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UMR 8212 CEA-CNRS-UVSQ, Université Paris-Saclay & IPSL, 91191, Gif-sur-Yvette, France

13

14

Berengere Dubrulle15
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ABSTRACT

Although the life-cycle of hurricanes is well understood, many of the un-

derlying physical processes occur at scales below those resolved by global

climate models (GCMs), so that projecting future changes in hurricance char-

acteristics remains challenging. We assess the capability of dynamical system

metrics to identify intense cyclones even in coarse resolution datasets, where

wind speed may be not accurately represented. We compute dynamical indi-

cators, namely the persistence and number of active degrees of freedom, from

the horizontal wind field of 146 tropical cyclones occurred between 2010

and 2018 using ERA5 reanalysis data at 0.25 ◦ horizontal resolution, and

link these to the maximum sustained winds as detected from observational

datasets. Our analysis provides a representation of cyclones in phase space

and allows to: i) identify different stages of the cyclones’ life cycle as distinct

regions of the phase space; and ii) locate regions of the phase space associated

with intense cyclones (as detected from observations). Specifically, we find

that the most intense cyclones are associated with a strong decrease of the

instantaneous dimension and an increase in persistence of tropical cyclones.

This relation could be used for detection of intense cyclones in comparatively

coarse resolution datasets, such as those issued from GCM simulations or

century-long reanalyses.
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1. Introduction40

Tropical cyclones are high-impact extreme weather events. In the United States of America,41

they are the costliest natural disaster category (Smith and Katz 2013; Grinsted et al. 2019), with42

the damage related to hurricane Katrina (2005) alone amounting to about 1% of the country’s gross43

domestic product (Grinsted et al. 2019). Trends in the frequency of occurrence or intensity of trop-44

ical cyclones are difficult to discern in observations, because of the comparative rarity of the events45

and of the brevity of highly spatially and temporally resolved datasets, which rely on in-situ and46

satellite observations (Chang and Guo 2007). Projections of future climate indicate an increase in47

the intensity of hurricanes in the North Atlantic sector, albeit only with medium confidence (Kossin48

et al. 2017) because of the difficulties in reproducing the dynamics of the most severe hurricanes49

even in the most advanced global or regional climate models (Roberts et al. 2020b). Indeed, while50

mid-latitudes synoptic dynamics mostly originates from the chaotic structure of the motions asso-51

ciated with baroclinic instability (Lorenz 1990; Schubert and Lucarini 2015), tropical cyclones are52

characterized by a rapid organization of convectively unstable flows whose dynamics is turbulent53

and highly sensitive to boundary conditions (Muller and Romps 2018).54

Destructive tropical cyclones often experience rapid intensification, which occurs when a trop-55

ical cyclone gains dramatically in strength over a short period of time (Sanders 1986). The rapid56

intensification phenomenon, well explained from a theoretical viewpoint (Klein 2010; Soloviev57

et al. 2017), results in an enhancement of the destructive potential of the cyclone and in a degraded58

predictability of its trajectory (Lee et al. 2016). It is often detected via an increment(generally 4059

Kts) of sustained winds over a period of 24h. It is challenging to detect this phenomenon in global60

climate models (GCMs), due to the coarse resolution of wind field data. Emanuel (2017) discusses61
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several wide-reaching implications of the poor representation of hurricanes in GCMs for present62

and future climates.63

Here, we investigate whether it may be possible to obtain a reliable indicator of intense tropical64

cyclones from relatively coarse gridded atmospheric data. Specifically, we compute two met-65

rics that describe cyclones as states of a chaotic high-dimensional dynamical system, and reflect66

the persistence and dimension (i.e. the number of active degrees of freedom) of instantaneous67

states of the cyclones. These metrics have recently provided insights on a number of geophysical68

phenomena, including transitions between transient metastable states of the mid-latitude atmo-69

sphere (Faranda et al. 2017; Hochman et al. 2019), palaeoclimate attractors (Brunetti et al. 2019;70

Messori and Faranda 2021) slow earthquake dynamics (Gualandi et al. 2020) and changes in mid-71

latitude atmospheric predictability under global warming (Faranda et al. 2019). All these applica-72

tions have taken a Eulerian approach, and have thus focused on a fixed spatio-temporal domain,73

rather than tracking the evolution of specific physical phenomena. Here, we apply for the first time74

the two metrics in a Lagrangian perspective. A Lagrangian dynamical systems framework is par-75

ticularly convenient to study the complex behavior of convectively unstable flow systems (Crisanti76

et al. 1991; Vulpiani 2010), such as tropical convection. As an additional benefit over previous dy-77

namical systems approaches (e.g Wolf et al. 1985; Cao 1997), these metrics can be easily applied78

to large datasets, such as climate reanalyses or climate models. Their Lagrangian implementation79

enables to characterize the phase-space structure of tropical cyclones in terms of their dimension80

and persistence, and observe whether these single out the most intense cyclones. The rationale is81

that the signature of intense cyclones propagates through scales due to the presence of inverse cas-82

cades as suggested by Levich and Tzvetkov (1985) and, more recently, by Faranda et al. (2018). If83

this were indeed the case, we could then use the region of phase space targeted by intense cyclones84

in observations to detect the same phenomenon in datasets where we cannot explicitly access the85
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relevant spatial scales. Our study is organized as follows: first, we describe the data, observables86

for cyclone dynamics and the theoretical bases supporting the computation of the dynamical indi-87

cators. Then, we show the general characteristics of the phase space of tropical cyclones for the88

different observables. Finally, we investigate rapid intensification and discuss our results.89

2. Data and Methods90

a. Representation of tropical cyclones in ERA5 data91

We follow 146 Atlantic tropical cyclones which occurred between 2010 and 2018 and base92

the computation of the two dynamical systems metrics on hourly-mean data from the ERA593

reanalysis (Hersbach et al. 2020) sampled every 6h, and additionally whenever the HURDAT294

database (Landsea and Franklin 2013) displays a cyclone landfall entry. Tracks and classification95

of the cyclones are also taken from the HURDAT2 database (Landsea and Franklin 2013). HUR-96

DAT2 is the most complete database of tropical cyclone tracks for the Atlantic basin since 1950,97

providing 6-hourly sampling of position and speed of the eye, and maximum sustained winds at a98

5 kts resolution. No wind speed adjustment has been made, contrary to what is done by Emanuel99

et al. (2005).100

There is a large discrepancy between the maximum sustained winds reported in HURDAT2 and101

the closest quantity that we can derive from ERA5, namely the maximum horizontal wind at 1000102

hPa over one hour, shown in Figure 1. It is important to remark that, while ERA5 wind speed is103

averaged over one hour, tropical cyclone intensity is usually defined using the one-minute average.104

This reflects on the large discrepancy between the highest wind values found in ERA5 (≈ 80 kts)105

and in HURDAT2 (≈ 150 kts). This affects the capability of ERA5 to both accurately assign106

each hurricane to the appropriate Saffir-Simpson category and to detect rapid intensification. In107
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particular, for cyclone intensity estimation, this implies that we are not able to separate hurricanes108

between category 2 and 5. Concerning rapid intensification, HURDAT2 points to 47 out of the109

146 considered cyclones, while ERA5 detects none. This analysis suggests that ERA5 shares the110

difficulties of current state-of-the-art GCMs when it comes to representing the intensity of tropical111

cyclones Kim et al. (2018). We also underline that the ERA5 horizontal resolution used here is of112

the same order of magnitude as that of the HighResMIP (High Resolution Model Intercomparison113

Project, Haarsma et al. (2016)) and PRIMAVERA models, which are amongst the current best114

tools to study climate change impacts on tropical cyclones (Roberts et al. 2020a).115

b. Observables of cyclone dynamics116

We adopt a Lagrangian framework, i.e. we consider a domain of size ∼ 1200 km × 1200 km117

(41 × 41 grid points), centred on the eye of each cyclone. In the vertical dimension, we consider118

9 pressure levels from 1000 hPa to 200 hPa. As observables, we chose sea-level pressure (SLP)119

maps, horizontal velocity at 1000 hPa (VH), vertical velocity (W) and the 3D kinetic energy field120

computed at each grid point as half of the quadratic sum of the velocity components. We relate121

these quantities to the maximum sustained winds derived from the HURDAT2 database, a quantity122

that can be directly connected to the economic loss caused by tropical cyclones (Zhai and Jiang123

2014).124

c. A dynamical systems view of tropical cyclones125

We follow tropical cyclones in phase space as states of a chaotic high-dimensional dynamical126

system. Each instantaneous state of the cyclone, as represented by a given atmospheric variable,127

corresponds to a point along the trajectory representing the evolution of the system, which we128

sample at discrete intervals determined by the temporal resolution of our data. For example, we129
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may have 6-hourly SLP latitude-longitude maps which, at every time step, are centred on the130

cyclone’s eye. Our aim is to diagnose the dynamical properties of the instantaneous (in time) and131

local (in phase-space) states of the cyclone, as represented by the chosen atmospheric variable132

and chosen geographical domain (physical space in Fig. 2). To do so, we leverage two metrics133

issuing from the combination of extreme value theory with Poincaré recurrences (Freitas et al.134

2010; Lucarini et al. 2012, 2016)135

We first consider a long trajectory x(t), which in our example would be given by x =SLP maps136

of all time steps for all tropical cyclones in our dataset, always centred on their eye. We thus137

effectively construct a Lagrangian observable. We further consider a state of interest ζx, which138

would correspond to a single SLP map drawn from this dataset (state ζ in Fig. 2). We then define139

logarithmic returns as:140

g(x(t),ζx) =− log[dist(x(t),ζx)] (1)

Here, dist is the Euclidean distance between two SLP maps, but it can be any distance function141

between two vectors which tends to zero as the two vectors increasingly resemble each other. We142

thus obtain a time series of logarithmic returns g, which takes large values at times when x closely143

resembles ζx.144

We next define exceedances as u(ζx) = {t,g(x(t),ζx)> s(q,ζx)}, where s(q,ζx) is a high thresh-145

old corresponding to the qth quantile of g(x(t),ζx). These are effectively the previously-mentioned146

Poincaré recurrences, for the chosen state ζx (phase space in Fig. 2). The Freitas-Freitas-Todd the-147

orem (Freitas et al. 2010; Lucarini et al. 2012) states that the cumulative probability distribution148

F(u,ζ ) converges to the exponential member of the Generalised Pareto Distribution. We thus have149

that:150
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F(u,ζx)' exp
[
−ϑ(ζx)

u(ζx)

σ(ζx)

]
(2)

The parameters u and σ depend on the chosen state ζx, while ϑ is the so-called extremal index,151

namely a measure of clustering of points near ζx (Moloney et al. 2019). We estimate it here using152

the Süveges Estimator (Süveges 2007).153

From the above, we can define two dynamical systems metrics: local dimension (d) and persis-154

tence (θ−1). The local dimension is given by d(ζx) = 1/σ(ζx), with 0 < d <+∞. The persistence155

by θ−1(ζx) = ∆t/ϑ(ζx), where ∆t is the time step of the data being analysed and 0≤ θ ≤ 1.156

While the derivation of d and θ−1 may seem very abstract, the two metrics can be related157

intuitively to the physical properties of the tropical cyclones. d is a proxy for the active number of158

degrees of freedom of the cyclones’ instantaneous states, while θ−1 measures the persistence of159

such states.160

3. Dynamical properties of tropical cyclones and their connection to sustained winds161

We now turn to analysing the properties of tropical cyclones in phase space for the different162

observables described in Sect. 2 against the maximum sustained winds. We begin with SLP and163

KE. SLP is widely used in cyclone tracking (Elsner 2003), and provides a first approximation of164

the horizontal velocity stream function. KE is relevant to the study of cyclones because of both its165

direct connection with the wind speed and its link with the phases of rapid intensification/decay of166

the cyclones (Krishnamurti et al. 2005).167

Figure 3 shows the values of dimension d and inverse persistence θ for SLP (a) and KE (b)168

against the maximum sustained wind. The values of d are bounded by d < 35 for both the observ-169

ables, despite the kinetic energy being derived from the 3D wind field, while SLP is 2D. The range170

of local dimensions found is relatively low compared to the number of grid-points used, which is171
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order of 1600 for SLP and 16000 for KE. This means that the majority of the degrees of freedom172

are frozen when we follow coherent convective phenomena such as tropical cyclones. Moreover,173

although the range of values spanned by the local dimensions is similar for KE and SLP, the lag-0174

correlation coefficient between dSLP and dKE is relatively low, at 0.2. The persistence range is175

different for SLP and KE, with 0.1 < θSLP < 1 and 0.1 < θKE < 0.6. If we convert these values176

to hours, we get that the SLP persistence range is between 1 and 10 hours and the KE persistence177

ranges between 2 and 10 hours. Despite the different range of values, the lag-0 correlation between178

θSLP and θKE is 0.4, higher than for d, suggesting that the two carry more mutual information.179

Maximum sustained winds are closely connected to the values of d and θ for SLP and KE. For180

SLP (Figure 3a) we note a strong dependence of θ on the maximum sustained winds. Low-to-181

moderate winds are associated with non-persistent states of the cyclones, while stronger winds182

typically point to more persistent states. High but not extreme wind speed values (60 to 85 kts)183

are concentrated on particularly low values of θSLP. For large values of dSLP, maximum sustained184

winds are typically weak. An even clearer relation emerges between dKE ,θKE and the maximum185

sustained winds (Figure 3b). There, the strongest winds are associated with the lowest values of d186

and θ .187

Fig. 3c,d) shows the distributions of d and θ conditional on the HURDAT2 classification of the188

cyclones; the least organised states (tropical storms, blue) are characterised by low persistence and189

relatively high dimension. On the opposite end, low dimensional and highly persistent states cor-190

respond to Hurricanes (red) or extratropical transitions of tropical cyclones (black). As a caveat,191

we note that the most intense events somewhat deviate from the modal shifts between the distribu-192

tions. For example, the dKE distribution for Tropical Storms (blue line in the lower panel of Fig.193

3d) shows a much higher mode than that for Hurricanes (red line).194
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We test for significant differences in storm dynamics separately for dSLP, dKE , θSLP and θKE195

by comparing the three densities for the cases of tropical storms, hurricanes, and extratropical196

transitions under the null hypothesis that they have the same distribution (side and bottom panels197

of 3c,d)). We choose the significance level α = 0.05. In particular, we apply a Kruskall-Wallis198

test to determine if there are significant differences in location and a k-sample Anderson-Darling199

test for more general shape differences among the three distributions. Then, we perform pairwise200

Wilcoxon signed rank tests to determine which distribution is stochastically dominant compared to201

the others. Finally, we also repeat the Anderson-Darling test in a pairwise fashion to determine if202

there are differences in scale between distributions that do not show significant location shifts. All203

the grouped Anderson-Darling and Kruskall-Wallis tests reject H0 (all p-values < 2.2× 10−16),204

suggesting that at least one distribution is significantly different from the others in all cases, possi-205

bly due to a location shift. The pairwise Wilcoxon tests suggest that both dSLP and dKE for tropical206

storms are larger than for hurricanes and extratropical transitioning storms; moreover, dKE for207

hurricanes is also larger than for extratropical storms. The pairwise Anderson-Darling test points208

to a difference in scale between hurricanes and extratropical storms even in dSLP. All tests are209

significant for θ , showing the lowest persistence in the tropical storm stage and the highest during210

extratropical transitions (see Table 1).211

Figure 4 shows the same analysis as in Figure 3 but for VH and W. VH is the closest quantity to212

the maximum sustained winds and W may be related to convection. dV H and θV H show a strong213

dependence on the maximum sustained winds (Fig. 4a), with the extreme values all located in214

correspondence of minima of the dynamical indicators. For W, the distribution of θ exhibits two215

modes, resulting in the partial separation of two clouds of points in the in d-θ scatterplot (Fig. 4b).216

The largest sustained winds are found in correspondence with the d and θ minima of the cluster217

corresponding to larger θ . The analysis conditioned to different phases of the cyclones (Figure 4218
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c,d) shows that VH is possibly the observable that separates most clearly hurricanes from tropical219

storms, as the modes are distinct in both dV H and θV H , whereas for W the separation is less evident.220

As for Figure 3 we have tested the statistical significance of the differences among the distribu-221

tions of dV H , dW , θV H and θW . The grouped Anderson-Darling and Kruskall-Wallis tests reject222

H0 at all levels (all p-values < 2.2× 10−16), suggesting at least one distribution being signifi-223

cantly different from the others. The pairwise Wilcoxon tests (Table 1) suggest that dV H is shifted224

towards significantly larger values for tropical storms than for hurricanes, while dW is centered225

around lower values for hurricanes. However, while the distributions of dW for hurricanes and226

extratropical storms do not differ significantly in terms of location shift, the distribution of dW227

for tropical storms is stochastically dominant respect to the case of extratropical storms, despite a228

visually small difference in the figure. Similar results hold for the persistence: θV H displays sig-229

nificantly larger values for tropical storms, while the distributions of hurricanes and extratropical230

storms are not statistically different. In the case of θW , the distribution for the hurricanes is shifted231

towards significantly lower values, while no difference is found between tropical and extratropical232

storms.233

We remark that the dynamical systems indicators obtained using 1000 hPa horizontal veloc-234

ity (Figure 3, panel c) provide the best separation between TS and HU/EX storms, with higher235

velocity values concentrated at low values of both indicators. We parameterize the relation-236

ship between maximum sustained wind vmax and dV H ,θV H with a multiple linear regression237

vmax,i = α + βddV H,i + βθ θV H,i + εi, where i denotes the observation and εi is a Gaussian white238

noise sequence. Both dynamical systems indicators have a significant explanatory effect on vmax239

(p-values < 3× 10−16), with βd = −1.14, and βθ = −72.16. The persistence coefficient is two240

orders of magnitude larger (in absolute value) than the one of the dimension, despite there be-241

ing only roughly one order of magnitude difference in the scales of the two variables, pointing242
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to a larger effect of θV H . The goodness of fit is R2 = 0.22. This indicates that a large fraction243

of vmax variability cannot be explained by the two indicators alone, and/or the presence of strong244

nonlinearities that are not caught by linear regression.245

In the dynamical systems framework, a collapse of degrees of freedom and an increase of per-246

sistence are indicative of approaching unstable fixed points, i.e. special states of the dynamics247

where temporal and spatial scales are deformed. An example is the behavior encountered in the248

Lorenz 1963 attractor (Lorenz 1963) near the unstable fixed points corresponding to the centres249

of the wings of the butterfly-shaped attractor, where both d and θ attain low values [Figure A1250

in Faranda et al. (2017)]. We discuss the implications of this result for the numerical modelling of251

tropical cyclones in Sect. 6.252

4. Dynamical Indicators and Rapid intensification253

In the previous section, we have established that the dynamical indicators provide a clear sepa-254

ration of the different meteorological phases of tropical cyclones. Now we focus on the analysis255

on the transitions from tropical storms (TS) to hurricanes (HU). Our goal is to understand whether256

we can use the dynamical indicators to discriminate the transitions associated with rapidly intensi-257

fying cyclones from the others, and whether the dimension and persistence analysis could be used258

to detect rapid intensification in a statistical sense in coarse-resolution climate datasets. Rapid in-259

tensification is usually quantified using the increment ∆v of maximum sustained winds over 24h.260

Several numerical thresholds to define rapid intensification exist (Knaff et al. 2020). Here, we use261

thresholds of ∆v >50 Kts or ∆v > 40 Kts, namely the highest thresholds proposed by (Knaff et al.262

2020).263

In phase space, rapid changes of the dynamics correspond to transitions through different basins264

of the attractor (Ghil et al. 2008; Dijkstra 2013). The variation of the dynamical systems indicators265
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can track these transitions because of their direct connection with the underlying entropy of the266

system: the local dimension d is an instantaneous measure of the active degrees of freedom,267

and the persistence θ is related to the dominant time scale of the dynamics, i.e. the Lyapunov268

exponent (Faranda and Vaienti 2018). Both these quantities are known to be connected to the269

dynamical (Kolmogorov-Sinai) entropy, since the seminal work of Young (1982).270

Results relating the dynamical system metrics to rapid intensification are presented in Figure 5,271

for the four observables used in this study: SLP (a), KE (b), VH (c) and W (d). Median values272

are represented by magenta stars (40 KtS) and crosses (50 KtS); ellipses represent one standard273

deviation from the median. Blue (red) large circles represent the median d for all tropical storms274

(hurricanes). The green crosses (ellipses) represent the median (standard deviation) of the values275

of the dimension and persistence for all the tropical storm to hurricane transitions. The results276

show that transitions associated to rapid intensification target a special region of the d,θ space277

for KE and for VH. They correspond to lower-dimensional and higher-persistence phases of the278

dynamics of the cyclones.279

The decrease in local dimension and inverse persistence implies a decrease of the dynamical280

(Kolmogorov-Sinai (Young 1982; Latora and Baranger 1999)) entropy of the cyclones, namely a281

reduction of the kinetic degrees of freedom, as discussed in the previous section. Specifically, the282

Kolmogorov-Sinai entropy is linked to the Lyapunov exponents (van Beijeren and Dorfman 1995),283

whose number of positive values is related to d and whose leading value is linked to θ (Faranda284

and Vaienti 2018). It is counterintuitive that large dissipating systems such as rapidly intensifying285

cyclones yield low entropy states. However, one can observe that the tendency to the order in286

the dynamical entropy is balanced by enhanced thermodynamic entropy leading to convection and287

diabatic phenomena.288
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Finally, we remark that the relationship between rapid intensification and decrease in dKE ,dV H289

and θKE ,θV H is not systematic: the number of cyclones visiting the magenta balls in Figure 5 is290

larger than those experiencing rapid intensification, i.e. one cannot use the values of d and θ to291

identify in a deterministic sense cases of rapid intensification.292

5. Implications of the results for the numerical simulation of tropical cyclones293

The computation of the dynamical systems indicators for tropical cyclones has shown that there294

is a strong relationship between such indicators computed for coarse atmospheric fields and the295

maximum sustained winds taken from observations. In the most intense phase of the cyclones,296

large maximum sustained winds are associated to low values of both d and θ , in particular if these297

are estimated on the horizontal velocity field. From a dynamical system viewpoint, the explana-298

tion is that air parcels behave almost identically, with rotational degrees of freedom oriented along299

the global axis of the storm. This behavior is symptomatic of highly persistent, low-dimensional300

states found at unstable fixed points of the dynamics. These results imply that intense cyclones are301

characterized by different dynamical properties (entropy, stability) from those not accompanied by302

large maximum sustained winds and that d and θ give a very good degree of discrimination from303

the other, less intense, tropical cyclones. Similarly, transitions from tropical storms to hurricanes304

of rapidly intensifying cyclones primarily reside in particular regions of the d,θ space. This is par-305

ticularly evident for the metrics computed on horizontal velocity (VH), but to a good degree also306

on 3D kinetic energy (KE). Vertical velocity (W) provides a less-clear separation, likely because,307

while the horizontal wind is driven by the cyclone structure and dynamics, the vertical velocities308

are linked to smaller structures such as convective cells not directly resolved in ERA5.309

These theoretical considerations have a number of concrete implications for current research on310

hurricanes. Current GCMs — and even reanalysis products — struggle in reproducing maximum311
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sustained winds comparable to those observed (see Fig. 1). Our study offers a way of mapping312

intense cyclones in d,θ space and measure, in climate change model experiments or century-long313

reanalysis products, shifts towards smaller or larger values of the dynamical indicators. This, in314

turn, may provide a strategy for studying changes in hurricane intensity driven by anthropogenic315

forcing. Indeed, while d and θ may not be used to provide a deterministic indication of cyclone316

intensification, they do provide a robust statistical indication. Furthermore, the fact that the dynam-317

ics of intense hurricanes approaches that of fixed points of high-dimensional dynamical systems318

may explain why it is so difficult to adequately represent rapidly intensifying tropical cyclones319

and hurricanes in numerical models. Parameterizations are devised for typical states of tropical320

dynamics (disorganized storms) but not specifically for the organized states of tropical cyclones.321

As a caveat, we underline that our Lagrangian approach does not allow to relate the present re-322

sults to the predictability of the trajectories of the tropical cyclones, unlike the Eulerian approach323

applied to extratropical motions in (Faranda et al. 2017; Messori et al. 2017).324
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FIG. 1. Maximum horizontal hourly wind at 1000 hPa computed from the ERA5 dataset versus maximum

sustained wind from the HURDAT2 database. Results are displayed in knots.
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FIG. 2. Schematic of the computation of the dynamical systems metrics for an instantaneous state of a tropical

cyclone. We take a snapshot of the cyclone in physical space (black quadrant), in this example a latitude-

longitude map of sea-level pressure, which corresponds to state ζ in our phase space. All trajectory segments

shown in the right hand side panel are part of a single, long trajectory x(t), sampled at discrete times (white

circles). The shaded circle is a 2D representation of the hyper-sphere determined by the high threshold s(q,ζ ),

which defines recurrences. The logarithmic distances between measurements defined by g(x(t),ζ ) are marked

by double-headed arrows. For all points within the hyper-sphere, g(x(t),ζ ) > s(q,ζ ) holds. In the schematic,

only two measurements satisfy this condition (adapted from (Messori and Faranda 2021)).
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FIG. 3. Dimension d and inverse persistence θ diagrams calculated on sea-level pressure (SLP; a, c) and

kinetic energy (KE; b, d). Colours show maximum sustained wind [kts] from the HURDAT2 database (a,b) and

the cyclone classification (c,d, see legend). Side panels show normalized histogram counts ρ using MATLAB

function ksdensity. TS: Tropical Storm; HU: Hurricane; EX: Extratropical transitions.
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FIG. 4. Dimension d and inverse persistence θ diagrams calculated on horizontal wind at 1000hPa (VH; a, c)

and vertical wind(W; b, d). Colours show maximum sustained wind [kts] from the HURDAT2 database (a,b) and

the cyclone classification (c,d, see legend). Side panels show normalized histogram counts ρ using MATLAB

function ksdensity. TS: Tropical Storm; HU: Hurricane; EX: Extratropical transitions
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FIG. 5. Dimension d and inverse persistence θ diagrams calculated on sea-level pressure (SLP; a), kinetic

energy (KE; b), horizontal wind at 1000hPa (VH; c) and vertical wind(W; d). The filled large circles indicate

the median locations of Tropical Storms (blue) and Hurricanes (red), green ellipses indicate one standard devi-

ation from the median (green crosses) of Tropical storms to Hurricanes transitions. Rapid intensification with

increases in maximum sustained winds of 50 Kts (cross, solid) and 40 kTs (star, dotted) and the respective

standard deviations (ellipses) are marked in purple. Single transitions are indicated as dots.
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