) −

(

−�2 − �2 cos(�)
)

�(�) = 0

with �2 = g
L
1
!2

and �2 = Γ
!2

1
L
.

(11)

For this system, an experimental example is presented
in the work of Smith [22]. The length of the pendulum is
L = 0.008 m, the mass is m = 0.19 × 10−3 kg and the grav-
itational acceleration is g = 9.81 m.s−2. The dimension-
less experimental parameters are calculated using the exper-
imental values of Smith [22] and Eq.(11) and are shown in
Table 3.
A.4. Microelectromechanical systems: MEMS

In this case parametric instabilities are used to amplify
themovement ofmicroelectromechanicalmembranes (MEMS).
Jia et al. [13] used a Duffing oscillator to describe the motion
of the membrane:

d2x(t)
dt2

+ 2�1!m
dx(t)
dt

+ �2|
dx(t)
dt

|

dx(t)
dt

+

bx3 +
(

!2m − �Γ cos!t
)

x(t) = 0
(12)

where x is the displacement of the membrane, !m is the nat-
ural frequency of the mode m, �1 is the viscous damping ra-
tio, �2 is the nonlinear quadratic damping coefficient, b is the
mass normalised Duffing coefficient, � is a standard coeffi-
cient relating the external excitation to the parametric excita-
tion,! is the frequency of excitation and Γ is the acceleration
of the excitation.

To compare this equation with our model we make the
assumption that there is no damping and we neglect non lin-
ear terms, i.e.: we consider only small oscillations about the
equilibrium position. Upon the change of variable � = !t,
equation Eq.(12) can be expressed in the standard dimen-
sionless form of the Mathieu equation of the manuscript:

ẍ(�) +
(

�2 − �2 cos(�)
)

x(�) = 0

with �2 = !2m
!2

and �2 = Γ �
!2
.

(13)

The experimental parameters are the one used in thework
of Jia et al. [13]. The natural frequency of the membrane is
f0 = 980 Hz and the value of the standard coefficient is
� = 1.7744×106. The dimensionless experimental parame-
ters are calculated using the experimental values of Jia et al.
[13] and Eq.(13) and are reported in Table 4.
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Experimental parametric parameters �2 �2
f = 1960 Hz ; Γ = 0.4 m.s−2 0.25 0.0047
f = 980 Hz ; Γ = 0.5 m.s−2 1.0 0.023
f = 650 Hz ; Γ = 6 m.s−2 2.27 0.64
f = 480 Hz ; Γ = 8 m.s−2 4.17 1.56

Table 4
Experimental parameters used by Jia et al.[13] and values of
the corresponding dimensionless modulation parameters �2 and
�2. Data points presented in Fig.1 of the manuscript.

B. Triggering and sustaining a natural
oscillation
We present the experimental observation of a 12th order

parametric resonance using the "impulse train" scenario de-
scribed in Section 4. The period of modulation is T = 6T0and current intensity I = 1.25A. To assure a minimal ex-
change of energy we set T1 = 0.99T0 and T2 = 0.01T0.

Figure 9: Triggering a "natural” limit cycle. a) Stability di-
agram of the Meissner equation Eq.(1) in the "impulse train”
case when T1 = 0.99T and T2 = 0.01T . Black lines show the
limit T1 → T and T2 → 0. The green cross represents the exper-
imental modulation parameters associated with the response
shown in b) Left: experimental response observed when the
electromagnetic pendulum is OFF during T1 ≈ 2.46 s and ON,
with I ≈ 1.25 A (I > Ic) during T2 ≈ 0.025 s (≈ 0.01T1).
Inset zooms on the T -periodic limit cycle. Red lines represent
the very short time the magnets are ON. Right: Fast Fourier
Transform of the permanent regime of the response. The black
dashed-line represents the value of the natural frequency of the
pendulum when the red ones represent the secondary harmon-
ics f0 ± ℎf , where f = 1∕T and ℎ is an integer.

Expressing the experimental parameters in the (�2, �2)
dimensionless space, we report experimental data (green cross)
in the stability diagram of Fig.9a). We find, as expected
since the applied modulation period T is 12th time slower
than half the natural period of the pendulum, that the limit

cycle of Fig.9b) results from a parametric resonance of order
k = 12. Since k is even, we expect to trigger a T -periodic
limit cycle which is confirmed by the FFT of the experimen-
tal permanent regime in Fig.9b). Interestingly, the limit cy-
cle is very close to a purely sinusoidal motion with a funda-
mental frequency f0 since the amplitudes of the secondary
harmonics weight no more than 3% of the fundamental one.
Actually, as illustrated by the inset of Fig.9b) that displays
the last two periods of the recorded experimental response,
the triggered limit cycle is the free damped oscillation of the
pendulum with natural period T0 that is "reset” every 6T0thanks to the synchronized impulse of input energy repre-
sented by red vertical lines.
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