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Featured Application: Large capacity airships (LCA) began the last straight line before the start
of their commercial flights during this decade. Many countries are interested in the tremendous
potential of these devices and the growing number of applications that could be assigned to
them. These include, for example, the transport of logs from areas that are difficult to access,
the transport of wind turbine blades to areas that are often remote and far from infrastructure,
and the loading and unloading of container ships on the high seas in regions where there are no
adequate structures to accommodate these giants of the seas. Additionally, the list goes on.

Abstract: In this paper, we present the stabilization of an unconventional unmanned airship above a
loading and unloading area. The study concerns a quad-rotor flying wing airship. This airship is
devoted to freight transport. However, during the loading and unloading phases, the airship is very
sensitive to squalls. In this context, we present in this paper the dynamic model of the airship, and
we propose a strategy for controlling it under the effects of a gust of wind. A feedforward/feedback
control law is proposed to stabilize the airship when hovering. As part of the control allocation,
the non-linear equations between the control vectors and the response of the airship actuators are
highlighted and solved analytically through energy optimization constraints. A comparison with
classical numerical algorithms was performed and demonstrated the power and interest of our
analytic algorithm.

Keywords: unconventional large airship; modelling; stabilization; feedforward/feedback technique;
control allocation

1. Introduction

Interest in airships has boomed in this century after a long hibernation due to various
factors. This interest has focused on missions that differ from those entrusted to airships
in the first half of the 20th century. They relate, in particular, to the use of stratospheric
airships [1,2] as surveillance or communication satellites or even the use of large airships
for freight transport. Much research has been carried out on the latter subject. Let us quote,
for example, the AIRLANDER manufactured by the company Hybrid Air Vehicles, the
most successful of these large airships, which made more or less conclusive demonstration
flights. The latest version of this airship showed weaknesses during low-speed flight in the
approach phase, ultimately leading to a crash in 2016. Other examples of airships from the
turn of the century can be seen in [3,4].

The most prominent objectives for these airships are the transport of heavy loads
(mobile homes, wind turbine blades, field hospitals, etc.) to places lacking infrastructure,
or the unloading of container ships in the absence of a port, and many other applications
where other means of air transport would be inefficient or too expensive.
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However, in order to achieve this potential, several problems must be resolved, in
particular, the stabilization of these machines in the presence of gusts of wind, mainly
when hovering during the critical phases of loading and unloading.

Several research laboratories are also seized with this interesting subject. Among the
airships developed by laboratories, we note the MC500 (Figure 1) with a capacity of 500 m3

developed by the interuniversity group DIRISOFT in France and which will serve as a
support for our developments.

Figure 1. The flying wing airship MC 500.

The MC500 is original by the unconventional shape of its hull and the plethora of
novelties that characterize it. The advancement of digital aerodynamics, control techniques,
and on-board electronics have made it possible to design airships of unconventional shapes,
see, for example, [5,6]. The use of an unconventional shape was guided by the search for
an optimal way to capture sunlight using photovoltaic films. This requires having large
“flat surfaces”, hence the choice of a flying wing.

For the MC500, the choice of the quadcopter configuration with steerable rotors is
dictated by a concern for the redundancy of the actuators in order to better control the
machine with unusual dimensions and so that they can stabilize quickly and resist a gust of
wind detected. It should be emphasized that this tends to complicate the task of developing
stabilization control laws that would be compatible with the capacities of the actuators.

Among the new features of the airship, the designers planned to equip it with a LIDAR.
This device represents a step forward in carrying out adequate checks to minimize the drift
of these bulky objects under the effects of gusts of wind. LIDAR is an optical measurement
technique based on the analysis of the properties of a light beam returned to its emitter [7].
LIDAR measures the wind speed upstream of the flying object in order to provide an alert
in the event of dangerous turbulence being detected. This technology offers the possibility
of using new control concepts for airships, such as feedforward control algorithms.

In this sense, in this article, we present a feedforward control; the objective being to
minimize the drift of the airship during these atmospheric turbulences.

Several control approaches have been proposed for these aerial objects, such as linear
control [8,9], feedback linearization [9,10], adaptive control [11], LQR based controllers [12],
or backstepping control [13]. In reference to [11], two control approaches to analyzing
the stability and robustness of the AURORA self-propelled airship are presented. The
first is based on linearized models of the airship, and the second is based on nonlinear
control techniques such as dynamic inversion and backstepping. The established nonlinear
control laws were tested against a simulated wind disturbance. The backstepping approach
is extended in [14] to include input saturation and wind effect compensation. A wind
estimator was presented. In [15], active disturbance rejection control (ADRC) based on
a nonlinear extended state observer (ESO) has been applied for the trajectory tracking
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of a stratospheric airship in the horizontal plane. The simplified model of the airship
in this plane is transformed into a two single input and single output subsystem using
the input-output linearization method. The two equivalent linear systems are separately
processed in order to use the observer (ESO) in real time to estimate the model parameters
and to attenuate the wind force that affects the airship. In the same field of trajectory
tracking, Yang [16] chose to use sliding mode control. In his study, he suggested a sliding
manifold composed of predefined nonlinear functions.

The previous control algorithms are based on the robustness technique and the ob-
servers to compensate for the uncertainties of the model and the effect of an external
perturbation. However, the presence of a strong wind causes significant effects on the
airship, and stabilization is difficult to obtain when the wind speed exceeds the limit re-
quired by the robustness of the control. During a measured disturbance, the use of advance
controls allows us to compensate for the effects of an exogenous signal before it influences
the system. The minimization of the effects of a perturbation on the output to be controlled
is treated as a problem of decoupling between the output of the system and the exogenous
input considered.

This problem has been solved using differential geometric analysis tools [17,18]. An
alternative formulation based on the relative degree has been introduced in [19,20]. The
authors have shown that the coupling problem is solved if the relative degree of the
perturbation is greater than or equal to that of the output.

We applied this last methodology to our airship and we demonstrated the power of
this technique and its interest in the control and stabilization of these large flying machines.

A study on a robust method is in progress. It is based on the model-free control
theory developed by Fliess [21]. This technique is freed from the dynamic model and its
uncertainties and seems promising for the stabilization of our airship. The results of this
method will be published shortly.

A problem closely related to stabilization but little traced in the literature concerns the
allocation of control. In order to prove that the established control can be implemented on
the machine, it would be necessary to verify the ability of the actuators to apply them. The
airship actuators, represented by the angles of orientation and the forces produced by the
rotors, actually have saturation limits. For the MC500 airship, the subject of this study, the
actuators are twelve, but the “virtual” controls are six. The connection between the “virtual”
controls and the actuators is thus described by a strongly nonlinear rectangular system,
which makes solving this complex system a challenge. Usually, the control allocation is
processed numerically. In this context, we cite the pseudo-inverse method used to solve the
problem of unconstrained control allocation [22], while the linear quadratic optimization
method with constraints is used in [23–25]. These methods use numerical techniques to
find the minimum of a quadratic cost function. However, the question of the applicability
of these algorithms in real time in the face of an external disturbance arises. In fact, when a
gust of wind occurs, the robustness margin of the virtual controls can be exceeded, so the
objective function to be minimized cannot admit a minimum, and there will be a risk of
instability of the airship.

This is why, in this study, we propose an original algorithm based on algebraic
equations determined analytically according to energy arguments. This new algorithm
will allow the airship to be piloted even in bad weather conditions. A comparative study
with a numerical algorithm is presented.

We organized this paper as follows: in Section 2 a dynamic model of the airship MC500
is proposed, in Section 3 we precisely present the stabilization strategy developed and a
control algorithm based on a feedforward/feedback technique. In Section 4 we present
the analytical algorithm developed for the control allocation that we compare with other
numerical techniques. Finally, in Section 5, numerical simulations are presented.



Appl. Sci. 2021, 11, 3551 4 of 24

2. Modeling
2.1. Kinematic Description

For the kinematic description we used a Galilean reference frame fixed to the ground
R0 = (O, X0,Y0, Z0) and a mobile reference frame Rm = (O, Xm,Ym, Zm) linked to the
airship at its center of mass G. As we can see in Figure 2, the airship MC 500 is a quadrotor.
Each rotor can swivel around two axes: βi around the Ym axis (Figure 2), and γi around
an axis ZRi, orthogonal to Ym and which coincides in the beginning with the Zm axis. The
value of the thrust of the rotor i is denoted by ||Fi||, and its position in Rm is Pi, such as:
P1 = (a, b1, c)T; P2 = (a, −b1, c)T; P3 = (−a, b3, c)T; P4 = (−a, −b3, c)T.

Figure 2. Position of the rotors.

The orientation of the airship is described through three rotations defined by the
classical Euler angles (yaw ψ, pitch θ, and roll φ). The rotation matrix between the mobile
frame Rm and the fixed reference frame R0 is then given by:

JT
1 =

 cθ.cψ cθ.sψ −sθ
sφ.sθ.cψ− cφ.sψ sφ.sθ.sψ + cφ.cψ sφ.cθ
cφ.sθ.cψ + sφ.sψ cφ.sθ.sψ− sφ.cψ cφ.cθ


where: c θ = cosθ ands φ = sinφ

Using the rotation matrix J1, the expression of the linear speed in the fixed refer-
ence frame

.
η 1 = [

.
x 0,

.
y0,

.
z0]

T as a function of the speed expressed in the mobile frame
ν1 = [u, v, w] T is given by:

.
η1 = J1.ν1 (1)

where η1 = [x0, y0, z0]
T is the position vector of the origin of the mobile frame Rm ex-

pressed in the fixed frame R 0.
On the other hand, the angular speed of the airship νT

2 = [p, q, r] expressed in the
mobile reference frame is the combination of the angular speeds around the three axes of
yaw, pitch, and roll. It can be written related to

.
η

T
2 =

[ .
φ,

.
θ,

.
ψ
]

as:

ν2 =

 1 0 −sθ
0 cφ sφ cθ
0 −sφ cφcθ

.


.
φ
.
θ
.
ψ

 (2)

Conversely:
.
η2 = J2.ν2 (3)



Appl. Sci. 2021, 11, 3551 5 of 24

where the transformation matrix J2 is represented by: J2 =

 1 sφ tan θ cφ tan θ
0 cφ −sφ

0 sφ
cθ

cφ
cθ

.

It is important to mention that the parametrization by the angles of Euler presents a
singularity for θ = π

2 + kπ; however, this configuration is not reachable for the airship.
The kinematics of the airship can then be written as:( .

η1.
η2

)
=

(
J1 0
0 J2

)(
ν1
ν2

)
(4)

2.2. Dynamics

In a compact form, the whole dynamic system of the airship can be expressed as
follows [26]:

M.
.
ν = τ + QG (5)

With ν =

(
ν1
ν2

)
as the velocity vector and M =

(
MTT 0

0 MRR

)
as the mass

matrix. MTT and MRR are, respectively, the translation and the rotation part of the mass
matrix of the airship. We denote by Mij the components of the 6 × 6 matrix M.

Let us note that this mass matrix comprises the terms of inertia of a solid body, but
also the terms of added masses. The acceleration of a moving body in a fluid creates a
resistance force exerted by the latter, proportional to the acceleration of the solid. This force
can therefore be likened to an increase in the mass of the solid, hence the notion of added
mass. The values of these added masses are important and not negligible in the case of
submarines or airships [27]. The computation of these added masses can be done thanks to
experiments, or analytically as was done, for example, for the MC500 [28].

In the right side, τ =

(
τ1
τ2

)
, τ1, and τ2 are, respectively, the external forces and

torques, including the rotors effects, the weight (m.g), the buoyancy B, the wind Force Fv, and

the aerodynamic lift (FL) and drag (FD). While QG =

(
−ν2 ∧ (MTTν1)

−ν2 ∧ (MRRν2)− ν1 ∧ (MTTν1)

)
are the gyroscopic forces and torques, we will denote by QGi its components, ∧ being the
vector product.

When combining with the kinematic relations (4), the global dynamic model in its
developed form becomes:

.
x0 = cψ.cθ.u + (−sψ.cφ + cψsφsθ)v + (sψsφ + cψcφsθ)w

.
y0 = sψcθ.u + (cψcφ + sψsφsθ)v + (−cψsφ + sψcφsθ)w

.
z0 = −sθ.u + sφ.cθ.v + cφcθw
.
φ = p + sφ. tan θ. q + cφ. tan θ.r

.
θ = cφ.q− sφ.r

.
ψ = sφ

cθ q + cφ
cθ r

M11
.
u = α1 + QG1 + Fv1

M22
.
v = α2 + QG2 + Fv2

M33
.

w = α3 + QG3 + Fv3(
M2

46 −M66M44
) .

p = M46α6 + M46QG6 −M66α4 −M66QG4
M55

.
q = α5 + QG5(

M2
46 −M66M44

) .
r = M46α4 −M44α6 + M46QG4 −M44QG6

(6)

where Fvi are the components of the wind applied forces and αi the components of the
control vector α. The different characteristics of the actuators will be developed in detail in
Section 4.
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3. Stabilization Strategy
3.1. Mathematical Tools

In some applications, exogenous perturbation is known in advance. This is often the
case for the airship. The MC500 is equipped with LIDAR sensors that can measure the force
of a wind gust. From the control point of view, the purpose of using this information is to
reduce or minimize the influence of the disturbance that affects the airship. To deal with
the problem of minimizing the impact of a wind gust, we propose the use of feedforward
controls. This control vector is built using techniques of differential geometry. The diagram
of this method is described in Figure 3.

Figure 3. Block diagram of the control vector.

The feedforward/feedback method controls a set of nonlinear systems which are
as follows: 

.
x = f (x) + g(x)u +

m
∑

i=1
pidi

y = h(x)
(7)

Here, x ∈ Rn represents the state system, y is the output system, u ∈ Rm the input
system, g(x) = [g1(x), · · · , gm(x)]T , gi(i = 1, · · · , m) is an m-dimensional vector field,
f (x) ∈ Rn is a vector field, and h(x) = [h1(x), · · · , hm(x)]T , hi(i = 1, · · · , m) is a suffi-
ciently smooth scalar function, di the disturbance inputs, and pi are vectors detailed in
Appendix A.

Definition 1. If we assume that the vector fields h and f are sufficiently smooth, the Lie derivative
of h with respect to f can be defined as:

L f h =
n

∑
i=1

∂hi
∂xi

fi(x) (8)

Definition 2. In the system of Equations (7), if the two ensuing conditions are satisfied for
allx ∈ Rn in the vicinity of an equilibrium point xe [17]:

Lgj Lk
f hi(x) = 0 (9)
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The (m ×m) matrix of decoupling D is not singular at x = xe, with:

D(x) =


Lg1 Lr1−1

f h1(x) . . . Lgm Lr1−1
f h1(x)

Lg1 Lr2−1
f h2(x) . . . Lgm Lr2−1

f h2(x)
. . . . . . . . .

Lg1 Lrm−1
f hm(x) . . . Lgm Lrm−1

f hm(x)

 (10)

Then, the system (7) is said to have a relative degree:

r =
m

∑
i=1

ri (11)

The indices I, j, and k verify: 1 ≤ j, i ≤ m, 1 ≤ k ≤ ri − 1. ri are the relative degree of
the outputs. Examples of the derivatives Lgj Lk

f hi(x) are presented later in Section 3.2.1.

Definition 3. The relative order ρji of the output yi of Y with respect to the disturbance input di is

defined [19,20] as the smallest integer for which: Lpi L
ρi

j−1
f hj 6= 0

Proposal 1. The system of Equation (7) is feedback linearizable if it exists as a function h ∈ Rm

sufficiently smooth such that the system has the relative degree r = n = dim(x), x is the state.

We will apply this result to demonstrate that the model of the airship MC500 subjected
to a wind gust is linearizable. We can thus apply the input-output linearization method to
define a control vector that anticipates the effect of a wind gust pre-detected by LIDAR.

3.2. Scheme of the Control Vector

In order to stabilize the airship when hovering in the vicinity of a loading and un-
loading point around a desired state Ψ = [xd, yd, zd, φd, θd, ψd]

T , and to anticipate the
effect of a gust of wind, we will consider as a new output the error (ξi)1≤i≺6 defined by:
ξi = yi −Ψi with: Y = [x0, y0, z0, φ, θ, ψ]T . The objective is to make the output converge
towards the desired state, in other words, to make the error ξi converge towards zero.

Without losing generality, we assume that Fν2 = Fν3 = 0 (the gust of wind comes only
from the X axis without creating any torque).

The system of errors associated with the system in Equation (6) could be written in
the same form given by Equation (7) as:{ .

X = f (X) + g(X)α + p1Fv1

Y = h = [x0, y0, z0, ϕ, θ, ψ]t
(12)

With: X the system of error defined as: X = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, u, v, w, p, q, r],
α = [α1, α2, α3, α4, α5, α6]

T the control vector, and p1, f and g are vectors of R12 (see
Appendix A for more details).

The input-output linearization method is summarized in two steps (see Figure 4). The
first is to transform the system into a decoupled linear system using the techniques of
differential geometry. The second is to construct a control vector by using the theory of
linear control to ensure the stability of the new system.
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Figure 4. Control method of feedforward/feedback control.

3.2.1. Relative Degree of Outputs Associated with the Control Vector

Let r be the relative degree of the system (12).
To determine the relative degree

(
rj
)

1≤j≤6 corresponding to the output yj, this is
derived last until at least one input appears.

In their work, Daoutidis [19,20] proposes the following expression for ξ
(rj)

j :

ξ
(rj)

j = L
rj
f hj +

6

∑
i=1

Lgi L
rj−1
f hjαi +

6

∑
i=1

Lpi L
rj1−1
f hjd1 (13)

Here, we have: Lgi h1 = 0
Then: .

ξ1 = L f h1 = f1 (14)

The first derivative of ξ 1 does not include any of the controls. Therefore, another
derivation of ξ 1 is necessary:

..
ξ1 = L2

f h1 + Lg1 L f h1α1 + Lg2 L f h1α2 + Lg3 L f h1α3 + Lp1 L f h1Fv1 (15)

With:
L2

f h1 =
∂ f1

∂φ
f4 +

∂ f1

∂θ
f5 +

∂ f1

∂ψ
f6 +

∂ f1

∂u
f7 +

∂ f1

∂v
f8 +

∂ f1

∂w
f9

Lg1 L f h1 = ∇ f1.g1 =
cψcθ

M11
; Lg2 L f h1 = ∇ f1.g2 =

−sφ + cφsθ

M22

Lg3 L f h1 = ∇ f1.g3 =
sφ + cφsθ

M33
; Lgj L f h1 = 0, j = 4, 5, 6

∇ is the gradient. We notice that the second derivative of ξ1 is written as a function of
the control. Hence, the degree r1 associated with the output is equal to 2.

In the same way, the other relative degrees are computed, and we thus obtain:

r1 = r2 = · · · = r6 = 2

The total relative degree of the system is then r = 12, we conclude that the nonlinear
model of the airship in Equation (11) satisfies the conditions in proposal 1. We can then
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deduce that the system in Equation (11) is feedback linearizable. Therefore, a state of
feedback control and a diffeomorphism that transforms the nonlinear system into an
equivalent linear system exist.

3.2.2. Relative Degree Associated with Disturbances

The relative degree of the output
(
rj
)

1≤j≤6 and that of the disturbance ρj1 play a
fundamental role in characterizing the influence of the perturbation on the outputs. Two
cases may arise [19]:

• ρj1 � rj the disturbance does not directly affect the output, so the stabilization of the
airship is ensured by a feedback control law.

• ρj1 ≤ rj the disturbance affects the output. We use a feedforward/feedback control to
stabilize the airship and anticipate the effect of this exogenous signal.

The relative degree ρj1 of the disturbance associated with the output yi is then deter-
mined using Definition 3:

• for the output, y1 = x0, y2 = y0, y3 = z0, we have:
Lp1 h1 = Lp1 h2 = Lp1 h3 = 0

Lp1 L f h1 = cψcθ
M11

Lp1 L f h2 = −sθ
M11

Lp1 L f h2 = sψ cθ
M11

(16)

then:
ρ11 = ρ21 = ρ31 = ρ2 = 0 r2 = 2 (17)

For the outputs y4 = φ, y5 = θ and y6 = ψ, we have:

Lp1 L
−1+ρj1
f hi = 0 ∀i = 4, 5, 6 (18)

We then deduce that:
ρj1 � rj ∀j = 4, 5, 6 (19)

On the basis of the two previous findings, the outputs x, y, and z are affected both
by the disturbance and by the input in the same way. Therefore, to anticipate the effect of
the exogenous signal, the feedforward control is necessary. We will combine it with the
feedback control to realize the control schema.

However, for the other degrees of freedom (y, z, φ, θ, and ψ ), we noticed in Equation (19)
that the effect of the inputs is preponderant compared to the effect of the disturbance of
the outputs. This indicates that we do not need a feedforward control to minimize the
disturbance effect.

3.2.3. Coordinate Change and New Linear System

Following the recommendations of Isidori [17], we can define a diffeomorphism Φ.
This diffeomorphism allows us to transform the nonlinear system into another nonlinear



Appl. Sci. 2021, 11, 3551 10 of 24

system, as we can see below, in order to determine the control vector which linearizes the
system. This diffeomorphism is given by:

x0
cψcθ.u + (−sψcφ + cφsθ)v + (sψsφ + cφsθ)w

y0
sψcθ.u + (cφ + sφsθ)v + (−cφ + sφsθ)w

z0
−sθ.u + sφ.c + cφ.c

φ
p + sφ. tan θ.q + cφ. tan θ.r

θ
cφ.q− sφ.r

ψ
sφ
cθ + cφ

cθ r



(20)

Using the new coordinates, by applying the diffeomorphism, the system in Equation (12)
can be written as follows:



.
ξ1..
ξ1.
ξ2..
ξ2.
ξ3..
ξ3.
ξ4..
ξ4.
ξ5..
ξ5.
ξ6..
ξ6



=



L f h1

L2
f h1 +

3
∑

i=1
Lgi L

2
f h1αi + Lp1 L f h1Fv1

L f h2

L2
f h2 +

3
∑

i=1
Lgi L

2
f h2αi

L f h3

L2
f h3 +

3
∑

i=1
Lgi L

2
f h3αi

L f h4

L2
f h4 +

6
∑

i=4
Lgi L

2
f h4αi

L f h5

L2
f h5 +

6
∑

i=4
Lgi L

2
f h5αi

L f h6

L2
f h6 +

6
∑

i=4
Lgi L

2
f h6αi



(21)

By combining the equations containing the control vector αi and Equation (16),
it becomes:

..
ξ1..
ξ2..
ξ3..
ξ4..
ξ5..
ξ6


=



L2
f h1

L2
f h2

L2
f h3

L2
f h4

L2
f h5

L2
f h6


︸︷︷︸

ň

+ D



α1
α2
α3
α4
α5
α6


︸︷︷︸

α

+ Fv1 .



cψcθ
M11
sψcθ
M11
−sθ
M11
0
0
0


︸︷︷︸

Ω

= ň + Dα + Fv1 .Ω = ℵ (22)

3.2.4. The Linearizing Control Law

According to Equation (22), we can deduce the linearizing control α. This control
vector will ensure the decoupling and can be written as:

α = D−1(ℵ − ň− Fv1 .Ω) (23)
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Note that the linearization would only be possible if the decoupling matrix D is
invertible. However, the decoupling matrix D given by:

D =

(
Π 0
0 Γ

)
(24)

is invertible, and we have:

D−1 =

(
Π−1 0

0 Γ−1

)
(25)

(For the expressions of Π, Γ, Π−1, and Γ−1 see Appendix B).
Replacing Equation (23) in Equation (22), the equivalent system becomes linear and

completely decoupled. It can be written as follows:

..
ξ1..
ξ2..
ξ3..
ξ4..
ξ5..
ξ6


=



.
z1

2
.
z2

2
.
z3

2
.
z4

2
.
z5

2
.
z6

2


=



ℵ1
ℵ2
ℵ3
ℵ4
ℵ5
ℵ6

 (26)

Finally, we obtain the following six decoupled linear sub-systems with their outputs:
.
zi

1 = zi
2

.
zi

2 = ℵi
ξi = zi

1

(27)

The vector ℵ is designed according to the control objectives. In general, for a tracking
trajectory problem, the expressions of ℵi are:

ℵi = ω
(ri)
i + σri−1

(
y(ri−1)

i −ω
(ri−1)
i

)
+ . . . + σ1(yi −ωi) (28)

ω
( r i)
i are reference trajectories. In our case these are functions in steps

( .
ω
(ri)
i =

..
ω
(ri)
i = 0

)
.

σri−1 are the gains. If the σi are chosen so that the polynomial sri + σri−1.sri−1 +
· · · σ2.s + σ1 = 0, the polynomial is said to be a Hurwitz polynomial (possesses roots with
negative real parts), then it can be shown that the error ξi = yi − Ψi tends towards zero.

We have chosen the following poles P = {−10,−4} for the system in Equation (28) to be
stable, then the gains of the control ℵi, which are solutions of the equation s2 + σ2.s+ σ1 = 0,
are given by: σ1 = 40 and σ2 = 14.

This values are needed in the numerical simulations to assess the performance of the
proposed controller.

Previous developments show that it is possible to anticipate the effect of a gust of
wind on the airship. The feedforward control that we have just established is a key part of
this objective. Indeed, this control ensures the accelerated attenuation of the effect of the
wind disturbance when this is known in advance, and it gives the control vector a certain
robustness with respect to any modeling errors.

We have also demonstrated the following result:
Proposal. Consider the Multiple-Input Multiple-Output (MIMO) system of the airship

MC500 described by Equation (12).
We define

(
rj
)

1≤j≤6 as the relative degree of the outputs and ρ11 as the relative degree
of the disturbance Fν1 associated with the outputs y1 = x0.

It is assumed that the decoupling matrix D is invertible, then the control vector U
given in Equation (23):
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• anticipates the effect of a gust of wind.
• ensures the stability of the airship in the vicinity of a target state.

Note:

1. We have restricted ourselves to a single excitation force along the X axis to limit the
size of the equations. However, to take into account the effect of other force and
torque components, the same steps described above would be followed.

2. The airship is operated by electric motors having sufficient degrees of freedom. As
mentioned previously, the airship is over-actuated. It will thus be possible to anticipate
the effect of all types of wind gusts and thus prevent against the main destabilizing
element of the airship (the wind).

It should be remembered that the latter is the main factor in delaying the expansion of
the use of the airships as flying cranes or as means of transport of heavy loads.

4. Control Allocation

We will designate the command established previously by virtual command because
it acts macroscopically on the overall motion of the airship. However, in order to make
these global setpoints achievable, it is necessary to couple them to the real actuators and to
check that the latter are not saturated. This part is often obscured in the literature; however,
we cannot ignore it in this study for the case of an airship having a very high inertia. We
mentioned in Section 2 that the actuators of the airship MC500 are the thrust forces and the
swivel angles of the propellers. As can be seen in Figure 5, to close the control loop, we
need to express the non-linear control αi in terms of the thrust values ||Fi|| and inclination
angle values β i and γ i. It is therefore a question of control allocation.

Figure 5. Closed-loop architecture of control.

As an input, we have a control vector with six components corresponding to the six
degrees of freedom of the airship, and as an output we have the twelve degrees of freedom
of the actuators. It would therefore be a question of solving a rectangular system which is
done by means of numerical inversions, this can be penalizing for a real time control. We
present, in what follows, an original analytical technique, based on energy concepts, which
allows us to solve the previous problem quickly and precisely. Finally, we will compare the
results obtained with those obtained from other known techniques.

We would like to emphasize that, in this study, we are dealing with the case of the
airship when hovering. We will therefore neglect the aerodynamic forces of lift and drag.

However, the buoyancy Bu, which is an ascending vertical force opposing the weight
(m.g) and which is one of the main characteristics of airships, is well taken into account.
This force is applied on the center of volume of the airship, and has the coordinates
(0, 0, zB).
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The relation between the actuators and the control αi is described by the following
rectangular nonlinear system:

α1 =
4
∑

k=1
‖ Fi ‖cγi cβi − (m g− Bu).s θ

α2 =
4
∑

k=1
‖ Fi ‖sγi + (m g− Bu).sφ.cθ

α3 =
4
∑

k=1
‖ Fi ‖cγi sβi + (m g− Bu).cφ cθ

α4 = c
4
∑

k=1
‖ Fi ‖sγi + b1(‖ F1 ‖cγ1 sβ1 − ‖ F2 ‖cγ2 sβ2) + b3(‖ F3 ‖cγ3 sβ3 − ‖ F4 ‖cγ4 sβ4) + BuzBsφ.cθ

α5 = −c
4
∑

k=1
‖ Fi ‖cγi cβi + a (‖ F4 ‖cγ4 sβ4 + ‖ F4 ‖cγ3 sβ3 − ‖ F1 ‖cγ1 sβ1 − ‖ F2 ‖cγ2 sβ2) + BuzBsθ

α6 = b1(‖ F1 ‖cγ1 cβ1 − ‖ F2 ‖cγ2 cβ2) + b3(‖ F3 ‖cγ3 cβ3 − ‖ F4 ‖cγ4 cβ4) + a(‖ F4 ‖sγ4 + ‖ F3 ‖sγ3 − ‖ F1 ‖sγ1 − ‖ F2 ‖sγ2)

(29)

Remember that we have twelve actuators for the airship, while the control vector has
six dimensions. The resolution of this nonlinear system admits an infinity of solutions.

To solve this connection problem, we introduce the following intermediate parameters
for each rotor i:

li = ||Fi||cγicβi; mi = ||Fi||sγi ; ni = ||Fi||cγisβi (30)

The parameters of the actuators are deduced from these intermediate variables by the
following relationships:

||Fi|| =
√

l2
i + m2

i + n2
i ; βi = arctan

(
ni
li

)
and γi = arctan

(
mi

cβi.li

)
(31)

It would therefore suffice to express these intermediate variables as a function of the
control vector in order to be able to deduce therefrom a relation between the actuators and
the control.

By introducing the variables li, mi, and ni into the system (29), we obtain the following
matrix system:

C.U1 = α′ (32)

With:

C =



1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 c c c c b1 b1 − b3 − b3
−c− c− c− c 0 0 0 0− a− a a a
b1 − b1 b3 − b3 − a− a a a 0 0 0 0

 (33)

U1 = (l1 . . . l4, m1 . . . m4, n1 . . . n4)
T

α′ =



α1 + (mg− Bu)sθ
α2 − (mg− Bu)s∅cθ
α3 − (mg− Bu)c∅cθ

α4 − BuzBs∅cθ
α5 − BuzBsθ

α6

 (34)

We can use the pseudo-inverse method to find the values of, li, mi, and ni. However,
this technique sometimes gives physically unacceptable values incompatible with the
capacities of the actuators so that the stabilization of the airship is compromised. We have
therefore decided to analytically solve the linear system in Equation (29).
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4.1. Analytical Approach

The system in Equation (29), according to the new variables li, mi, and ni, can be
divided into two subsystems that will be separately investigated:

4
∑

k=1
ni = α′3

b1(n1 − n2) + b3(n3 − n4) = α′4 − cα′2
a(n3 + n4 − n1 − n2) = cα′1 + α′5

(35)


4
∑

k=1
li = α′1

4
∑

k=1
mi = α′2

b1(l1 − l2) + b3(l3 − l4) + a(m4 + m3 −m1 −m2) = α′6

(36)

The first and third equation of the system in Equation (35) give:

n3 + n4 =
α′3
2

+
cα′1 + α′5

2a
(37)

We initially imposed this choice:

n3 = n4 =
α′3
4

+
cα′1 + α′5

4a
(38)

Substituting h3 and h4 by their values in the system in Equation (36), one can obtain:

n1 =
α′3
2

+
α′4 − cα′2

2b1
− 2n3 (39)

Additionally, then:
n2 = α′4 − n1 − n3 (40)

By combining the second and the third equation of the system in Equation (36),
this gives:

b1(l1 − l2) + b3(l3 − l4) + 2a(m4 + m3) = α′6 + aα′2 (41)

We decided to add these two conditions according to the logical operation of the actuators:

and : m3 = m4 =
α′2
4

(42)

b1(l1 − l2) = b3(l3 − l4) =
α′6
2

(43)

These assumptions allowed us to retrieve the expressions of the missing variables
through the following relations:

m1 = m2 = α′2
4 ; l2 = l4 = α′1

4 − ( 1
8b1

+ 1
8b3

)α′

l1 = α′6
2b1

+ l2 ; l3 = α′6
2b3

+ l4

(44)

The block diagram shown in Figure 6 describes the original algorithm established
to define the relationship between the actuators of the MC500 and the controllers. The
algorithm is based on algebraic relations which will be solved analytically.
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Figure 6. Block diagram of the proposed control system.

The proposed approach is based on energy principles. Indeed, and in the case of the
hovering flight of a propeller-driven quadcopter, there are several solutions. However, the
solution that induces the minimum energy consumption is the one that balances the thrust
of the four rotors. To this goal, we have imposed some constraints to be as close as possible
to the equilibrium configuration of the different thrusts whenever the operating conditions
allow it.

As a comparative analysis, we present in the next paragraph a numerical approach
establishing the control allocation.

The comparison of the results of these two methods will be performed in the chapter
devoted to numerical simulations.

4.2. Numerical Approach

To check this approximate approach, we compare our results here with a numerical
method. We used the fixed-step gradient method to compute the solution numerically.
This algorithm is iterative based on the minimization of a cost function J(U1).

The principle of the algorithm is to generate a vector series U1,k from an arbitrary
point U1,0 such that the cost value of the function J(U1) decreases with each iteration, i.e.,:

J(U1,k+1) < J(U1,k)

For the fixed-step gradient method, the vector U1,k is updated in this way:

U1,k+1 = U1,k −
1
2

µ
∂J(U1,k)

∂U1
(45)

The index k denotes the iteration and µ is a positive constant parameter.
To solve the linear system in Equation (32) we propose the use of the cost function J

defined by:

J(τ) =
6

∑
i=1

(
α′ i − τi

)2 (46)

The terms of the quadratic function penalize the error ei = α′ i− τi between the control
vector, the vector forces τ1, and the torques τ2 (see Equation (29)).

We can see that when the quadratic function is minimal, the terms ei tend toward zero,
then τi tend to α′ i.

Hence, the intermediate parameters obtained, li, mi, and ni, are the components of the
vector that minimize the cost function.
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By using the matrix relations in Equation (32)–(34), the cost function J can be written as:

J(U1) =
6

∑
i=1

(
α′ i − CiU1

)2 (47)

With Ci is the ith line of the matrix C.
The gradient of J is:

∇J(U1) = −2
6

∑
i=1

Ct
i
(
α′ i − CiU1

)
(48)

Then, Equation (45) becomes:

U1,k+1 = U1,k + 2µ
6

∑
i=1

Ct
i
(
α′ i − CiU1,k

)
(49)

This method has the advantage of being easy to implement. Unfortunately, the
convergence of this method is generally slow. The steps for obtaining the numerical
solution are detailed in Algorithm 1:

Algorithm 1 fixed-step gradient

Step 1: Initialization
k = 0: Choice of li,0, mi,0, ni,0 and µ, ε > 0
Step 2: Iteration k (i = 1, · · · , 4)[
li,k+1, mi,k+1, ni,k+1

]t
=
[
li,k, mi,k, ni,k

]t
+ 2µ

6
∑

i=1
Ct

i

(
α′ i − Ci

[
li,k, mi,k, ni,k

]t)
Step 3: Stop criterion:∣∣∣|[li,k+1, mi,k+1, ni,k+1

]t,−,
[
li,k, mi,k, ni,k

]t∣∣∣| < ε

Note:

1. In order to implement the proposed algorithm, the convergence of it is an important
factor to take into account. The gradient algorithm that minimizes the quadratic func-
tion in Equation (46) converges if: 0 ≺ µ ≺ 2M2

M2
1

with M1 = max(λi); M2 = min(λi),

Where (λi)1≤i≤12 are the eigenvalues of the symmetric matrix C1 = 2
6
∑

i=1
CT

i Ci.

For both the analytical and the numerical methods, we have succeeded in stabiliz-
ing the airship. However, during a short transient phase, the actuators’ capacities were
exceeded. In this first approach, we have introduced a saturation block assuming that the
propellers are in saturation abutment. Further studies are underway to solve this problem
using constrained optimization techniques. This will be dealt with in future work.

5. Numerical Results

We present here some examples demonstrating the utility of the proposed formulation
in different cases.

For this, we used data from the MC500 airship, such as:
The volume V = 500 m3; zG = 0.5 m; a = 2.5 m; b1 = 5.4 m; b3 = 6.5 m; c = 2 m;
The added mass matrix and the inertia are given by:
M11 = 583 kg; M46 = 160 kg.m2; µ = 0.01; ε = 10−3; M22 = 620 kg; M33 = 687 kg;

M44 = 9413 kg.m2; M55 = 10,456 kg.m2; M66 = 18,700 kg.m2;

5.1. Ideal Case: No Wind Disturbance

In the first step we check the efficiency of the control vector and the performances of
the proposed algorithms to solve the connection problem envisaged under ideal conditions,
i.e., the wind speed is zero.
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As a reference example, we have chosen to deal with the scenario of the inclination of
the airship in roll and yaw and its displacement with respect to an original position. Here,
we do not consider the effect of the wind. Only the feedback control comes into action.

We can see in Figures 7 and 8 that the control manages to stabilize the positions x0, y0,
z0 and the angles φ, θ, ψ of the initial state Xe = [10; 8; 5; 0.3; 0.2; 0.1] to the desired state
Xd = [0; 0; 0; 0; 0; 0].

Figure 7. Stabilization of x0, y0, z0.

Figure 8. Stabilization of φ, θ, ψ.
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We can also see that the stabilization was carried out in a quick manner, less than 2 s for
the analytical method, and between 4 and 10 s for the gradient method. This confirms the
power of the analytic algorithm developed, not to mention the time saving CPU compared
to that of the numerical method.

The behaviors of the actuators in response to this command are shown in Figures 9–11.
This concerns the thrust forces Fi, the tilt angles βi, and the swing angles γi. It will be
noted that, after the stabilization of the airship, the thrust is equitably distributed over the
four rotors, the swing angles γi become equal to zero, and the tilt angles βi are equal to
90◦. This effectively characterizes the optimum stationary stability position. This therefore
highlights the interest of the analytical methodology followed.

Figure 9. Thrust forces of the propellers.

Figure 10. Tilt angles of the propellers.
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Figure 11. Swing angles of the propellers.

5.2. System Analysis in the Presence of Wind

In this section, we consider two scenarios of the airship expecting acceleration due to a
gust of wind pre-detected by a LIDAR. In one case, the wind is regular, and in the other, the
wind is turbulent (sinusoidal). We will apply the combined feedforward/feedback control
developed in order to minimize the drift of the airship under the effect of this gust of wind
and thus be able to save a lot of energy necessary for the displacement of the airship due
to the great inertia of the latter. This also helps to minimize the possible sway of a load
suspended by the airship.

The wind is supposed to arrive along the X axis and produce an average force of 104

N (see Figure 12).

Figure 12. Average and simulated wind forces.
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It can be seen in Figure 13 that the airship is subject to a large drift with respect to its
equilibrium position if it is subjected solely to feedback control (red dash). However, with
the application of the feedforward/feedback control previously developed, the reduction
of this drift is well demonstrated, especially in the case of the use of the analytical algorithm
of transformation of the controls to the actuators (blue dash).

Figure 13. Drift facing constant wind.

To make the experiment more realistic and to demonstrate the robustness of our
algorithm, we have developed our control on the basis of a constant wind step with an
intensity of 104 N, whereas, for the force applied to the airship, we allowed a sinusoidal
variation of the wind intensity (see Figure 12). In spite of the relatively large difference
between this applied force and the force on which the feedforward/feedback control was
based, we note (in Figure 14) that our feedback control is efficient.

Figure 14. Drift facing turbulent wind.
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The response of the actuators to the disturbance due to the wind is just as effec-
tive as in the previous scenario when the feedforward control is applied, in particular,
when the analytical algorithm is used. The airship stabilizes quickly after having under-
gone low amplitude oscillations. This drift is even less when using the analytical control
allocation algorithm.

We must emphasize that the established control is not considered to be robust, and can
suffer from modeling errors. We tested its robustness through the modification of the terms
of the mass matrix which were increased by 50%. The results are presented in Figure 15.
It is noted that the control no longer manages to stabilize the flying machine with such
deviations in the modeling. Concretely, this control remains valid as long as the errors in
the mass matrix do not exceed 30%.

Figure 15. Effects of modeling uncertainties on the established control.

6. Discussion

The different scenarios presented here have proven the effectiveness of the feedfor-
ward control to support feedback control. The latter, although being effective for stabilizing
the airship in the case of small disturbances (scenario 1), shows its limits during strong
gusts of wind. It was shown in scenario 2 (constant strong wind) or scenario 3 (strong
wind with sinusoidal amplitude) that the help of the feedforward control developed makes
it possible to greatly attenuate the airship’s drift if the disturbance is precisely predicted
(scenario 2) or hovers around a predicted value (scenario 3).

The analytical control allocation algorithm developed also contributed to the im-
provement of the stabilization of the machine compared to purely numerical algorithms
of reference.

7. Conclusions

As part of the development of large airships, we have contributed, through this paper,
to the modeling and control of an unconventionally shaped airship. These airships are
designed to load and unload freight at altitude. Our objective focused on the stabilization
of the flying machine in this critical phase of hovering under the effect of an exogenous
disturbance, and especially under the effect of a gust of wind. We then established a control
algorithm based on a feedforward/feedback technique. The use of the feedforward control
was made possible by the use of LIDAR, which allow for anticipating the amplitude and
the speed of the wind gusts. The combined feedforward and feedback linearizing control
developed is based on the differential geometric analysis and the relative degree.

The great sensitivity of these flying machines to the wind and their great inertia has
pushed the designers of the airship studied during this work to multiply the actuators
and their degrees of freedom. This over-actuation has complicated the control allocation
problem. For this, we have established a fully analytical algorithm with some assumptions
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for solving this problem. Our algorithm has proved its efficiency in comparison with
other classical numerical methods, and especially its superiority in the face of these same
algorithms in terms of minimizing the computation time.

In future works, the feedforward control vector algorithm will be applied to the
trajectory tracking.
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Appendix A

p1 =

[
0, 0, 0, 0, 0, 0,

1
M11

0, 0, 0, 0, 0
]t

f (X) = [ f1, . . . , f12]
t

=



cψcθu + (−sψcφ + cφsθ)v + (sψsφ + cφsθ)w
sψcθu + (cφ + sφsθ)v + (−cφ + sφsθ)w

−sθu + sφc + cφc
p + sφtθq + cφtθr

cφq− sφr
sφ
cθ q + cφ

cθ r
Q1

M11
Q2

M22
Q3

M33
M46Q6−M66Q4
M2

46−M66 M44
Q5

M55
M46Q4−M44Q6
M2

46−M66 M44


Additionally, the vectors gi are given by:

g1 =

[
0, 0, 0, 0, 0, 0,

1
M11

, 0, 0, 0, 0, 0
]t

g2 =

[
0, 0, 0, 0, 0, 0, 0,

1
M22

, 0, 0, 0, 0
]t

g3 =

[
0, 0, 0, 0, 0, 0, 0, 0,

1
M33

, 0, 0, 0
]t

g4 =

[
0, 0, 0, 0, 0, 0, 0, 0, 0,

−M66

(M46
2 −M66M44

,
M46

(M46
2 −M66M44

, 0
]t
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g5 =

[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1
M55

, 0
]t

g6 =

[
0, 0, 0, 0, 0, 0, 0, 0, 0,

M46

(M46
2 −M66M44

,
−M44

(M46
2 −M66M44

, 0
]t

Appendix B

Γ =


−M66

M2
46−M66 M44

+ M46cφtθ

M2
46−M66 M44

sφtθ
M55

M46
M2

46−M66 M44
+ −M44cφtθ

M2
46−M66 M44

−M46sφ

M2
46−M66 M44

cφ
M55

M44sφ

M2
46−M66 M44

M46cφ

(M2
46−M66 M44)cθ

sφ
M55cθ

−M44cφ

(M2
46−M66 M44)cθ



Π−1 =

 M11cψcθ M11sψcθ −M11sθ
−M22(−cφsθ + sφ) M22(cφcψ + sφsθ) M22sφcθ
M33(sθcφcψ + sφ) (−sφcθ + sφsθ)M33 cφM33


The blocks of the inverse of the matrix D are:

Γ−1 =

 M44 M46sφ (−M46cφ + M44tθ)cθ
M55cφ 0 −sφcθM55

M46 M66sφ (−M66cφ + M46tθ)cθ

;Π =


cψcθ
M11

−sψcφ+cψsφsθ
M22

sφ+cψcφsθ
M33

sθ
M11

cφ+sφsθ
M22

−cφ+sφsθ
M33

−sθ
M11

sφcθ
M22

cφcθ
M33


The developed form of the feedforward/feedback control U.

α1 = Π−1
11 (−Lr1

f h1 − Lρ1
p h1Fv1 + v1 − cψcθ Fv1)+

Π−1
12 (−L2

f h2 − L2
ph2Fv1 + v2)+

Π−1
13 (−L2

f h3 − L2
ph3Fv1 + v3)

α2 = Π−1
21 (−Lr1

f h1 − Lρ1
p h1Fv1 + v1)+

Π−1
22 (−L2

f h2 − L2
ph2Fv1 + v2)+

Π−1
23 (−L2

f h3 − L2
ph3Fv1 + v3)

α3 = Π−1
31 (−Lr1

f h1 − Lρ1
p h1Fv1 + v1)+

Π−1
32 (−L2

f h2 − L2
ph2Fv1 + v2)+

Π−1
33 (−L2

f h3 − L2
ph3Fv1 + v3)

α4 = Γ−1
11 (−L2

f h4 + v4) + Γ−1
12

(−L2
f h5 + v5)+

Γ13(−L2
f h6 + v6)

α5 = Γ−1
22

(−L2
f h5 + v5) + Γ23(−L2

f h6 + v6)

α6 = Γ−1
32

(−L2
f h4 + v4) + Γ−1

32
(−L2

f h5 + v5)+

Γ33(−L2
f h6 + v6)
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