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Résumé. L’analyse de données d’accelerométrie consiste à extraire des informations
sur les temps passés à différents niveaux d’activité. Ces informations sont généralement
utilisées ensuite dans un modèle prédictif. Nous proposons une modélisation de ce type
de données utilisant un mélange de châınes de Markov cachées, afin de pouvoir automa-
tiquement détecter le nombre de niveaux d’activités ainsi que leurs caractéristiques. Pour
tenir compte de la spécificité des données d’accéléromètre, les données sont modélisées
par une distribution de Zero-inflated Gamma dont les paramètres sont spécifiques à l’état
caché. La modélisation par un mélange permet de tenir compte de l’hétérogénéité de la
population. Les propriétés de cette modélisation (identifiabilité, gestion de valeurs man-
quantes, probabilité de détecter la vraie partition) sont discutées.
Mots-clés. Châınes de Markov cachées, données d’accéléromètre, modèles de mélanges.

Abstract. Accelerometer data analysis consists of extracting information on time
spent at different levels of activity. Then, this information is generally used in a predictive
model. We propose to model these data with a mixture of hidden Markov model, to
automatically detect the amount of activity levels and their characteristics. To take into
account the specificities of the accelerometer data, observations are modeled with a Zero-
inflated Gamma distribution whose parameters depends of the hidden state. The use of
mixtures allows to consider the heterogeneity of the population. Properties of this model
(identifiability, handling missing values, probability of detection of the true partition) are
discussed.
Keywords. Accelerometer data, mixture models, hidden Markov model.
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1 Introduction

Inadequate sleep and physical inactivity affect physical and mental well-being while often
exacerbating health problems. They are currently considered major risk factors for several
health conditions. Therefore, appropriate assessment of activity and sleep periods is
essential in disciplines such as medicine and epidemiology. The use of accelerometers
to evaluate physical activity—by measuring the acceleration of the part of the body to
which they are attached—is a classic method that has become widespread in public health
research. Indeed, the analysis of actigraphy data has been the subject of extensive studies
over the past three decades. Since the pioneering work of Cole et al. (1992), the objective
of automating the classification of activity periods directly from an accelerometer signal
has been pursued and continues to attract the interest of researchers, medical experts
and the industrial community. Many studies have focused on the classification of sleep
and wake-up periods (see Wallace et al. (2018)) while others focus on the classification of
different levels of activity (see, Yang and Hsu (2010); Huang et al. (2018)). In epidemiology
studies, the times spent by activity levels are often used as covariate in predictive models
(e.g., as covariates for obesity prediction). However, the definition of the different activity
levels (e.g., number of levels, characterization of the levels) and their detection is often
made by ad hoc methods.

In this work, we develop a mixture of Hidden Markov Models (HMM mixture) for
modeling the accelerometer data. The hidden states define the different activity levels.
The distribution of the observed data, at any time, is modeled by a zero-inflated gamma
(ZIG) distribution whose parameters depend on the hidden state. To the best of our
knowledge, the first HMM-based methodology in this context was used in discrete time
by Pober et al. (2006), and then in Witowski et al. (2014); Huang et al. (2018) and
in continuous time by Xu et al. (2018). HMM mixture permits to estimate the mean
time spent by one individual into each activity level. Moreover, it gives estimators of
the activity level, for one individual, at any time. Inference by maximum likelihood is
performed by an EM algorithm which generalizes the Baum–Welch algorithm (Cappé
et al. (2005)) to the case of HMM mixture. The model identifiability and the probability
of estimating the true partition are discussed. Missing data occur when the accelerometer
is not worn, but they are managed using Markovian properties.

This paper is organized as follows. Section 2 presents the general model and its prop-
erties. Section 3 presents a specific version of this model for accelerometer data. Section 4
shows preliminary results on real data. Section 5 discusses some future developments.

2 Mixture of hidden Markov models

The model The observed data y = (y>1 , . . . ,y
>
n ) are composed of n i.i.d sequences

yi = (yi(1), . . . , yi(T )) measured by an accelerometer at discrete times t ∈ {1, . . . , T}.
Heterogeneity of the population is modeled by a K-component mixture model providing

2



a partition z = (z1, . . . ,zn) among the observations y. The probability distribution
function (pdf) of an observation yi is

p(yi;θ) =
K∑
k=1

δk p(yi;πk,Ak,λ), (1)

where θ groups the model parameters, δk is the proportion of component k with δk > 0
and

∑K
k=1 δk = 1, and p(·;πk,Ak,λ) being the pdf of component k. Under component k,

yi follows a HMM where the hidden state sequence xi = (xi(1), . . . ,xi(T )) ∈ X takes M
values for each observation xi(t) = (xi(t)1, . . . , xi(t)M) where xi(t)h = 1 if observation i is at
state h at time t and xi(t)h = 0 otherwise. Its pdf is

p(yi;πk,Ak,λ) =
∑
xi∈X

p(xi;πk,Ak)p(yi | xi;λ),

where πk = (πk1, . . . , πkM) defines the initial probabilities so that πkh := P(Xi(1) = h |
Zi = k) and Ak is the transition matrix so that Ak[h, `] := P(Xi(t) = ` | Xi(t−1) = h).

p(xi;πk,Ak) =
∏̀
h=1

π
xi(1)h
kh

T∏
t=2

M∏
h=1

M∏
`=1

(Ak[h, `])
xi(t−1)hxi(t)` , (2)

The goal is to obtain summary statistics about the time spent at different activity levels
for the people having worn the accelerometer, and then to use these statistics in the
same predictive model for the whole population. The activity levels are defined by the
distribution of yi(t) given xi(t) therefore, it is important that these distributions are equal
among mixture component. Thus, clusters are only defined by the transition probabilities
(πk,Ak). Therefore, we have

p(yi | xi;λ) =
T∏
t=1

∏
h

f(yi(t);λh)
xi(t)h . (3)

The choice of the distribution f(·;λh) is discussed in the next section.

Model properties The next two propositions present the model identifiability and the
probability of misclassifying an observation when the model parameter is known. Mild
conditions are required for the proposition: T must be large enough according to K and
the distributions of the latent states must be sufficiently different among components.

Proposition 1 Under mild assumptions, the model defined by eqs. (1) to (3) is identifi-
able.

Proposition 2 Let θ0 be the true model parameter and P0 := P(·|Zik0 = 1, θ0) denote the
true conditional distribution (labels and parameters are known). Under mild assumptions,
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if the density functions g(·;λh) are defined on disjoint spaces for any h. Then, for every
a > 0 and every k 6= k0,

P0

[
P(Zik = 1|yi)
P(Zik0 = 1|yi)

> a

]
= O(e−cT ),

where c > 0 is a positive constant that depends on a and θ0.

Therefore, by considering a = 1, Proposition 2 shows that the probability of misclassifying
an observation yi, using the MAP rule, tends to zero when T increases, if the model
parameters are known. This proposition can be extended in the case where the density
functions are defined on overlapping spaces. We investigate an extension of Proposition 2
that considers an estimator of θ0 (e.g., the maximum likelihood estimate).

3 Mixture of HMMs of ZIG distributions

Specific distributions conditionally on the state Pre-processed accelerometer data
are given every second by combining the vector amplitude of all the movements recorded in
the previous second. They are therefore composed of positive values with a large number
of zeros. For this reason, we will consider that yi(t) is drawn from a ZIG distribution
whose parameters are defined by the state xi(t). Thus,

f(yi(t);λh) = (1− εh)g(yis(t); ah, bh) + εh1{yi(t)=0},

where g(u;α, β) = βα

Γ(α)
uα−1e−βu1{u≥0} is the pdf of a Gamma distribution with shape α

and rate β, λh = (εh, ah, bh) and λ = (λ1, . . . ,λM).

Dealing with missing values Missing values appear when the accelerometer is not
worn. Thus, we will not observe isolated missing values but rather wide ranges of missing
values. Our idea is that after as many iterations as the number of missing values, the
transition matrix can be considered sufficiently close to stationarity, which has been chosen
as initial distribution (e.g., let d be the number of successive missing values, Adk[h, `] ' π`;
for any (h, `)). Therefore, an observation yi with r observed sequences split with missing
value sequences of size at least d are modeled as a product of r observed sequences. Once
the parameter estimation is completed, we ensure that this assumption was justified by
verifying that the width of the smallest range of missing values is large enough to be
greater than the mixing time of the transition matrix obtained. To do so, we use an
upper bound for the mixing time given by Theorem 12.4 of (Levin et al. 2006).

Maximum likelihood inference All parameters δk,πk,Ak and λ are estimated simul-
taneously using the well-known iterative Expectation-Maximization algorithm for mix-
tures together with the forward/backward formulas specific to HMM.
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4 Analyze of accelerometer data

This section illustrates our proposition on real data. The aim is to extract, from ac-
celerometer data, information on the activity behaviour of individuals and then to plug-it
a predictive model to prevent obesity. The application on this dataset is in progress,
so we present here only the results obtained on 4 individuals where the accelerometer
measures activity every 5 minutes for 5 days. Thus, we only use the HMM of ZIG (i.e.,
the model we presented with K = 1). It should be noted that subject 4 did not wear the
accelerometer for a day and a half. Table 1 describes the states with their parameters and
gives the mean time per state spent by each individual. Figure 1 shows the accelerometer
data of observation 4 and its probability of each state at each time.

Model parameters Mean time per state per individual
State name εh ah bh mean obs. 1 obs. 2 obs. 3 obs. 4

intensive-level 0.00 5.65 0.07 78.23 0.21 0.11 0.15 0.16
moderated-level 0.00 3.91 0.13 30.09 0.24 0.20 0.25 0.18

low-level 0.00 2.08 0.19 11.09 0.19 0.31 0.28 0.15
sleeping 1 0.34 0.76 0.18 2.82 0.28 0.23 0.22 0.38
sleeping 1 0.95 36.02 0.13 14.05 0.07 0.15 0.11 0.13

Table 1: Parameters per state and mean time per states for the four individuals.
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Figure 1: State estimation of individual 4 (with a wear-free period): (a) accelerometer
data where color indicates the most likely state; (b) probability of each state at each time.
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5 Conclusion

We proposed a new mixture of HMM with ZIG distributions in each state which represent
the different activity levels. Parameter inference was performed through a generalization
of the Baum-Welch algorithm to this context of mixture and applied to accelerometer
data. Future work will focus on developing predictive models for the whole considered
population based on the time obtained at each activity level for people who have worn
the accelerometer.
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