
HAL Id: hal-03219126
https://hal.science/hal-03219126

Submitted on 6 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-aided Deep Reinforcement Learning for
Sample-efficient UAV Trajectory Design in IoT Networks

Omid Esrafilian, Harald Bayerlein, David Gesbert

To cite this version:
Omid Esrafilian, Harald Bayerlein, David Gesbert. Model-aided Deep Reinforcement Learning for
Sample-efficient UAV Trajectory Design in IoT Networks. GLOBECOM 2021 (IEEE Global Commu-
nications Conference), Dec 2021, Madrid, Spain. �10.1109/GLOBECOM46510.2021.9685774�. �hal-
03219126�

https://hal.science/hal-03219126
https://hal.archives-ouvertes.fr

Model-aided Deep Reinforcement Learning for
Sample-efficient UAV Trajectory Design in IoT

Networks

Omid Esrafilian, Harald Bayerlein, and David Gesbert
Communication Systems Department, EURECOM, Sophia Antipolis, France

{omid.esrafilian, harald.bayerlein, david.gesbert}@eurecom.fr

Abstract—Deep Reinforcement Learning (DRL) is gaining
attention as a potential approach to design trajectories for
autonomous unmanned aerial vehicles (UAV) used as flying access
points in the context of cellular or Internet of Things (IoT)
connectivity. DRL solutions offer the advantage of on-the-go
learning hence relying on very little prior contextual information.
A corresponding drawback however lies in the need for many
learning episodes which severely restricts the applicability of such
approach in real-world time- and energy-constrained missions.
Here, we propose a model-aided deep Q-learning approach that,
in contrast to previous work, considerably reduces the need for
extensive training data samples, while still achieving the overar-
ching goal of DRL, i.e to guide a battery-limited UAV towards an
efficient data harvesting trajectory, without prior knowledge of
wireless channel characteristics and limited knowledge of wireless
node locations. The key idea consists in using a small subset of
nodes as anchors (i.e. with known location) and learning a model
of the propagation environment while implicitly estimating the
positions of regular nodes. Interaction with the model allows us
to train a deep Q-network (DQN) to approximate the optimal
UAV control policy. We show that in comparison with standard
DRL approaches, the proposed model-aided approach requires at
least one order of magnitude less training data samples to reach
identical data collection performance, hence offering a first step
towards making DRL a viable solution to the problem.

I. INTRODUCTION

Rapid innovation in producing low-cost commercial un-

manned aerial vehicles (UAVs) has opened up numerous

opportunities in the UAV market which is projected to reach

63.6 USD billion by 2025 [1]. One key application scenario

is the future Internet of Things (IoT), in which harvesting

data from wireless nodes that are spread out over wide areas

far away from base stations (BSs) generally requires higher

transmission power to communicate the information, reducing

the network’s operating duration by draining the sensor battery

faster. A UAV that acts as a flying BS can describe a flight

pattern that brings it in close range to the ground nodes,

hence reducing battery consumption and increasing the energy

efficiency of the data harvesting system. However, delivering

this gain hinges on the availability of efficient methods to

design a trajectory for the UAV, deciding when and where to

collect data from ground nodes.

This work was partially supported by the French government, through the
3IA Côte d’Azur project number ANR-19-P3IA-0002, as well as by the TSN
CARNOT Institute under project Robots4IoT.

The popularity of deep reinforcement learning (DRL) in

this context can be explained by the fact that full information

about the scenario environment (e.g. IoT sensor positions) is

not a prerequisite. Further reasons include the computational

efficiency of DRL inference, as well as the inherent complexity

of UAV path planning, which is in general non-convex and of-

ten NP-hard [2], [3]. However, one of the greatest obstacles to

deploying DRL-based path planning to real-world autonomous

UAVs is the prohibitively extensive training data required [4],

equivalent to thousands of training flights. In this work, we

address this issue by proposing a so-called model-aided DRL

approach that only requires a minimum of training data to

control a UAV data harvester under a limited flight-time.

The training data demand of DRL methods for UAV path

planning depends in large parts on the scenario complexity and

the availability of prior information about the environment.

On the one hand, works such as [5], where a deep Q-network

(DQN) is trained to control an energy-limited UAV BS, assume

absolutely no prior knowledge of the environment, requiring

large amounts of training even in a simple environment as

the DRL agent has to deduce the scenario conditions purely

by trial and error. On the other hand, near perfect state

information in works such as [6], where cooperative UAVs

are tasked with collecting data from IoT devices in a relatively

simple unobstructed environment, enables faster convergence

and requires less training data. In this work, prior knowledge

available to the UAV agent is in between the two extremes:

while some reference IoT node positions are known (referred

to as anchors), other node positions and the challenging

wireless channel characteristics in a dense urban environ-

ment that causes alternation between line-of-sight (LoS) and

non-line-of-sight (NLoS) links, must be estimated.

In the context of sample-efficient RL, model-accelerated

solutions have been proposed previously for a variety of

applications. A method called imagination rollouts to increase

sample-efficiency for a continuous Q-learning variant has been

suggested for simulated robotic tasks in [7]. Their approach is

based on using iteratively refitted time-varying linear models,

in contrast to a neural network (NN) model that we propose

here. Learning a NN model in the context of stochastic value

gradient learning methods has been proposed in [8].

Other works in the area of RL trajectory optimization for

UAV communications have suggested other ways of reducing

http://arxiv.org/abs/2104.10403v2

training data demand. Li et al. [3] proposed a DRL method for

sum-rate maximization from moving users based on transfer

learning to reduce training time. In [9], the authors propose

meta-learning on random user uplink access demands for

distributed UAV BS control, reducing training time by around

50% compared to standard RL. Another possibility as pro-

posed in [10] is to directly generalize training over a range

of likely scenario parameters. The DRL agent then requires

no retraining when scenario parameters randomly change at

the cost of longer initial training and the requirement for the

change being observable for the agents.

To the best of our knowledge, this is the first work that

proposes model-based acceleration of the training process in

DRL UAV path planning and also the first one that suggests

the use of anchor nodes. Our contributions are as follows:

• We propose a novel model-aided deep reinforcement

learning UAV trajectory planning algorithm for data

collection from IoT devices that requires a minimum of

expensive real-world training data.

• By introducing a device localization algorithm that ex-

ploits a limited number of reference device positions and

a city 3D map, we show that our proposed method offers

fast convergence even under uncertainty about device

positions and without prior knowledge of the challenging

radio channel conditions in a dense urban environment.

• We compare our model-aided approach to the baselines

of standard DRL without any prior information as well

as map-based full knowledge DRL and show, that our

approach achieves a reduction in training data demand

of at least one order of magnitude with identical data

collection performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless communication system where a

UAV-mounted flying BS is serving K static ground level

nodes (IoT sensors) in an urban area. The k-th ground node,

k ∈ [1,K], is located at uk ∈ R
2. The ground nodes are split

into two groups: nodes with known locations uk, k ∈ Uknown,

and nodes with unknown locations uk, k ∈ Uunknown.

The UAV mission lasts for a maximum duration of T during

which the UAV follows a trajectory with a constant velocity

to maximize the amount of data collected from ground nodes.

For the ease of exposition, we assume that the time period T
is discretized into N equal time slots. The UAV position at

time step n is denoted by vn = [xn, yn, h]
T ∈ R

3, where h
represents the altitude of the drone. We also assume that the

drone is equipped with a GPS receiver, hence the coordinates

vn, n ∈ [1, N] are known.

A. UAV Model

During the mission, the drone’s position evolves as

vn+1 = vn + an , an ∈ A, (1)

where an is the UAV movement action, and A is the set of

feasible actions for the UAV given by

A =

0
0
0

︸ ︷︷ ︸

hover

,

c
0
0

︸ ︷︷ ︸

right

,

−c
0
0

︸ ︷︷ ︸

left

,

0
c
0

︸ ︷︷ ︸

up

,

0
−c
0

︸ ︷︷ ︸

down

, (2)

where c is the distance that the UAV travels within each time

step. Moreover, the UAV is subject to a limited flying time

depending on its battery budget. We indicate the remaining

battery budget of the UAV at n-th time step by bn ∈ R and it

changes according to

bn+1 =

{

bn − 0.5, an = hover

bn − 1, otherwise.
(3)

B. Channel Model

We now describe the radio channel model that is used for

computing the channel gains between the UAV and the ground

nodes. Note that the channel model and the channel parameters

are unknown to the UAV. Classically, the channel gain between

two radio nodes which are separated by distance d meters in

dB is modeled as [11]

gz = ßz − 10αz log10 (d) + ηz, (4)

where αz is the path loss exponent, ßz is the log of average

channel gain at the reference point d = 1m, ηz stands for the

shadowing component that is modeled as a Gaussian random

variable with N (0, σ2
z). z ∈ {LoS,NLoS} emphasizes the

strong dependence of the propagation parameters on the LoS

or NLoS condition. Note that (4) represents the logarithm of

the channel gain which is averaged over the small scale fading

of unit variance.

C. Problem Formulation

We are seeking to find an optimal trajectory for the UAV

to maximize the overall collected data from all ground nodes

within the UAV mission time. We assume that the ground

nodes are served by the drone in a time-division multiple

access (TDMA) manner where all ground nodes have an

equal communication time access to the channel and are

served sequentially. The ground node scheduling is performed

automatically by the UAV and is not part of the optimization

problem. Hence, for the node k at time step n, the maximum

throughput is given by

Ck,n =
1

K
log2

(

1 +
P100.1gn,k

σ2

)

, (5)

where K is the number of ground nodes and 1
K

is the

normalization factor capturing the TDMA channel sharing

effect, gn,k is the channel gain between the k-th node and

the UAV at time step n, P denotes the up-link transmission

power of the ground node, and the additive white Gaussian

noise power at the receiver is denoted by σ2.

We can now formulate the problem of maximum data

collection by taking into account the UAV mobility constraints

as follows

max
an

∑

k∈[1,K]

∑

n∈[1,N]

Ck,n (6a)

s.t. (1), (3) (6b)

v1 = vI,vN = vF (6c)

bN ≥ 0, (6d)

where (6a) is the total collected data from all nodes during

the mission, vI,vF are, respectively, the starting and the final

points of the trajectory, and (6d) guarantees that there is

enough battery power to reach the terminal point. This problem

is challenging to solve, since the objective function (6a) is

highly non-convex and also the channel model and some of

the ground nodes locations are not available at the UAV side.

III. MARKOV DECISION PROCESS AND Q-LEARNING

To solve problem (6), we first reformulate it as a Markov

decision process (MDP) which is defined by a 4-tuple

(S,A, Pa, Ra) with state space S, actions space A, the state

transition probability function Pa giving the probability that

action a in state s at time step n will lead to state s′ in the

next time step, and the reward function Ra(s, s
′) which yields

the immediate reward received after transitioning from state

s to state s′ by taking action a. In our problem, each state

comprises two elements which is given by sn = (vn, bn), and

the action space A is defined in accordance with (2).

The reward function consists of two components

rn =
∑

k∈[1,K]

Ck,n − λn, (7)

where rn , Ra(s, s
′). The first term in (7) is the instantaneous

collected data from all nodes at the n-th time step, and λn is

a penalty imposed by the safety controller that guarantees the

UAV will reach the terminal point vF. Specifically, the safety

controller at each time step computes the shortest trajectory (a

minimum set of actions) and the minimum required power for

getting to the destination point from the current UAV location,

then based on these values it declines or accepts the current

action an chosen by the UAV. If action an is rejected, a

penalty term will be added to the reward function. The shortest

trajectory and the minimum required power computed at the

n-th time step by the safety controller are denoted by Asc
n and

bscn , respectively. Thus, the safety penalty λn is given by

λn =

{

λ, bn ≤ bscn
0, else.

(8)

The action chosen by the UAV at each time step is checked

and modified (if necessary) by the safety controller as follows

an =

{

a
sc
n,1, bn ≤ bscn ∧ an /∈ Asc

n

an, else,
(9)

where a
sc
n,1 is the first element of Asc

n .

To solve the MDP, we employ the popular Q-learning

algorithm, a model-free RL technique, that enables us to

directly compare our proposed method to the state-of-the-art

from the literature. Note that, our aim is to reduce the real-

world training data samples of Q-learning by model-aided

acceleration with an external model that simulates the envi-

ronment. Accordingly, the Q-learning algorithm is unchanged

and follows the standard cycle of interaction between agent

and environment to iteratively learn a policy π(s) that tells

the agent how to select actions given a certain state.

Q-learning relies on iteratively improving the state-action

value function Qπ, a.k.a. Q-function. The Q-function repre-

sents an expectation of the total future reward when taking

action a in state s and then following policy π. It is given by

Qπ(s, a) = Eπ

[
N∑

m=n

γm−nrn|sn = s, an = a

]

, (10)

with discount factor γm−n ∈ [0, 1] striking a balance between

the importance of immediate and future rewards.

In large state-action spaces, the Q-function is commonly

approximated by a Deep Q-network (DQN) with the neural

network parameters θ [5]. When training the DQN Qπ(s, a; θ),
instability can occur. Experience replay, where experience

tuples (sn, an, rn, sn+1) are stored to be reused for training

by the agent, and a separate target network with parameters

θ̂ have become standard techniques to mitigate the risk of

training instability [12]. Accordingly, the loss function at each

time step to train the DQN is given by

ℓ(θ) = E

[(

r + γmax
a

Qπ(s′, a; θ̂)−Qπ(s, a; θ)
)2
]

, (11)

where Qπ(sn+1, a; θ̂) is the target network and with time

index n omitted and sn+1 abbreviated to s′ for brevity.

IV. MODEL-AIDED DEEP Q-LEARNING

Employing standard deep Q-learning is often not practical

due to the tremendous amount of training data points required

and the cost associated with obtaining these data points,

i.e. through real-world UAV experiments. To ameliorate this

problem, we propose an algorithm where the agent learns

an environment model continuously while collecting real-

world measurements. This model is then used by the agent

to simulate experiments and supplement the real-world data.

More specifically in our scenario, the next state sn+1 given

the current state sn and action an can be computed from

(1), (3). The reward function (7) consists of two parts: the

safety penalty, which is known from (9), and the instantaneous

collected data from the IoT node devices. Therefore we only

need to estimate the instantaneous collected data from devices

which according to (5), (4), is a function of ground node loca-

tions and the radio channel model. Hence, the approximation

of the reward function boils down to ground node localization

and radio channel learning from collected radio measurements.

The problem of simultaneous wireless node localization and

channel learning has been studied in previously [13]. In this

section, we propose a new approach of model-free node lo-

calization by leveraging the 3D map of the environment. Akin

to [13], a LoS/NLoS segmented radio channel is assumed.

However, in contrast to [13], our goal here is to estimate the

radio channel using a model-free method while localizing the

ground nodes. To learn the radio channel, we use a neural

network (NN). This network is utilised along with a particle

swarm optimization (PSO) technique and a 3D map of the city

to localize the wireless nodes with unknown positions.

A. Simultaneous Node Localization and Channel Learning

We assume the UAV follows an arbitrary trajectory de-

noted by χ = {vn, n ∈ [1, N]} for collecting received signal

strength (RSS) measurements, where vn represents the UAV’s

position in the n-th time interval. We also assume that the

UAV collects radio measurements form all K nodes at each

location. Let gn,k represent the RSS measurements (in dB

scale) obtained from the k-th node by the UAV in the n-th in-

terval. Assuming a LoS/NLoS segmented pathloss model that

is suitable for air-to-ground channels in urban environments

with buildings [11], we have

gn,k=

{

ψθ(dn,k, φn,k, wn,k=1) + η
n,k,LoS if LoS

ψθ(dn,k, φn,k, wn,k=0) + η
n,k,NLoS if NLoS,

(12)

where dn,k = ‖uk − vn‖, and φn,k = arcsin(
d̄n,k

dn,k
) is the

elevation angle between the UAV at time step n and node k
with d̄n,k representing the ground distance between the ground

node and the UAV. ωn,k ∈ {0, 1} is the classification binary

variable (yet unknown) indicating whether a measurement

falls into the LoS or NLoS category. The function ψθ(.) is

the channel model parameterized by θ. Note that, neither

function ψ(.) nor parameters θ are known and need to be

estimated. ηn,k,z stands for the shadowing effect with zero-

mean Gaussian distribution with variance σ2
z . The probability

distribution of a single measurement in (12) is modeled as

p(gn,k) = (fn,k,LoS)
wn,k(fn,k,NLoS)

(1−wn,k), (13)

where fn,k,z has a Gaussian distribution with

N (ψθ(dn,k, φn,k, wn,k), σ
2
z).

Assuming that collected measurements conditioned on the

channel and node positions are independent and identically

distributed (i.i.d) [11], using (13), the negative log-likelihood

of measurements leads to

L = log

(
σ2

LoS
σ2

NLoS

)
K∑

k=1

N∑

n=1

ωn,k+

K∑

k=1

N∑

n=1

ωn,k
σ2

LoS
|gn,k−ψθ(dn,k, φn,k, wn,k)|

2
+

K∑

k=1

N∑

n=1

(1− ωn,k)

σ2
NLoS

|gn,k−ψθ(dn,k, φn,k, wn,k)|
2
.

(14)

The estimate of ψ(.), θ, and uk can then be obtained by

solving

min
ωn,k,uk,∀n,∀k

ψ(.),θ

L
(15a)

s.t. ωn,k ∈ {0, 1}, ∀n, ∀k. (15b)

The binary variables ωn,k in objective function (14), and

the fact that ψ(.) is not explicitly known and is a nonlinear

function of node locations, make problem (15) challenging to

solve since it is a joint classification, channel learning and node

localization problem. To tackle this difficulty, we split (15) into

two sub-problems of learning the channel and localizing nodes.

We also leverage the 3D map of the city for the measurements

classification which will be discussed next.
1) Radio Channel Learning: Our aim is to learn the radio

channel using collected radio measurements from the IoT

nodes with known location (anchor nodes). Since the charac-

teristic of the radio channel is independent of the node location

and only affected by the structure of the city and the blocking

objects in the environment, learning the radio channel from the

nodes with known location can provide a good approximation

of the radio channel. The measurements are classified by

leveraging the 3D map of the city, since for a node with

known location the classification variables ωn,k can be directly

inferred from a trivial geometry argument: for a given UAV

position, the node is considered in LoS to the UAV if the

straight line passing through the UAV’s and the node position

lies higher than any buildings in between. Having classified

the measurements, we use a neural network with parameters θ

as an approximation of ψθ(.). The neural network accepts an

input vector [dn,k, φn,k, wn,k]
T and returns an estimate of the

channel gain ĝn,k. Therefore, problem (15) just by considering

the anchor nodes can be rewritten as follows

min
θ

k∈Uknown,∀n

L.
(16)

This optimization is a standard problem in machine learning

and can be solved using any gradient-based optimizer. The

parameters obtained by solving (16) are denoted by θ
∗.

2) Node Localization: Having learned the radio channel,

we continue to localize the unknown nodes. The optimization

problem (15) for the set of unknown nodes and utilizing the

learned radio channel can be reformulated as follows:

min
ωn,k,uk,∀n
k∈Uunknown

L∗

(17a)

s.t. ωn,k ∈ {0, 1}, k ∈ Uunknown, ∀n, (17b)

where L∗ is obtained by substituting the learned channel

model ψθ∗(.) in (14). The binary random variables ωn,k, and

the non-linear and non-convex objective function L∗ make

problem (17) hard to solve. We use the PSO algorithm which

is suitable for solving various non-convex and non-linear op-

timization problems. PSO is a population-based optimization

technique that tries to find the solution to an optimization

problem by iteratively trying to improve a candidate solution

with regard to a given measure of quality (or objective

function). The algorithm is initialized with a population of

random solutions, called particles, and a search for the optimal

solution is performed by iteratively updating each particle’s

velocity and position based on a simple mathematical formula

(for more details on PSO see [14]). As will be clear later,

the PSO algorithm is enhanced to exploit the side informa-

tion stemming from the 3D map of the environment which

improves the performance of node localization and reducew

the complexity of solving (17), since the binary variable ωn,k
can be obtained directly from the 3D map [13].

For ease of exposition, we first solve (17) by assuming only

one unknown node. Then we will generalize our proposed

solution to the multi-node case. To apply the PSO algorithm,

we define each particle to have the following form

cj = [xj , yj]
T ∈ R

2, j ∈ [1, C], (18)

where C is the number of particles and each particle is an

instance of the possible node location in the city. Therefore,

by treating each particle as a potential candidate for the node

location, the negative log-likelihood (14) for a given particle

can be rewritten as follows

L∗(c
(i)
j) = log

(

σ2

LoS
σ2

NLoS

)

∣

∣

∣
MLoS,1,j

∣

∣

∣
+

∑

z∈{LoS,NLoS}

∑

n∈Mz,1,j

1

σ2
z

|gn,1−ψθ∗(dn,k, φn,k, z)|
2
,

(19)

where c
(i)
j is the j-th particle at the i-th iteration of the PSO

algorithm, and Mz,1,j is a set of time indices of measurements

collected from node 1 which are in segment z by assuming

that the location of node 1 is the same as particle j. To

form Mz,1,j , a 3D map of the city is utilized. For example,

measurement gn,1 is considered LoS, if the straight line

passing through c
(i)
j and the drone location vn lies higher

than any buildings in between. Therefore, the best particle

minimizing (19) can be obtained from solving the optimization

j∗ := arg min
j∈[1,C]

L∗(c
(i)
j), (20)

where j∗ is the index of the best particle which minimizes

the objective function in (20). In the next iteration of the PSO

algorithm, the position and the velocity of particles are updated

and the algorithm repeats for τ iterations. The best particle

position in the last iteration is considered as the estimate of

the node location.
Note that for the multi-node case, without loss of opti-

mality, the problem can be transformed to the multi single-

node localization problem and then each problem can be

solved individually. This stems from the fact that the radio

channel is learned beforehand and is assumed to have the

same characteristics for all the UAV-node links (the radio

channel characteristics is assumed to be independent of the

node locations).

B. Algorithm

The proposed Algorithm 1 iterates between three phases: 1)

the agent uses a policy obtained from its Q-network in the real

world to collect RSS measurements from ground nodes. 2) The

collected measurements are used to learn the radio channel and

localize the unknown nodes as described in Sections IV-A1

and IV-A2, respectively. 3) The agent performs a new set of

experiments in the simulated environment under the learned

radio channel model and the estimation of the node locations

to train the Q-network. Then, the agent repeats the first phase

of the algorithm by generating a new policy using the trained

Q-network and the procedure continues until convergence of

the Q-network training.

The experience replay buffers for real world and simulated

world experiments are denoted B and B̃, respectively. A new

episode in phase 1 and phase 3 starts by resetting the time

index, the initial UAV position and the battery budget (lines

7 and 22). To train the Q-network, an ǫ-greedy exploration

technique is used (line 36) with decay constant κ. β is the

learning rate for primary network parameters θ. Target network

parameters are updated every Ntarget episodes. In phase 3,

the algorithm performs I sets of experiments in the simulated

world, and the whole algorithm terminates after carrying out

Emax real-world experiments.

V. NUMERICAL RESULTS

We consider a dense urban city neighborhood comprising

buildings and regular streets as shown in Fig. 2. The height of

the buildings is Rayleigh distributed in the range of 5 to 40m
and the true propagation parameters are chosen similar to [10].

The UAV collects radio measurements from the ground nodes

every 5m and we assume that the altitude of the UAV is fixed

to 60m during the course of its trajectory. The mission time

of each episode is fixed to N = 20 time steps with a fixed step

size of c = 50m. We assume there are six ground nodes. Only

the locations of anchor nodes u1 and u2 are known to the UAV

in advance. The UAV starts from vI = [100, 100, 60]T and

needs to reach the destination point vF = [300, 400, 60]T by

the end of the mission. To learn the channel, we use a NN with

two hidden layers where the first layer has 60 neurons with

tanh activation function, and the second layer 30 neurons with

relu activation function. The Q-network comprises 2 hidden

layers each with 120 neurons and relu activation function.

In Fig. 1, we compare the performance of the baseline

Q-learning algorithm as explained in Section III and akin

to [5], with the proposed model-aided Q-learning algorithm.

Moreover, we show the result of an algorithm similar to

[10], where the mixed-radio map of the nodes is embedded

in the state vector. To compute the mixed-radio map, the

individual radio maps of all nodes are combined. Individual

radio maps are computed using the 3D map of the city and

assuming perfect knowledge node positions and the radio

channel. The model-aided algorithm outperforms the other

approaches since it merely requires 10 real-world experiment

episodes to converge to the same performance level as other

algorithms. The algorithm introduced in [10] is superior to

the baseline since it uses more information, i.e. the map and

perfect knowledge of node positions and the radio channel

model.

Algorithm 1 Model-aided deep Q-learning trajectory design

1: Initialize replay buffer (B), (B̃)
2: Initialize Q-network and target network parameters
3: Initialize t = 0
4: for e = 0 to Emax do
5: t = t+ 1
6: 1) Real-world experiment:
7: Initialize s0 = (vI, bmax), n = 0
8: while bn ≥ 0 do
9: an = argmaxaQ

π(sn,a, θ)
10: Validate an using the safety controller (9)
11: Observe rn, sn+1, γ1,n, · · · , γK,n

12: Store (sn,an, rn, sn+1) on (B)
13: Memorize (vn, γ1,n, · · · , γK,n)
14: n = n+ 1
15: end while
16: 2) Learning the environment:
17: Learn the radio channel as described in Section IV-A1
18: Localize unknown nodes as described in Section IV-A2
19: 3) Simulated-world experiment:
20: for i = 0 to I do
21: t = t+ 1
22: Initialize s̃0 = (vI, bmax), n = 0
23: while bn ≥ 0 do

24: ãn =

{

randomly select fromA with probability ǫ

argmaxaQ
π(s̃n,a, θ) else

25: Validate ãn using the safety controller (9)
26: Compute r̃n from (7), and s̃n+1 from (1), (3)
27: store (s̃n, ãn, r̃n, s̃n+1) on B̃
28: for m = 0 to M do
29: Sample (sm,am, rm, sm+1) uniformly from {B∪B̃}

30: ym =

{

rm if terminal

rm + γmaxaQ
π(sm+1,a, θ̂) else

31: ℓm(θ) = E
[

(ym −Qπ(sm,am, θ))
2
]

32: end for
33: θ = θ + β 1

M
∇θ

∑M

m=0 ℓm(θ)
34: n = n+ 1
35: end while
36: ǫ = ǫfinal + (ǫstart − ǫfinal) exp(−κt)
37: if (t mod Ntarget = 0) then θ̂ = θ
38: end for
39: end for

Fig. 2 shows the final trajectory after convergence. The

UAV starts flying towards the closest node and hovers above

for several time steps in order to maximize the amount of

collected data, and then reaches the destination vF. Moreover,

the estimate of unknown node locations obtained at the last

episode of the training phase of Algorithm 1 are shown and

confirmed to be very close the true positions.

VI. CONCLUSION

We have introduced a novel model-accelerated DRL path

planning algorithm for UAV data collection from distributed

IoT nodes with only partial knowledge of the nodes’ locations.

In comparison to two standard deep Q-learning algorithms,

using either full or no knowledge of sensor node locations,

we have demonstrated that the model-aided approach requires

at least one order of magnitude less training data samples to

reach the same data collection performance.

100 101 102 103 104
Episode [log scale]

2

4

6

8

10

12

Ac
cu
m
ul
at
ed
 C
ol
le
ct
ed
 D
at
a
[K
bi
t]

Model-aided (proposed)
Ref. [10]
Baseline Q-learning

Fig. 1: Comparison of proposed model-aided, full-knowledge

map-based [10], and no prior knowledge baseline Q-learning,

showing accumulated collected data versus training episodes.

0 100 200 300 400 500 600
X-axis [m]

0

100

200

300

400

500

600

Y-
ax
is
[m

]

Anchor nodes
True node position
Estimated node position

5

10

15

20

25

30

35

40

45

Bu
ild
in
g
he
ig
ht
 [m

]

Fig. 2: Trajectory obtained by model-aided Q-learning and the

estimates of unknown node locations in the final episode of

Algorithm 1.

REFERENCES

[1] L. Wood, “$63.6 bn drone service markets, 2025 -
increasing use of drone services for industry-specific solutions
- [news],” Businesswire, 17 Apr 2019. [Online]. Available:
https://www.businesswire.com/news/home/20190417005302/en/

[2] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on
UAV communications for 5G and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, 2019.

[3] X. Li, Q. Wang, J. Liu, and W. Zhang, “Trajectory design and gen-
eralization for UAV enabled networks: A deep reinforcement learning
approach,” in IEEE Wireless Communications and Networking Confer-

ence (WCNC), 2020.
[4] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-

world reinforcement learning,” arXiv:1904.12901, 2019.
[5] H. Bayerlein, R. Gangula, and D. Gesbert, “Learning to rest: A Q-

learning approach to flying base station trajectory design with landing
spots,” in 52nd Asilomar Conference on Signals, Systems, and Comput-

ers, 2018, pp. 724–728.
[6] Y. Zhang, Z. Mou, F. Gao, L. Xing, J. Jiang, and Z. Han, “Hierarchical

deep reinforcement learning for backscattering data collection with
multiple UAVs,” IEEE Internet of Things Journal, vol. 8, no. 5, pp.
3786–3800, 2021.

[7] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference

on Machine Learning (ICML), 2016.
[8] N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, and T. Erez,

“Learning continuous control policies by stochastic value gradients,”
in 28th International Conference on Neural Information Processing

Systems, 2015.

https://www.businesswire.com/news/home/20190417005302/en/

[9] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed multi-
agent meta learning for trajectory design in wireless drone networks,”
arXiv:2012.03158, 2020.

[10] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV path
planning for wireless data harvesting: A deep reinforcement learning
approach,” in IEEE Global Communications Conference, 2020.

[11] J. Chen, U. Yatnalli, and D. Gesbert, “Learning radio maps for UAV-
aided wireless networks: A segmented regression approach,” in IEEE

International Conference on Communications (ICC), 2017.
[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[13] O. Esrafilian, R. Gangula, and D. Gesbert, “3D Map-based Trajectory
Design in UAV-aided Wireless Localization Systems,” IEEE Internet of

Things Journal, 2020.
[14] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Interna-

tional Conference on Neural Networks (ICNN), 1995.

	I Introduction
	II System Model and Problem Formulation
	II-A UAV Model
	II-B Channel Model
	II-C Problem Formulation

	III Markov Decision Process and Q-Learning
	IV Model-aided Deep Q-Learning
	IV-A Simultaneous Node Localization and Channel Learning
	IV-A1 Radio Channel Learning
	IV-A2 Node Localization

	IV-B Algorithm

	V Numerical Results
	VI Conclusion
	References

