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SPINE FOR INTERACTING POPULATIONS AND SAMPLING

VINCENT BANSAYE

Abstract. We consider Markov jump processes describing structured populations with
interactions via density dependance. We propose a Markov construction with a distin-
guished individual which allows to describe the random tree and random sample at a
given time via a change of probability. This spine construction involves the extension of
type space of individuals to include the state of the population. The jump rates outside
the spine are also modified. We apply this approach to some issues concerning evolution
of populations and competition. For single type populations, we derive the diagram phase
of a growth fragmentation model with competition and the growth of the size of birth
and death processes with multiple births. We also describe the ancestral lineages of a
uniform sample in multitype populations.

Key words: Jump Markov process, random tree, spine, interactions, positive semigroup, martin-

gales, population models.

1. Introduction

Spine techniques and size biased trees have a long and fruitful story in branching pro-
cesses. They have played a deep role in the analysis of branching brownian motion and
branching random walk from the works of Chauvin and Rouault [13] and Lyons [38]. More
generally, spine construction provides a relevant point of view to tackle many issues re-
lated to the genealogy and long time behavior of branching processes. Lyons, Peres and
Pemantle [39] have given a conceptual approach of the famous L logL criterion involved
in the asymptotic analysis of branching processes. Their construction provides an illumi-
nating proof of the non degenerescence of limiting martingale using branching processes
with immigration. This Markov construction has been extended to multitype branching
process [32] and infinite dimension and we refer e.g. to [2, 20, 19]. It involves then either
an eigenfunction or an exponential additive functional of trajectories corresponding to a
Feynman Kac semigroup, both being linked by a change of probability. This construction
is also involved in the fine estimate of the front of branching random walks, see Hu and
Shi [26] and Roberts [41], thanks to a family of exponential eigenfunctions and Biggins
martingale.
Spine construction gives a trajectorial and markovian sense to a typical individual alive
at a given time. This allows to prove ergodic properties of type distribution among the
population and shed light on sampling [37]. More generally, we refer to the description of
reduced tree and backbone [17, 18] and multispine construction [25]. It has finally proved
to be a powerful way to analyse the first moment semigroup of branching processes, and
more generally non-conservative semigroups or linear PDEs, see e.g. [9, 4] and references
therein. The examples considered in this work will involve different scalings.

These constructions rely on the branching property and independence of individuals.
The aim of this paper is to propose a spine construction for dynamics taking into account
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interactions, through density dependance of individual behaviors and associated branching
events. Individuals may die or reproduce or move and the individual rates and outcome
of transition events may depend on the state of the population. Such models are involved
in population dynamics or genetics or epidemiology, see e.g. [31, 3, 22] and forthcoming
examples. Indeed, for various models of competition, mutualism, contamination, sexual
reproduction or predation, the individual rate of transition depends on the size of some
species at a given location. Death or successive reproduction of asexual population may
indeed depend on local competition and ressources available, reproduction of females may
depend on density of males, contaminations by infected individuals depends on the local
number of susceptibles... Let us also mention that density dependent models appear in
various other contexts, including chemistry, queueing systems or networks.
Our first motivation here is the study of population models with competition. The evolu-
tion of the distribution of traits among such a population is related to the distribution of a
sample. They can be both tackled via a spine construction. Addario-Berry and Penington
[1] have considered a competitive effect in a branching random walk. The authors obtain
fine results on the front of propagation. They focus on a peculiar form of competition
which enables them to link their model to branching brownian motion. In a large popula-
tion approximation where a branching property can be recovered, Calvez, Henry, Méléard
and Tran [12] describe the ancestral lineage of a sample in a context of competition and
adaptation to a gradual environmental change.

In recent decades, lots of attention has been paid to the study of genealogical structures
of population. For branching processes, the contour (or exploration) process provides a
full description of the genealogy. From the work of Aldous and convergence to the con-
tinuum random tree, it has been generalized and used for instance for the description of
mutations of splitting trees [35]. The effect of competition as a pruning of trees has been
introduced and studied in [36, 6]. Spine construction offers a complementary insight in
the structure by focusing on typical individual in various senses. It allows for extension
to structured population and varying environment. An other point of view enlightens
genealogical structure of population models, the look-down construction introduced by
Kurtz and Donnelly. In this construction, a level is added to individual. The Poisson
representation of this enlarged process allows in particular to build the genealogy of large
population approximations and describe the longest branch in the tree. We refer to [33] for
the look-down construction of branching processes and to [22] for extension to interacting
populations. This latter allows for a description of genealogy and samples by a tracing
which follows the evolution of the levels back in time. We consider in this paper simpler
models and propose a forward Markov consistent construction for samples.

We consider a structured population : each individual has a type x ∈ X , where X is
finite or countable here. The type can represent a size, a location, or any phenotypic or
genotypic trait of the individual. The population is described by a vector z = (zx : x ∈ X )
where zx is the number of individuals with type x. We write ‖z‖1 =

∑
x∈X zx the `1 norm

of z and work with the associated normed and countable space

Z = {z ∈ NX0 : ‖z‖1 <∞}.
Informally, each individual of a population composed by z branches independently and
each individual with type x is replaced by an offspring k ∈ Z with rate τk(x, z). In other
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words, an individual with type x branches at total rate

τ(x, z) =
∑
k∈Z

τk(x, z) <∞

and is replaced by k with probability pk(x, z) = τk(x, z)/τ(x, z). The new composition of
the population is then z− e(x) + k, where e(x) stands for one single individual with trait
x, i.e. e(x) = (ey(x), y ∈ X ) and ex(x) = 1 and ey(x) = 0 for y 6= x. For a reference on
density dependent Markov process, let us mention [23, 31].

The spine construction consists in a new process with a distinguished individual and
rates are modified using a positive function ψ on X × Z. The distinguished individual
branches with rate

τ̂ ?k (x, z) = τk(x, z)
〈k, ψ(., z− e(x) + k)〉

ψ(x, z)

when its type is x and the composition of the population is z. This rate is biased by
the size and type of offsprings as for branching structures. It is also corrected by the
variation of the population composition seen through the transform ψ. The jump rates of
individuals outside the spine are also modified and they branch at rate

τ̂k(y, x, z) = τk(y, z)
ψ(x, z− e(y) + k)

ψ(x, z)

when their type is y and the type of the spine is x. We observe that in the case when ψ is
not dependent on the state z of the population, we recover the construction for branching
structures proposed in [39, 32].
In the applications considered here, the couple formed by the typical (or spine) individual
and the composition of the population is involved. We pay attention to the associated
semigroup and martingale. It corresponds to some h-transform of this couple and provides
a Feynman Kac representation of the semigroup. For further investigations, more informa-
tion on the underlying genealogy structure is needed. In particular, the tree associated to
a sample is needed when tracing an infected individual in epidemiology or when looking at
the subpopulation carrying a common mutation in population genetics. Our main result
allows to describe the full tree around the spine. Among stimulating open questions is
the way multisampling could be obtained, which is just briefly evoked here in simple cases.

We focus in this paper on the continuous time setting. The spine construction achieved
has a counterpart in discrete time, for non-overlapping generations. As far as we see,
the fact that in continuous time branching events are not simultaneous is actually more
convenient for construction and analysis. Besides, models which motivate this work may
be more classical or relevant in continuous time.

The paper is organized as follows. In the next section, we explain the spine construction
associated to a positive function ψ, called ψ-spine construction. The main result provides
a Girsanov type result (change of probability) to transform the original random tree with
a randomly chosen individual at a give time into a new random tree with a distinguished
individual, the spine. We complement this section by considering the associated semigroup
and martingale, and the many-to-one formula, which focuses on the ancestral lineage of
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a typical individual. Then we give some applications and illustrate the results. In Sec-
tion 3, we consider the single type case, which consists in birth and death processes, with
potential multiple offsprings. In that case, computations can be achieved. It allows us
to describe explicitly the uniform sampling at a given time. We then derive the behavior
of some neutral structured population models with competition. It is illustrated with a
simple growth fragmentation process with competition and we determine the criterion of
regulation of growth by competition and fragmentation. We also provide in this section a
L logL criterion for the non-degenerescence of the natural positive martingale associated
with the growth of the process, thus extending the criterion of Kesten Stigum and the
approach of [39]. In Section 4, we consider a population structured by a finite number of
types. We describe the ancestral lineage of a uniform sample when the state space of the
population is finite and the sampling in large population approximation when the limiting
process is a differential equation.

In the paper, we write N = {1, 2, . . .}, N0 = {0, 1, 2, . . .} = N ∪ {0}. For two vectors
u = (ux)x∈X and v = (vx)x∈X , we write 〈u,v〉 =

∑
x∈X uxvx the inner product.

2. Spine construction

2.1. Definition of the original process. We construct the tree of individuals with
their types, until the potential explosion time, as follows. We use the Ulam Harris Neveu
notation to label individuals of the population and each label has a type and life lenght.
We introduce

U = ∪k≥1Nk

where u = (u1, . . . , uk) ∈ Nk means that u is an individual of the generation k = |u| and
the u`-th child of (u1, . . . , u`−1). We consider now a random process Z and the associated
random tree T tree defined by iteration. We start with a population labeled by a finite
deterministic subset g of N and their types are (xu, u ∈ g). We write

x = {(u, xu), u ∈ g}
the initial condition. We denote by v ∈ Z the vector counting the number of individuals
of each type: vx = #{u ∈ g : xu = x}.
The population alive at time t is a random subset of U , denoted by G(t), and the types
of individuals are (Zu, u ∈ G(t)). The vector counting the number of individuals of each
type is Z(t) = (Zx(t), x ∈ X ), where Zx(t) = #{u ∈ G(t) : Zu = x}. In particular,
Z(0) = v.
The construction by iteration is classical. Each individual u has a random life length
L(u) ∈ (0,+∞] and a type Zu during all its life. Each individual with type x is replaced
by an offspring whose types are counted by k ∈ Z at rate τk(x, z) when the population
composition is z. When an individual u ∈ U is replaced by k, the new individuals are
labeled par (u, 1), . . . , (u, ‖k‖1). The types among these labels can be affected arbitrarily
and order will play no role. But we need to fix a type Z(u,i) to each label (u, i), for
1 ≤ i ≤ ‖k‖1, and do it in coherent way later in the spine construction. Thus, we consider
a probability law Qk on

Xk = {x ∈ X ‖k‖1 : ∀x ∈ X , #{i : xi = x} = kx}
and (Z(u,i) : 1 ≤ i ≤ ‖k‖1) is distributed as Qk. This affectation is achieved independently
for each event and its law only depends on k. A generic natural law is an exchangeable



5

one, choosing successively the types of individuals uniformly at random among available
choices, but models may suggest another one.

The process is constructed iteratively and constant between two jumps Tn and Tn+1,
where T0 = 0 and Tn+1 = +∞ if no event occurs after Tn. We may say jump or event
or branching event, indifferently. Note that for any event, only one individual disappears
here. It may be replaced by a single individual with a same type (but a different label).
The process is thus well defined until the limiting time of successive branching events
(Tn)n≥1:

TExp = lim
n→∞

Tn ∈ R ∪ {+∞}.

This latter is finite if the sequence of branching events accumulate and we speak of ex-
plosion. We write T the random tree obtained with this construction and T (t) the tree Vincent: a voir

si et ou il faut :

For simplicity,
we avoid the

case when an
individual can

branch and be

replaced by a
single

individual with

the same type
(since then the

composition of

the population
is not

changing), i.e.

for any x ∈ X
and z ∈ Z,

τe(x)(x, z) = 0.

truncated at time t ≥ 0. Formally T = {(u, Lu, Zu) : u ∈ U , ∃t ≥ 0 s.t.u ∈ G(t)} and
T (t) = {(u, Lu(t), Zu) : u ∈ U , ∃s ≤ t s.t.u ∈ G(s)} with Lu(t) the life length of u
truncated at time t .

2.2. The ψ-spine construction. We construct a new process and tree with a distin-
guished individual with label E(t) at time t, following the point of view of [39, 32] for
Galton-Watson processes. We write now V(t) the random set of individuals alive at time
t and the types of individuals are given by (Ξu, u ∈ V(t)). The associated random tree is
denoted by A and the counting of types is achieved by Ξ. Thus E(t) ∈ V(t) ⊂ U for any
t ≥ 0 and the type of the spine at time t is Y (t) = ΞE(t).

We start with the same population x = {(u, xu), u ∈ g} as the original process. In
words, initial individuals are labeled by g and have types (xu : u ∈ g) counted by v. The
distribution of the initial label of the spine E(0) is

P(E(0) = e) =
ψ(xe,v)

〈v, ψ(.,v)〉
(e ∈ g).

Then the distribution of the initial type of the spine is P(Y (0) = r) = vrψ(r,v)/〈v, ψ(.,v)〉.

We introduce the state space of types

Z = {(x, z) ∈ X × Z : zx ≥ 1}
and consider a positive function ψ : Z → (0,∞) such that for any (x, z) ∈ Z,∑

k∈Z

τk(x, z)〈k, ψ(., z + k− e(x))〉 <∞.(1)

Among population whose types are counted by z, the spine E with type x branches and
is replaced by offsprings of types k at rate

τ̂ ?k (x, z) = τk(x, z)
〈k, ψ(., z− e(x) + k)〉

ψ(x, z)
.

The total branching rate of the spine individual is then τ̂ ?(x, z) =
∑

k∈Z τ̂
?

k (x, z) < ∞.
Labels of offsprings are (E(t−), 1), . . . , (E(t−), ‖k‖1) and their types are chosen using
probability law Qk as above. Among these offsprings, each individual with type y is
chosen to be the spine with probability

qy(k, z) =
ψ(y, z− e(x) + k)

〈k, ψ(., z− e(x) + k)〉
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and provides the new label E(t) of the distinguished individual.
Outside the spine, i.e. for individuals u ∈ V(t) − {E(t)} at time t, rates of jumps are
modified as follows. Inside a population z with spine of type x, the individuals (but the
spine) with type y branch and yield offsprings k at rate

τ̂k(y, x, z) = τk(y, z)
ψ(x, z− e(y) + k)

ψ(x, z)
.

This process with a distinguished particle is constant between successive jumps T̂n and

T̂n+1, where T̂0 = 0 and T̂n+1 = +∞ if no event occurs after T̂n. It thus also defined by
induction until explosion time

T̂Exp = lim
n→∞

T̂n ∈ R+ ∪ {+∞},

which may be finite or not.
The Markovian construction achieved here provides a random tree A with a distinguished
individual E. It is associated to the original random process through the rates (τk(x, z) :
x ∈ X ,k ∈ Z, z ∈ Z) and the initial type composition v. It then depends only on the
choice of the transform ψ, which will play a key role.

2.3. General result. We introduce the generator of the population process Z which is
given for bounded functions g : Z → R by

Lg(z) =
∑

y∈X ,k∈Z

zyτk(y, z) (g(z + k− e(y))− g(z)) .

We call DL the set of functions where this operator L is well defined for any z ∈ Z by
summability, i.e. functions g such that for any z ∈ Z and y ∈ X ,∑

k∈Z

zyτk(y, z) |g(z + k− e(y))− g(z)| <∞.

We consider also the linear operator G distinguishing an individual and set for functions
f : X × Z → R:

Gf(x, z) =
∑
k∈Z

τk(x, z) 〈k− e(x), f(., z + k− e(x))〉+ Lfx(z)

where fx : z ∈ Z → f(x, z). The domain DG where this operator is defined contains the
bounded functions on X ×Z. More generally it contains all functions f such that for any
x ∈ X , fx ∈ DL and for any z ∈ Z,∑

k∈Z

τk(x, z)|〈k− e(x), f(., z + k− e(x))〉| <∞.

Vincent: en
fait on etend ψ
comme on

veut. revenir
sur le lien avec

le generateur

We consider by now ψ ∈ DG which is positive on Z and satisfies (1). Observe that
f → G(ψf)/ψ yields the generator of (Y (t),Ξ(t))t≥0 and this Doob (or h = ψ) transform
will play a role later. We define λ : Z → R by

λ =
Gψ
ψ

on Z.

For any t ≥ 0, we consider a variable U(t) choosing an individual alive at time t on the
original population process. Its law is specified by the conditional probability

P(U(t) = e | T (t)) = pe(T (t)),
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where for any e ∈ U and for any tree t = {(u, `u, xu) : ∃s ≤ t, s.t. u ∈ g(s)} corresponding
to sets g(t) ⊂ U of individuals alive at time t, pe(t) ≥ 0 and

∑
u∈g(t) pu(t) = 1. We introduce

the following random process associated with the spine construction (A, E)

W(t) = 1T̂Exp>t

exp
(∫ t

0
λ(Y (s),Ξ(s))ds

)
ψ(Y (t),Ξ(t))

pE(t)(A(t)).

We can now state the result and link the random choice of an individual among our
interacting population to the Markovian spine construction. Let T be the space of finite
trees where each nodd has a life lenght and an X valued type. Elements of T are identified
to a finite collection of elements of U × (R+ ∪ {+∞}) × X endowed with the product
σ-algebra. Vincent: voir

si on ajoute

boundedTheorem 1. For any t ≥ 0 and any measurable non-negative function F : T× U → R :

Ex

(
1{TExp>t,G(t)6=∅} F (T (t), U(t))

)
= 〈v, ψ(.,v)〉Ex (W(t)F (A(t), E(t))) .

In particular, if U(t) is a uniform choice among individuals G(t) alive at time t,

Ex

(
1{TExp>t,G(t)6=∅} F (T (t), U(t))

)
= 〈v, ψ(.,v)〉Ex

(
1T̂Exp>t

e
∫ t
0 λ(Y (s),Ξ(s))ds

ψ(Y (t),Ξ(t)) ‖Ξ(t)‖1

F (A(t), E(t))

)
.

The proof is a consequence of the following lemma, which encodes the successive tran-
sitions. Recall that the successive branching times of the original process Z and of the
spine process Ξ are respectively denoted by (Ti, 1 ≤ i ≤ N), with N ∈ N ∪ {+∞} and

(T̂i, 1 ≤ i ≤ N̂), with N̂ ∈ N ∪ {+∞} and T0 = T̂0 = 0 a.s. The variable N ∈ N ∪ {+∞}
yields the total number of branching events and N = i <∞ means that the process does

not branch after time Ti. The same holds for N̂ .
For 1 ≤ i ≤ N , we write Ui (resp. Ki) the random variable in U (resp. in Z) which gives
the label of the individual which realizes the ith branching events in the original process
(resp. the types of its offsprings at this event). We also denote by (Xi,j, j ≤ ‖Ki‖1) the
types of the offsprings of Ui. In other words, at time Ti, the individual Ui is replaced by
individuals (i, j), for 1 ≤ j ≤ ‖Ki‖1, whose types are (Xi,j, 1 ≤ j ≤ ‖Ki‖1).

We write similarly Ûi, K̂i and (X̂i,j, j ≤ ‖K̂i‖1) the variables involved in the ith branching
event of the spine construction for 1 ≤ i ≤ N . Besides, we write Ei the label of the distin-

guished individual when the ith branching event occurs. Thus, if Ei = Ûi, then Ei+1 6= Ei
and Ei+1 = (Ei, j) with 1 ≤ j ≤ ‖K̂i‖1; otherwise Ei+1 = Ei. For convenience we write

Ai =
(
Ui,Ki, (Xi,j)1≤j≤‖Ki‖1

)
, Âi =

(
Ûi, K̂i, (X̂i,j)1≤j≤‖K̂i‖1

)
the discrete variables describing these successive branching events.
Let A?

n be the subset of non-extincted discrete trees with types in X and n internal nodds
(i.e. n branching events) and initial population x. Each element of A?

n is a finite sequence
a = (ai)1≤i≤n, where ai = (ui,ki, (xi,j)1≤j≤‖ki‖1) ∈ U ×Z ×∪k≥0Nk means that individual
ui has offsprings whose types are counted by ki and given by (xi,j)1≤j≤‖ki‖1 . We denote by
gk(a) ⊂ U the labels of individuals alive juste after the kth event (and before the k+ 1th)
and zk(a) ∈ Z the corresponding vectors giving the successive type compositions of the
population, for 0 ≤ k ≤ n. The fact that the tree a is non-extincted means that gk(a) 6= ∅
for k ≤ n. Vincent:

dessin ?
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Lemma 1. Let G be a measurable non-negative function from Rn
+ to R. For any n ≥ 0

and a ∈ A?
n and any e ∈ gn(a),

Ex

(
1{N≥n}G(T1, . . . , Tn) 1{Ai=ai: 1≤i≤n}

)
= 〈v, ψ(.,v)〉Ex

(
1{N̂≥n,En+1=e}W

(a,e)
n G(T̂1, . . . , T̂n)1{Âi=ai: 1≤i≤n}

)
,

where writing yk(e) the type of the ancestor of e at the kth branching event,

W(a,e)
n =

exp
(∑n−1

k=0(T̂k+1 − T̂k)λ(yk(e), zk(a))
)

ψ(yn(e), zn(a))
.

Proof. The initial population x is fixed and notation is omitted in this proof. For conve-
nience, we also write zn = zn(a) the composition of the population between the nth and
n+ 1th branching event and gn = gn(a) the set of labels alive at this time.
We proceed by induction and start with n = 0. For any e ∈ g0,

〈v, ψ(.,v)〉E(1{E1=e}W0) = E
(

1{E1=e}
〈v, ψ(.,v)〉
ψ(xe,v)

)
= 1.

Let us now consider n ≥ 1 and assume that the identity holds for n − 1. We consider
Gn(ti : 1 ≤ i ≤ n) = G(ti : 1 ≤ i ≤ n − 1)H(tn − tn−1), where G and H are measurable
and non-negative and bounded respectively on Rn−1

+ and R+. We fix also a ∈ A?
n and first

observe that

E
(
1{N≥n}Gn(Ti, 1 ≤ i ≤ n) 1{Ai=ai: 1≤i≤n}

∣∣FTn−1

)
= 1{N≥n−1}G(Ti, 1 ≤ i ≤ n− 1) 1{Ai=ai: 1≤i≤n−1}Bn,(2)

where
Bn = E

(
1{N≥n}H(Tn − Tn−1) 1{An=an}

∣∣FTn−1

)
and FTn−1 = σ(Ti, Ai : i ≤ n− 1) is the filtration generated until time Tn−1. Conditionally
on FTn−1 , on the event {Ai = ai : 1 ≤ i ≤ n − 1} the random variable Tn − Tn−1 is
exponentially distributed with parameter

τn =
∑

u∈gn−1

τ(xu, zn−1).

Consider an = (un,kn, (xn,j)1≤j≤‖kn‖1), which means that un is the label of the individual
which makes the new branching event and this latter is replaced by individual with types
(xn,j)1≤j≤‖kn‖1 and composition kn. For convenience, we also write

Qn = Qkn(xn,j, 1 ≤ j ≤ ‖kn‖1),

and on the event {N ≥ n− 1} ∩ {Ai = ai : 1 ≤ i ≤ n− 1}, we get

Bn = 1{τn 6=0}

∫
R+

H(t) e−τntdt τkn(xun , zn−1)Qn .(3)

Similarly for e ∈ gn, with ancestor e′ ∈ gn−1 at the previous branching event,

E
(
1{N̂≥n,En+1=e}W

((ai:i≤n),e)
n Gn(T̂i, 1 ≤ i ≤ n)1{Âi=ai: 1≤i≤n}

∣∣ F̂Tn−1

)

= 1{N̂≥n−1, En=e′}W
((ai:i≤n−1),e′)
n−1 G(T̂i, 1 ≤ i ≤ n− 1)1{Âi=ai: 1≤i≤n−1}

ψ(y′, zn−1)

ψ(y, zn)
B̂n,

(4)
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where

B̂n = E
(
1{N̂≥n,En+1=e} e

(Tn−Tn−1)λ(yn−1,zn−1) H(T̂n − T̂n−1)1{Ân=an}
∣∣FTn−1

)
.

We write y (resp. y′) the type of the spinal individual e (resp. e′) after (resp. before) the
nth branching event and respectively

τ̂n =
∑

u∈gn−1−{e′}

τ̂(xu, y
′, zn−1), τ̂ ?n = τ̂ ?(y′, zn−1),

the total branching rates of the population oustide the spine and of the spine. Recalling
that zn = zn−1 − e(xun) + kn, we also write

τ̂n,kn = τkn(xun , zn−1)
ψ(y, zn)

ψ(y′, zn−1)

the rate at which an individual outside the spine is replaced by kn. If the branching
indeed occurs outside the spine, y′ = y and this rate τ̂n,kn coincides with τ̂kn(xun , y

′, zn−1).
Besides,

τ̂ ?n,kn = τ̂ ?kn(y′, zn−1) = τkn(y′, zn−1)
〈kn, ψ(., zn)〉
ψ(y′, zn−1)

,

yields the branching rates for the spine. If the branching event indeed concerns the spine,
y′ = xun 6= y. Similarly, the probability to choose a spine with type y is

qn = qy(kn, zn) =
ψ(y, zn)

〈kn, ψ(., zn)〉
.

We distinguish two cases, corresponding to the fact that the nth branching event concerns

the spine or not, i.e. either un = e′ or (un 6= e′ and y = y′). On the event {N̂ ≥
n − 1, En−1 = e′} ∩ {Âi = ai : 1 ≤ i ≤ n − 1}, the time T̂n − T̂n−1 is exponentially
distributed with parameter τ̂n + τ̂ ?n and we get

B̂n = 1{τ̂n+τ̂ ?n 6=0un 6=e′}

∫
R+

H(t)et(λ(y′,zn−1)−(τ̂n+τ̂ ?n )) τ̂n,kn Qn dt

+ 1{τ̂n+τ̂ ?n 6=0un=e′}

∫
R+

H(t)et(λ(y′,zn−1)−(τ̂n+τ̂ ?n ))τ̂ ?n,kn qnQn dt

= 1{τ̂n+τ̂ ?n 6=0}
ψ(y, zn)

ψ(y′, zn−1)
τkn(xun , zn−1)Qn

∫
R+

H(t)et(λ(y′,zn−1)−(τ̂n+τ̂ ?n )) dt.

Adding that by definition of λ,

τ̂n + τ̂ ?n − λ(y′, zn−1) = τn,

we obtain from (4)

E
(
1{N̂≥n,En+1=e}W

((ai:i≤n),e)
n Gn(T̂i, 1 ≤ i ≤ n)1{Âi=ai: 1≤i≤n}

∣∣ F̂Tn−1

)
= 1{N̂≥n−1, En=e′}W

((ai:i≤n−1),e′)
n−1 G(T̂i, 1 ≤ i ≤ n− 1)1{Âi=ai: 1≤i≤n−1, τ̂n+τ̂?n 6=0}

×
∫
R+

H(t)e−τnt dt τkn(xun , zn−1)Qn.

Using (2) and (3), the induction hypothesis ensures Vincent: A
ecrire
differemment
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E
(
1{N≥n}Gn(Ti, 1 ≤ i ≤ n) 1{Ai=ai: 1≤i≤n}

)
= 〈v, ψ(.,v)〉E

(
1{N̂≥n,En+1=e}W

((ai:i≤n),e)
n Gn(T̂i, 1 ≤ i ≤ n)1{Âi=ai: 1≤i≤n}

)
by conditioning both sides with respect to their filtration until the n+1th branching event.
It ends the proof by a monotone class argument. �

Proof of Theorem 1. The result is a consequence of the previous lemma. On the event
{N < ∞}, we set Tn = +∞ for n > N . For each t ≥ 0 and n ≥ 0, we introduce a
measurable non-negative function Gt

n from Rn
+ × A?

n × U such that for any e ∈ U , on the
event {e ∈ G(t), Tn ≤ t < Tn+1, N ≥ n} we have

F (T (t), e)pe(T (t)) = Gt,e
n (T1, . . . , Tn, A1, . . . , An) a.s.

Then

Ex

(
1{TExp>t,G(t)6=∅} F (T (t), U(t))

)
=

∑
n≥0,

a∈A?n, e∈gn(a)

Ex

(
F (T (t), e)pe(T (t))1Ai=ai:1≤i≤n, e∈G(t), Tn≤t<Tn+1,N≥n

)
=

∑
n≥0,

a∈A?n, e∈gn(a)

F t,e
n (a),

where

F t,e
n (a) =Ex

(
Gt,e
n (T1, . . . , Tn, a1, . . . , an)ft(Tn, a1, . . . , an)1{Ai=ai:1≤i≤n,Tn≤t,N≥n}

)
and

ft(Tn, a1, . . . , an) = P(Tn+1 > t|Tn, An = an, . . . , A1 = a1).

To end the proof, we apply Lemma 1 to express F t,e
n (a) in terms of the spine construction

and use that

1{En+1=e}ft(T̂n, a1, . . . , an) = 1{En+1=e}e
(t−T̂n)λ(e,zn)P(T̂n+1 > t|T̂n, Ân = an, . . . , Â1 = a1).

This latter identity is proved following the last lines of the proof of Lemma 1. �

2.4. Positive semigroup and martingale. For each (r,v) ∈ Z, we associate an initial
labeling x = x(v) = ((u, xu) : u ∈ g), where xu is the type of u ∈ g and vx = #{u ∈ g :
xu}. We also associate a label ur ∈ g such that xur = r . For any t ≥ 0 and f function
from Z to R+ ∪ {+∞}, we define for any (r,v) ∈ Z,

Mtf(r,v) = Ex(v)

1{TExp>t}
∑

u∈G(t), u<ur

f(Zu(t),Z(t))

 ,

where Z and Z are defined in Section 2.1 with initial condition x(v). We observe that in
this definition, Mtf(r,v) does not depend on the choice of the labels of x(v) and ur. We
can also write

Mtf(r,v) = Ex(v)

(
1{TExp>t} 〈Z(ur)(t), f(.,Z(t))〉

)
,

where Z
(u)
x (t) = #{v ∈ G(t) : v < u, Zv(t) = x} is the number of individuals with type x

at time t who are descendant of u.
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Consider a function ψ ∈ DG be positive on Z and satisfying (1) and recall that λ is
defined by

λ = Gψ/ψ on Z.
Recall also that Ξ is the process counting types in the ψ-spine construction and Y (t) =
ΞE(t)(t) is the type of the spine at time t. Observe that (Y,Ξ) is a jump Markov process
whose jump rates are determined by τ̂k and τ̂ ?k for k ∈ Z. It starts from (Y (0),Ξ(0)) =
(r,v). For u ∈ G(t), we write Zu(s) the type of the (unique) ancestor of u at time s ≤ t.

Proposition 1. (Mt)t≥0 is a positive semigroup on the set of functions from Z to R+ ∪
{+∞}. Besides, for any t ≥ 0, for any non-negative function f on Z and (r,v) ∈ Z,

Mtf(r,v) = ψ(r,v)E(r,v)

(
1{T̂Exp>t}

e
∫ t
0 λ(Y (s),Ξ(s))ds

ψ(Y (t),Ξ(t))
f(Y (t),Ξ(t))

)
.

Furthermore, for any G measurable function from D([0, t],X × Z) to → R+,

Ex(v)

1{TExp>t}
∑
u∈G(t)

ψ(Zu(t),Z(t))G((Zu(s),Z(s))s≤t)


= 〈v, ψ(.,v)〉E(r,v)

(
1{T̂Exp>t} e

∫ t
0 λ(Y (s),Ξ(s))dsG((Y (s),Ξ(s))s≤t)

)
.

Vincent: a
revoir. Cite

quenched

Monte carlo?

This result provides a Feynman Kac representation of the semigroup and so called many-
to-one formula for the population. We refer to [15] for a general reference on Feynman Kac
formulae and Biggins and Kyprianou [11] for related works on multiplicative martingales.
For such representations in the context of structured branching processes and in particular
for fragmentations or growth fragmentations, we mention the works of Bertoin [10, 9, 8]

and Cloez [14] and Marguet [37]. We note that the event {T̂Exp > t} is measurable with
respect to the process Ξ since this event is characterized by the absence of accumulation
of jumps for Ξ before time t.

Proof. We omit initial condition in notation. To prove that M is a semigroup, we condition
by the filtration Ft generated by the original process until time t. For any u ∈ U ,

E
(
1{TExp>t+s, u∈G(t)}〈Z(u)(t+ s), f(.,Z(t+ s))〉

∣∣Ft) = 1{TExp>t, u∈G(t)}Msf(Zu(t),Z(t)).

We get

Mt+sf(r,v)

= E
(
1{TExp>t}

∑
u∈G(t), u<ur

E
(
1{TExp>t+s, u∈G(t)}〈Z(u)(t+ s), f(.,Z(t+ s))〉

∣∣Ft) )
= E

(
1{TExp>t}〈Z(ur)(t),Msf(.,Z(t))〉

)
= Mt(Msf)(r,v).

To prove the Feynmac Kac representation of the semigroup M and get the ancestral lineage
of a typical individual, we prove that for t ≥ 0,

E
(
1{TExp>t}

∑
u∈G(t), u<ur

ψ(Zu(t),Z(t))G((Zu(s),Z(s))s≤t)
)

= ψ(r,v)E(r,v)

(
1{T̂Exp>t} e

∫ t
0 λ(Y (s),Ξ(s))dsG((Y (s),Ξ(s))s≤t)

)
.(5)
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Indeed, we can apply Theorem 1 to

F (t, u) = #{v ∈ g(t) : v < ur}ψ(zu(t), z(t))G((zu(s), z(s))s≤t),

pu(t) =
1u∈g(t), u<ur

#{v ∈ g(t) : v < ur}
,

where g(t) is the set of labels of t alive at time t, z(t) is the type composition at time
t of the population and zu(t) the type of individual u at time t. We observe that
E
(
1TExp>t,G(t) 6=∅ F (T (t), U(t))

)
gives the left hand side of (5) by exploiting the law p(T (t))

of U(t) conditionally on T (t), while E (W(t)F (A(t), E(t))) yields the right hand side of
(5) by conditioning by E(0) = ur. We can also remark that (5) amounts to a spine
construction with initial condition E(0) = e, Y (0) = r, which focuses on the lineages of
individuals whose initial ancestor is ur. This would provide an alternative proof. Identity
(5) proofs the first expected expression of semigroup M by considering marginal functions
at time t. It also yields the second one by summation over initial individuals, which ends
the proof. �

Proposition 2. If TExp = +∞ p.s. and T̂Exp = +∞ p.s., then

Mψ(t) =
∑
u∈G(t)

e−
∫ t
0 λ(Zu(s),Z(s)) ds ψ(Zu(t),Z(t))

is a non-negative martingale with respect to the filtration (Ft)t≥0 generated by the original
process Z. Furthermore, it converges a.s. to W ∈ [0,∞).

The proof of the martingale property uses hat T̂Exp = +∞. Indeed, otherwise mass
decays and in the case of jump process, we do not have a direct compensation via a killing
rate. Besides, the limit W may degenerate to 0. In the case of branching processes, the
criterion for non-degenerescence is the L logL condition for reproduction law, coming from
Kesten and Stigum theorem. In Section 3.2, we deal with a counterpart with interactions
in the single type case, following the spinal approach of [39] for Galton Watson processes.

Proof. The initial condition x is fixed and omitted in notation. The fact TExp = +∞ p.s
and Proposition 1 applied to

G((Zu(s),Z(s))s≤t) = e−
∫ t
0 λ(Zu(s),Z(s))dsψ(Zu(t),Z(t))

ensure that

〈v, ψ(.,v)〉P
(
T̂Exp > t

)
=E

 ∑
u∈G(t)

e−
∫ t
0 λ(Zu(s),Z(s))dsψ(Zu(t),Z(t))

(6)

for any t ≥ 0. This identity guarantees the integrability of M . Similarly Markov propertyVincent:
Revoir

l’argument,

peut etre
redondance
avec la suite

and (5) allow to write for u, t fixed, on the event u ∈ G(t),

E

 ∑
v∈G(t+s), v<u

e−
∫ t+s
t λ(Zu(τ),Z(τ))dτψ(Zv(t+ s),Z(t+ s))

∣∣∣∣Ft
 = ψ(Zu(t),Z(t))

since T̂Exp =∞ a.s. We get

E(M(t+ s)|Ft) =
∑
u∈G(t)

e−
∫ t
0 λ(Zu(τ),Z(τ))dτψ(Zu(t),Z(t)) = M(t),
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which proves the lemma. �

Observe from (6) that under the condition TExp = +∞ p.s, the fact that M is a mar-

tingale (and not only a local martingale) is equivalent to T̂Exp = +∞ a.s.

The case when the semigroup M has a positive eigenfunction (harmonic function) allows
to simplify λ and is of particular interest. Assume that TExp = +∞ a.s. and there exist
λ ∈ R and ψ ∈ DG such that

Gψ = λψ on Z.
Then

Mψ(t) = e−λt 〈Z(t), ψ(.,Z(t))〉
is a non-negative martingale. General statements ensure the existence and/or uniqueness
of positive eigenfunction ψ. The Perron Frobenius theorem can been extended to infinite
dimension using compact operator and suitable perturbations, see e.g. [40] and references
therein. Besides several probabilistic approaches exploiting a typical particle via a (poten-
tially non homogenous) Markov process provide useful conditions via stability techniques
for Markov processes. They can also provide exponential convergence and quantitative
estimate and are actually linked to a spine approach. We refer e.g. to [4] and references
therein and to Section 4.1.

The case ψ = 1 is also relevant and λ simplifies. Indeed, λ(x, z) =
∑

k τk(x, z)‖k‖1 −
τ(x, z) and

Ex

 ∑
u∈G(t)

F ((Zu(s))s≤t)

 = 〈v, ψ(.,v)〉Ex

(
e
∫ t
0 λ(Y (s),Ξ(s))ds F ((Y (s))s≤t)

)
.

Letting F = 1 allows to provide a Feynman Kac expression of (E(#G(t)))t≥0. We observe
that if the occupation measure of the Markov process (Y,Ξ) satisfies a large deviation
principle, Varadhan lemma allows for a characterization of the growth rate of E(#G(t))
via a variational principle. Furthermore, this principle provides the occupation measure
of ancestral lineages. We refer to [16] for the variational principal and [5] for the case of
branching processes. The case ψ = 1 will be exploited in Section 3.2 to extend the L logL
criterion to a class of one dimensional branching processes with interactions.

3. Single type density dependent Markov process and neutral evolution

In this section, we consider single type populations and some issues which have originally
motivated this work. In that case, when the size of the population is z ∈ N, each individual
branches and is replaced by k individuals with rate τk(z), for k ∈ N0. We consider
ψ : N0 → (0,∞) and the ψ-spine construction is as follows. The distinguished individual
is replaced by k ∈ {1, 2, 3, . . .} individuals at rate

τ̂ ?k (z) = kτk(z)
ψ(z − 1 + k)

ψ(z)
(z ≥ 1).

Among this offsprings, each individual is chosen to be the new label of the spine with
probability 1/k.
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The individuals but the spine branch and are replaced by k ∈ N0 individuals at rate

τ̂k(z) = τk(z)
ψ(z − 1 + k)

ψ(z)
(z ≥ 2).

We observe that the size Ξ of the population in the ψ-spine construction is a density
dependent Markov process with transition rate from z to z + k − 1 equal to

(k + z − 1)τk(z)
ψ(z − 1 + k)

ψ(z)
.

Thus, Ξ is a population process with individual branching rates τk(z)ψ(z − 1 + k)/ψ(z),
plus additional size depend immigration, where k immigrants arrive in the population of
size z at rate (k − 1) τk(z)ψ(z − 1 + k)/ψ(z).
Generator G and function λ write for z ≥ 1 as

Gf(z) =
∑
k∈N0

τk(z)(z + k − 1)f(z + k − 1)− zτ(z)f(z)

and

λ(z) =
Gψ(z)

ψ(z)
=
∑
k∈N0

τk(z)(z + k − 1)
ψ(z + k − 1)

ψ(z)
− zτ(z).

The choice ψ = 1 is natural and will exploited in the L logL criterion. Then

λ(z) =
∑
k 6=1

(k − 1)τk(z).

is a the size dependent growth rate of the population. Another choice of ψ is inspired byVincent:
Donner la

forme du

semigroupe et
evoquer h

transform

exchangeability in the single type case and we choose the inverse function : ψ(z) = 1/z
for z > 0. We get λ(z) = 0 if z ≥ 2 and λ(1) = −τ0(1). In particular the inverse function
is an eigenelement associated with the eigenvalue λ = 0 when the process cannot reach
(and be absorbed) in 0, i.e. in the case τ0(1) = 0. Let us then consider a uniform choice
U(t) among individuals G(t) alive at time t. Conditionally on G(t), we assume that this
variable is independent of T (t). Since here λ = 0, W(t) = 1TExp>t a.s. for a uniform
choice. We apply Theorem 1 and get

Proposition 3. Assume τ0(1) = 0. Then, for any t ≥ 0, 1TExp>t(T (t), U(t)) is distributed
as 1T̂Exp>t

(A(t), E(t)), where (A, E) is the ψ-spine construction and

ψ(k) =
1

max(1, z)
(z ≥ 0).

The 1/k-spine construction above consists in a single type density dependent Markov
process with a distinguished individual and individual jump rates

τ̂ ?k (z) = k τk(z)
z

z − 1 + k
, τ̂k(z) = τk(z)

z

z − 1 + k

for z ≥ 1, k ≥ 0. We recover the fact that the process Ξ counting the size of the pop-
ulation in the 1/z-spine construction is distributed as the original process Z. We give a
consequence about ancestral lineage of samples, which will be useful. We consider the
case when the size of the population of the spine construction #V(t) converges in law
to a stationary distribution π = (πz)z≥1. Then, the number of branching events with kVincent:

justifier, en fait
cas ergodique,

theoreme de
Birkhoff
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offsprings along the ancestral lineage of a uniform sample in T (t) grows linearly with rate

π̂k = k
∑
z≥1

πz τk(z)
z

z − 1 + k
.

To end with part, we mention that in the case when τ0(1) 6= 0, an analogous result
can be stated conditionally on the survival of the process. The eigenfunction ψ is then
non-explicit in general, but can be written as h(z)/z for z ≥ 1, where h is the harmonic
function of the killed process. It allows in particular to describe sampling in the quasis-
tionnary regime, i.e. when the process conditioned to survive at a given time converges in
law. In that case the process Ξ survives a.s. but the original process dies out.

3.1. Markov process indexed by a birth and death process. We restrict here to
birth and death process which do not become extincted and do not explode. Our mo-
tivation is the evolution of traits among a population whose growth decreases due to
competition. In this part, the model is neutral, meaning that traits of individuals do not
affect the birth and death, which are only sensitive to the whole number of individuals. It
enables to take into account the lack of ressources when the population increases.
We are in particular interested in cell division. A logistic growth is observed with limited
ressources and we refer to the historical works of Malthus, Monod or Verhulst. Density
dependance effects and mecanisms of death of cells can be very various, including senes-
cence, contact inhibition, cytokines regulation, apoptosis and necrosis. We consider here
a neutral toy model and hope that more advanced studies could be lead.

The trait can then be the size, the mass or the load of pathogens of the cell. The
trait tend to grow during the life of the cell and is split at division. Such a dynamic is
often called growth fragmentation. Looking at the traits of individuals, growth and frag-
mentation have antagonist effects. Without interactions, for branching structures, such
processes have received lots of attention, including deterministic, random and structured
frameworks, let us refer e.g. to [4, 7, 9, 8, 37] and references therein.

We thus consider the birth and death process with individual birth and death rates

bz = τ2(z), dz = τ0(z), for z ≥ 1.

We assume that d1 = 0, so that the process survives a.s. We also assume non-explosion
of the birth and death process and refer e.g. to [28] (or Theorem 2.2 in [3]) for explicit
criterion in terms of the birth and deaths rates. Recalling Section 2, we write T the
associated random tree and the generator L of the birth and death process is

Lg(z) = zbz(g(z + 1)− g(z)) + zdz(g(z − 1)− g(z)).

We consider now a càdlàg Markov process on a polish space E, whose generator is L, with
domain D. This process describes the evolution of the trait of individuals alive. When a Vincent: make

precise

measurability
birth occurs, the transition kernel P : E → PE2 provides the law of transmission of the
trait to the two offsprings, where PE2 is the set of probability measures on E2. We write
P : E → PE the marginal kernel. It is defined by

P(x,A) =
1

2
(P (x,E × A) + P (x,A× E))
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for any A measurable. For cell division, this provides the fragmentation kernel of the
mass or the load of infection. Let us denote by (ζu(t))t≥0,u∈G(t) the process giving the
trait of each individual alive at time t. Thus, ζu(t) is the trait of individual u at time t,
constructed inductively using a family of independent Markov processes with generator L.
This process describes the evolution of traits along the the genealogy T . More precisely,
between two birth events the trait evolve (independently) along the branch of each label
u following the Markov process ζu(t) with generator L.

We introduce (Ξ, ζ?) the Markov process on N× E associated with the generatorVincent:
verifier.

Expliquer ou

prouver
LSf(z, y) = Lfz(y) + 2bz

z

z + 1

∫
E

(f(z + 1, u)− f(z, y))P(y, du)(7)

bz
z(z − 1)

z + 1
(f(z + 1, y)− f(z, y)) + dzz (f(z − 1, y)− f(z, y))

for z ≥ 1 and y ∈ E. The Markov process Ξ is the size of the population of cells in the
1/z-spine construction. The process ζ? yields the value of the trait along this spine. Using
Proposition 3 and the fact that the original process is non explosive, the spine construction

is non explosive either : TExp = +∞ and T̂Exp = +∞ a.s. Recall that U(t) is a uniform
random variable among individuals G(t) alive at time t. Proposition 3 yields

Proposition 4. For any t ≥ 0, ζU(t)(t) is distributed as ζ?(t).

We apply this result to describe the phase transition in a growth fragmentation process
with interactions. We consider exponential growth with rate r for the growth of the cells
and at division, the trait is splitted randomly between the two daughter cells. A random
variable F ∈ (0, 1) yields the fraction for one daughter and without loss of generality we
assume that F is distributed as 1−F , i.e. a symmetric law with respect to one half. Then

Lf(y) = rf ′(y), P (y, A×B) =

∫
(0,1)

P(F ∈ dp)1yp∈A,y(1−p)∈B

for any A,B measurable sets of X . We focus on the case when competition regulates cell
population and the number of cells converges in law. The criterion for the regulation of
the growth of the trait (size, pathogen load) of cells is stated below. It involves the mean
rate of branching along the spine π̂.

Corollary 1. Assume that the Markov process Z is irreducible and positive recurrent on
N. Then Z(t) converges in law to the unique stationary distribution π = (πz)z≥1 as t tends
to infinity. Setting,

π̂ = 2
∑
z≥1

πzbz
z

z + 1
,

we get the following classification.
i) If r < E(log(1/F )) π̂, then ζ?(t) tends a.s. to 0 as t→∞ and

lim
t→∞

max{ζu(t) : u ∈ G(t)} = 0 in probability.

ii) If r > E(log(1/F )) π̂, then ζ?(t) tends a.s. to infinity as t→∞ and

lim
t→∞

min{ζu(t) : u ∈ G(t)} =∞ in probability.

iii) If r = E(log(1/F )) π̂, then ζ? oscillates a.s. between 0 and +∞ and for any ε > 0,Vincent: A

preciser
lim sup
t→∞

P(max{ζu(t) : u ∈ G(t)} ≤ ε) = 1, lim sup
t→∞

P(min{ζu(t) : u ∈ G(t)} ≥ 1/ε) = 1.
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Proof. Since we consider the 1/z-spine construction, we first recall that Z and Ξ are
Markov processes with the same law. Their jump rate from z to z + 1 is zbz and their
jump rate from z to z − 1 is zdz for z ≥ 1. Let us use a trajectorial representation of the
evolution ζ? of the trait along the spine, which has been characterized in (7). It satisfies

ζ?(t) = ζ?(0)+

∫ t

0

rζ?(s) ds−
∫ t

0

∫
R+×(0,1)

(1−f)ζ?(s)1u≤2bZ(s−)Z(s−)/(Z(s−)+1)N (ds, du, df)

whereN (ds, du, df) is a Poisson point measure on R2
+×(0, 1) with intensity dsduP(F ∈ df).

Then

log(ζ?(t)) = log(ζ?(0)) + rt+

∫ t

0

∫
R+×(0,1)

log(f)1u≤2bZ(s−)Z(s−)/(Z(s−)+1)N (ds, du, df).

The classification and asymptotic behavior of ζ? is then inherited from ergodic averaging
of Birkhoff theorem and the critical case is captured by central limit theorem for ergodic
Markov process. We conclude on the original process by using Proposition 4. Indeed, let
ε > 0 and A > 0,

P (max{ζu(t) : u ∈ G(t)} ≥ ε, #G(t) ≤ A) ≤ AP
(
ζU(t)(t) ≥ ε

)
= AP (ζ ?(t) ≥ ε)

and the right hand tends to 0 if r < E(log(1/F ))π̂. We conclude for the case i) by letting
A go to infinity and ε go to 0 and by using that #G(t) = Z(t) is stochastically bounded.
The two other cases are treated similarly. �

We illustrate this result with a classical logistic competition model and the criterion
becomes explicit. The individual birth rate is fixed and equals to b > 0 and competition
coefficient with other cells is c > 0:

bz = b, dz = c(z − 1) (z ≥ 1).

The stationary probability π of the population size is

πz =
1

eb/c − 1

(b
c

)z 1

z!
(z ≥ 1).

The criterion for the regulation of the growth can be given in terms of the parameters b
(birth) and c (competition) and r (growth) and F (random repartition at division) :

r < 2b

(
1− c

b
+

1

eb/c − 1

)
E(log(1/F )).

Letting c tend to 0 allows to recover the expected criterion for branching process, with Vincent: c’est

pas exactement

une carrying
capacity

classical accelerated rate of branching 2b along a typical lineage, see e.g. [3]. Both division
(by splitting) and competition (by killing) participate to the regulation of the growth of
the cellular trait. The threshold above (and the growth rate of the trait, see the proof)
makes appear the function f(b, b/c), where f(b, y) = b(1− 1/y + 1/(ey − 1)) is increasing
with respect to b and y. The value of b/c is linked to a carrying capacity, i.e. a value
above which the population size tend to decrease. Competition destructs cells and could
help for regulation but its also make the carrying capacity decrease and at end it plays
against the regulation of the trait.
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Vincent: Citer
Athreya, et

Kyprianou et

al

3.2. L logL criterion for branching processes with interactions. For branching pro-
cesses, spine construction yields a conceptual approach for the Kesten Stigum criterion
of non-degenerescence of the limiting martingale [39]. For a Galton-Watson process Z
with reproduction r.v. L, W = limn→∞ Zn/E(L)n is a.s. positive on the survival event
iff E(L log(L)) < ∞. We are interested in the counterpart of this criterion and approach
when reproduction is density dependent. We work in the case when the original process
and the spine construction do not explode.

We follow the ideas of [39]. We assume that for any z ≥ 1,

(8) τ(z) =
∑
k≥0

τk(z) <∞,
∑
k≥0

kτk(z) <∞

and achieve the spine construction with ψ = 1 and set for z ≥ 1,

λ(z) =
∑
k≥0

(k − 1)τk(z).

We first get from Proposition 2 or could directly check that

M(t) = exp

(
−
∫ t

0

λ(Z(s))ds

)
Z(t)

is a non-negative martingale which converges a.s. to a finite non-negative r.v.

W = lim
t→∞

M(t).

Similarly, we write

N(t) = exp

(
−
∫ t

0

λ(Ξ(s))ds

)
Ξ(t),

where Ξ is the size of the population in the 1-spine construction. Theorem 1 yields the
following expression of E(W ) and a way to know when W is degenerate :

Lemma 2. Assume (8) and that TExp = +∞ and T̂Exp = +∞ a.s. Then, for any z ≥ 1,

Ez (W ) = z Pz

(
sup

t∈[0,∞)

N(t) <∞

)
.

Besides, Ξ− 1 is a Markov jump process on N0 whose transition rate from z to z + k − 1
is equal to kτk(z + 1) + zτk(z + 1) for z ≥ 0, k ≥ 0.

The process Ξ − 1 can thus be seen as the original density dependent Markov process
plus a density dependent immigration of k− 1 individuals with rate k τk(z). This extends
the result for branching processes when λ and τ are constant and M(t) = exp(−λt)Z(t).

Proof. We let t ≥ 0 and K > 0 and apply Theorem 1 with ψ = 1 to function

F (t, e) = F (t) = #g(t)e−
∫ t
0 λ(#g(s))ds 1{sups≤t #g(s).e−

∫ s
0 λ(#g(v))dv ≤K}

or can apply (6) as well and get

E
(
1{supu∈[0,t]M(u)≤K}M(t)

)
= P

(
sup
u∈[0,t]

N(u) ≤ K

)
.
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Bounded and monotone limit as t→∞ ensure

E
(
1{supu∈[0,∞)M(u)≤K}W

)
= P

(
sup

u∈[0,∞)

N(u) ≤ K

)
.

We conclude the proof of the first part of the proposition by monotone limit letting K go
to infinity. For the second part, we observe that Ξ jumps from z to z + k − 1 with rate
τ̂ ?k (z) + (z − 1)τ̂k(z) = kτk(z) + (z − 1)τk(z). �

Let us derive moment conditions which guarantee that the limiting martingale is non
degenerated. These issues have already been considered, at least in the discrete framework,
motivated by controlled Galton-Watson processes [34, 30]. In these works, a monotonicity
assumption or regularity and convexity assumptions are required. Such assumptions seem
to be partially relaxed here. Besides, the method can be extended to multitype setting.
The case where the process becomes critical asymptotically has received lots of attention
and is often called near or almost critical. We focus in the application here on the case
where the process grows exponentially but density depend affects the growth rate. Com-
petition can make it decrease and cooperation may make it increase, while non monotone
behavior appear in particular with Allee effect.

Proposition 5. Assume that

inf
z≥1

λ(z) > 0,
∑
k≥1

k(log(k) + 1) sup
z≥1

τk(z) <∞.

Then TExp = +∞ and T̂Exp = +∞ a.s. and for any for z ≥ 1, Vincent:
verifier et

ajouter

element dans
preuve

Ez(W ) = z.

The uniformity assumptions can be partially relaxed. For instance, with some irre-
ducibility condition one can only assume that λ is lower bounded by a positive constant
for z large enough. The L logL moment condition is necessary for positivity of E(W ) in
some cases including branching processes or pertubation of them.

Proof. We first notice that the fact
∑

k≥1 k supz≥1 τk(z) is finite provides an upperbound
of the growth rate of the size of the population of the original process Z. It guarantees
that TExp =∞ a.s. Let us deal with the 1-spine construction and localize the process by
considering the stopping times Tm = inf{t ≥ 0 : Ξt ≥ m} for m ≥ 1. We separate the
component coming from immigration and give a trajectorial representation of Ξ− 1. Let
us consider V = Ξ − 1. For t ≤ Tm, it is defined as the unique strong solution of the
following SDE

V (t) = V (0) +

∫ t

0

∫
R+×N

1{u≤V (s−)τk(V (s−)+1)} (k − 1)N (ds, du, dk)

+

∫ t

0

∫
R+×N

1{u≤kτk(V (s−)+1)} (k − 1)NI(ds, du, dk),

where we use two independent Poisson point measures,N andNI , with intensity ds du n(dk)
on R2

+ × N, where n =
∑

k∈N0
δk is the counting measure, see e.g. [3]. Defining

N1(t) = V (t)e−
∫ t
0 λ(Ξ(s))ds = N(t)− e−

∫ t
0 λ(Ξ(s))ds,
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we get for t ≤ Tm,

N1(t) = N1(0)−
∫ t

0

λ(Ξ(s))V (s)ds

+

∫ t

0

∫
R+×N

1{u≤V (s−)τk(Ξ(s−))} (k − 1) e−
∫ s
0 λ(Ξ(v))dvN (ds, du, dk)

+

∫ t

0

∫
R+×N

1{u≤kτk(Ξ(s−))} (k − 1) e−
∫ s
0 λ(Ξ(v))dvNI(ds, du, dk)

= N1(0) +

∫ t

0

∫
R+×N

1{u≤Ξ(s−)τk(Ξ(s−))} (k − 1) e −
∫ s
0 λ(Ξ(v))dv Ñ (ds, du, dk)

+

∫ t

0

∫
R+×N

1{u≤kτk(Ξ(s−))} (k − 1) e−
∫ s
0 λ(Ξ(v))dvNI(ds, du, dk),

where Ñ is the compensated measure of N . Thus, conditionally on NI , N1(. ∧ Tm) is a
submartingale. Besides, writing c = inf λ > 0 and pk = supz≥1 τk(z) <∞, we get for any
m ≥ 1 and t ≥ 0Vincent:

preciser

integrabilite...il
faudrait

localiser,

explosion
possible a

priori

Ez(N1(t ∧ Tm) | NI) ≤ z − 1 +

∫ t

0

1u≤kpk (k − 1) e−csNI(ds, du, dk).

Let us show that the L logL assumption ensures that the right hand side is a.s. bounded
with respect to t. Indeed

(9)

∫ ∞
0

1u≤kpk (k − 1) e−csNI(ds, du, dk) =
∑
i≥0

L̂ie
−cTi

is a compound Poisson process, where (Ti+1 − Ti : i ≥ 0) are i.i.d. exponential random

variables with parameters µ =
∑

k≥2 kpk ∈ [0,∞) and (L̂i : i ≥ 0) are i.i.d random

variables with the size bias distribution P(L̂ = k − 1) = kpk/µ for k ≥ 2. By Borel

Cantelli lemma, the fact that
∑

k≥2 log(k)kpk <∞ ensures that lim supn→∞ log(L̂n)/n = 0
p.s. Adding that c > 0 and that Ti grows linearly a.s. to infinity as i tends to infinity, the
series in (9) are a.s. finite.
We get then that Ξ is not explosive by using that λ is upper bounded and letting m→∞.
By Fatou’s lemma, we obtain that supt≥0 Ez(N1(t) | NI) < ∞ a.s. Thus, the quenched
submatingale (N1(t))t≥0 converges to a finite random variable a.s. as t → ∞. So does
N(t), towards the same limit, since inf λ > 0. Lemma 2 allows then to conclude. �

In particular, we can describe the growth of the process Z. When τ(z) tends to b as
z → ∞ fast enough, the robustness of exponential growth of Galton Watson process is
expected. It has already been studied in the discrete setting and needs in general some
technical conditions, see the works mentioned above and also Klebaner [29].Vincent: Some

non trivial
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Corollary 2. Under the assumption of the previous proposition, assume further that
limz→∞ λ(z) = b > 0. Then

lim
t→∞

log(Zt)/t = b with positive probability.
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Assuming further that there exists a > 1 such that |λ(z) − b| ≤ C log(z + 1)−a for any
z > 0, then

lim
z→∞

e−bt Z(t) = W ∈ (0,∞) with positive probability.

A natural question now is to know if the limiting martingale is a.s. positive on the
survival event. It is well known for branching processes and a direct consequence of the
branching property. We expect extensions to similar processes with interactions. The pa-
pers mentioned above in discrete time contain interesting results in this direction. Finding
relevant general conditions seems a delicate and interesting problem. Extension to multi-
ple dimension is also natural. In infinite dimension, for the case of branching processes,
we refer to [2] for a similar point of view and sufficient conditions of non-degenerescence.

Proof. Using monotonicity of Z or the previous proposition, we first observe that Zt goes
to infinity a.s. as t→∞. Then λ(Zt) tends to b a.s. and the previous proposition ensures
limt→∞ log(Zt)/t = b with positive probability.
Besides writing r(z) = λ(z) − b,

∫∞
0
|r(Zt)|dt < ∞ a.s. since |r(Zt)| ≤ C log(exp(bt/2) +

1)−a for t large enough. It ensures that exp(
∫ t

0
λ(Zs)ds) is a.s. equivalent to exp(bt), which

ends the proof. �

4. Applications to multitype processes

Let us turn to structured populations with a finite number of types, i.e. #X < ∞.
Explicit computations of eigenelements seem to be more delicate in general than in the
single type considered above. We consider two simple relevant regimes for population
models. First, random but bounded population size, where conditions for existence and
uniqueness of positive eigenelement are well known from Perron Frobenius theory. Second,
we consider sampling in the large population approximation of dynamical systems.

4.1. Finite irreducible case. We consider a simple case relevant for applications : the
number of types is finite and the size of the population is bounded. More explicitly, we
assume that #X <∞ and that there exists z̄ > 0 such that

For all (z, x,k) ∈ Z × X × Z such that ‖z + k− e(x)‖1 > z̄, τk(x, z) = 0.

In words, the total size of the population can not go beyond z̄. This quantity may cor-
respond to a carrying (or biological) capacity of the environment where population lives.
The corresponding state space is denoted by S. This subspace of Z is defined by

S = {(r,v) ∈ X × NX : vr ≥ 1, ‖v‖1 ≤ z̄}.

We assume that the initial condition Z(0) is a random vector such that ‖Z(0)‖1 ≤ z̄. We
observe that boundedness ensures that the process a.s. does not explode. We recall that
x(v) is the finite initial population whose types are counted by v and ur a label of the
population with type r. Besides, the positive semigroup M is defined by

Mtf(a) = Mtf(r,v) = Ex(v)

(∑
y∈X

Z(ur)
y (t)f(y,Z(t))

)
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for f positive and a = (r,v) ∈ S. Similarly, the operator G is restricted to S and defined
for (x, z) ∈ S and f bounded by

Gf(x, z) =
∑
k∈Z

‖z+k−e(x)‖1≤z̄

τk(x, z) 〈k− e(x), f(., z + k− e(x))〉

+
∑

y∈X ,k∈Z
‖z+k−e(y)‖1≤z̄

zyτk(y, z) (f(z + k− e(y))− f(z)) .

Under irreducibility conditions, Perron Frobenius theorem ensures the existence (and
uniqueness up to a positive constant) of a positive eigenfunction ψ for the semigroup M
and its generator G. Using the corresponding ψ-spine construction, we obtain a character-
ization of the ancestral lineage (or pedigree) of a typical individual, and in particular the
ancestral types. We refer to [27, 24] and references therein for similar issues for multitype
branching processes and the description of ancestral lineage using the eigenelements of
the first moment semigroup. In this description, the stationary law of the Markov process
(Y (t),Ξ(t))t≥0 is involved. Recall that the generator of this latter is the ψ Doob-transform
of G. More explicitly, the generator of (Y,Ξ) takes the matrix form (Qa,b/ψ(a))a,b∈S , where
Q is defined for (x, z) ∈ S and y 6= x and k ∈ Z such that ‖z + k− e(x)‖1 ≤ z̄ by

Q(x,z),(y,z+k−e(x)) = τk(x, z)kyψ(y, z− e(x) + k)

Q(x,z),(x,z+k−e(y)) = zyτk(y, z)ψ(x, z− e(y) + k)

and if furthemore k 6= e(x),

Q(x,z),(x,z+k−e(x)) = (τk(x, z)kx + (zx − 1)τk(x, z))ψ(x, z− e(x) + k).

Finally, as usual, Qa,a = −
∑

b∈S−{a}Qa,b. We can now turn to the result. Let us consider

again a uniform sampling U(t) in G(t). We set for t ≥ 0, a ∈ S and k ∈ Z,

Pa(t) =

∫ t

0

1(ZU(t)(s),Zs)=a ds, Na,k(t) = #{u 4 U(t) : (Zu,Z
u) = (a, z), Ku = k},

where Zu(s) is the type of the unique ancestor of u at time s, Zu (resp. Ku) is the type
composition of the population (resp. of offsprings of individual u) when u branches.Vincent: lien
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Proposition 6. Assume that for any a, b ∈ S, M11b(a) > 0. Then,
i) there exists a positive vector ψ on S and a unique λ ∈ (−∞, 0] which satisfy

Gψ = λψ on S;

ii) Markov process (Y (t),Ξ(t))t≥0 of the corresponding ψ-spine construction converges in
law to π = (πa)a∈S as t→∞, where π is the unique probability solution of

πQ = 0;

iii) for any a = (x, z) ∈ S and k ∈ Z such that ‖z + k− e(x)‖1 ≤ z̄,(
Pa(t)

t
,
Na,k(t)

t

)
|G(t) 6=∅

⇒
(
πa, πa τk(a)

〈k, ψ(., z + k− e(x))〉
ψ(a)

)
as t→∞, where the convergence of the couple holds in law (and in probability) condition-
ally on the event G(t) 6= ∅.
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Assumption M11b(a) > 0 amounts to an irreducibility property of the population pro-
cess Z, with a distinguished particle, out of the extinction state. Let us illustrate this
condition on the following spatial model with competition. Consider a finite number of
sites with finite carrying capacities. On each site, each individual gives birth to one off-
springs with a positive rate, when it has not reached the carrying capacity, and dies with
a positive rate. These individual rates may be dependent of the local and global density
of individuals. Besides, each individual may move from one site to another. This model
satisfies the assumptions of the previous statement as soon as the motion of individuals
(including their offsprings) is irreducible, i.e. when the graph of nodds whose oriented
edges correspond to positive probability of transition at branching event is strongly con-
nected.

Proof. Point i) is a direct consequence of Perron Frobenius theorem. The fact that the
eigenvalue λ is not positive is due to the fact that the process is bounded.
The Markov process (Y,Ξ) takes values in a finite state space and the assumption and the
positivity of ψ ensures that it is irreducible. This ensures the convergence in law of (Y,Ξ)
in ii).
Furthermore, we write for a = (x, z) ∈ S and k ∈ Z,

N ?
a,k(t) = #{u 4 E(t) : (Ξu,Ξ

u) = a, K̂ ?
u = k},

where K̂ ?
u is the type composition of the offsprings of the spine u when it branches and

Ξu the state of the population when it branches. Then Birkhoff theorem ensures the a.s.
convergence:

(10) lim
t→∞

N ?
a,k(t)

t
= πa τk(a)

〈k, ψ(., z + k− e(x))〉
ψ(a)

= π̃a,k.

The result is then a consequence of Theorem 1. Indeed for any t ≥ 0 and F measurable
and positive, we know that

E
(
1G(t)6=∅F (Na,k(t))

)
= eλt 〈v, ψ(.,v)〉E

(
1

ψ(Y (t),Ξ(t))‖Ξ(t)‖1

F (N ?
a,k(t))

)
and

E
(
1G(t)6=∅

)
= eλt 〈v, ψ(.,v)〉E

(
1

ψ(Y (t),Ξ(t)) ‖Ξ(t)‖1

)
The conclusion follows by considering F (n) = 1|n/t−π̃a,k|≥ε for ε > 0. Using that that ψ
and Ξ are bounded and taking the ratio of the two expectations, (10) ensures that

P
(
|Na,k(t)/t− π̃a,k| ≥ ε

∣∣G(t) 6= ∅
) t→∞−→ 0.

The proof is analogous for the limit of Pa(t)/t when t→∞. �

To get finer results on ancestral lineages with a spinal approach, on may be inspired
from e.g. [24, 12, 41]. In particular, see [24] for a control of deviation of ancestral type
frequency using large deviation theory for multitype branching processes. Such existence
and uniqueness result can be extended to infinite type space X . In particular, Krein Rut-
man theorem extends this setting with a compactness assumption. This result can itself
be extended with pertubation of dissipative operator [40]. Irreducibility assumption can
also be coupled with Lyapounov control to obtain uniqueness of eigenelement, see [4] for a
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statement useful in our context. That may be the object of futur interesting investigations.

To end this part on the finite case, let us consider a classical epidemiological model,
SIR model. In this case irreducibility fails since Recovered is an absorbing state. Positive
eigenfunction exist but uniqueness does not hold. More precisely, consider X = {i, r} and
the Markov process Z = (Zi,Zr) taking values in {0, . . . , N}2. The processes Zi(t) and
Zr(t) count respectively the number of infected and susceptible individuals at time t in a
fixed population N . The branching rates are

τ(2,0)(i, z) = β(N − (zi + zr)), τ(−1,1)(i, z) = γ,

where β is the infection rate and γ the remission rate. The other rates are 0. For such an
exemple, not only the ancestral lineage of the random sample and the associated population
size may be relevant for applications. When considering tracing of infected individuals, the
tree of infection associated with the sample is involved. For this point, the ψ-construction
should help. It is left for a future work. We could also see a counterpart in the large
population approximation in the next section.

4.2. Large population approximation. We consider in this section the deterministic
regime appearing when the initial population is large and the process renormalized. The
set of types X is still finite but the size of the population is not bounded. Our aim is to
describe uniform sampling in classical dynamical systems for some macroscopic evolution
of populations. The scaling parameter is denoted by N ≥ 1 and corresponds to the order
of magnitude of the size of the population, see [23, 31, 3] for some general references. The
space of types X is finite and the types of the initial population is given by

[Nv] = ([Nvx], x ∈ X ),

for some fixed positive v ∈ (0,∞)X . Each individual with type x ∈ X living in a population
z ∈ NX+ is replaced by k offsprings at rate

τNk (x, z) = τk(x, z/N),

where z ∈ RX+ → τk(x, z) is a continuous function. Let us write

xN = {(u, xu), u ∈ gN}

the labels and types of the initial population with type composition [Nv].
Following the rest of the paper, we write ZN the vector counting types in the population
and T N the tree associated to this process. For sake of simplicity and regarding our
motivations from population models, we assume that

(A1) sup
x∈X ,z∈Z

∑
k∈Z,‖k‖1>1

‖k‖2
1τk(x, z) <∞.

(A2) ∀K > 0, sup
x∈X ,‖z‖1≤K

τ(x, z) <∞.

The `2 uniform condition in (A1) will guarantee that the contribution of the spine in
the growth of the population size is vanishing as N → ∞. (A1) and (A2) also ensure
uniform bound on the growth rate and guarantees non explosion of the process ZN and
ΞN . To ensure that TNExp =∞ a.s., a `1 uniform bound in (A1) would have been enough.
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The individual death or motion rate is non bounded and may tend to infinity due to com-
petition.These assumptions also ensures that the following size dependent growth matrix
A(z) = (Ax,y(z))x,y∈X is well defined :

Ax,y(z) =
∑
k∈Z

τk(x, z)ky − τ(x, z)

for z ∈ RX+ and x, y ∈ X and τ(x, z) =
∑

k∈Z τk(x, z).
.

We also assume that A is locally Lipschitz : for any K > 0, there exists M such that

(A3) ∀x, y ∈ X , ∀z1, z2 ∈ ZK , ‖Ax,y(z1)− Ax,y(z2)‖1 ≤M‖z1 − z2‖1,

where ZK = {z ∈ RX+ : ‖z‖1 ≤ K}. Thus z → zA(z) is locally Lipschitz on RX+ . Using
(A1) guarantees the non explositivity of the dynamical system associated to this vector
filed. Cauchy Lipschitz theorem then ensures the existence and uniqueness of the solution
(z(t,v))t≥0 of the following ordinary differential equation on R+

z′(t,v) = z(t,v)A(z(t,v)), z(0,v) = v.

Under these assumptions, we know that ZN/N converges in law in D(R+,RX+) to the
non-random process z(.,v) and refer to Theorem 2 in Chapter 11 of [22]. We are actually
needing in the proof a counterpart for the spine construction, see below. Finally, we assume
that the limiting dynamical system does not come too close to extinction boundary in finite
time :

(A4) ∀T > 0, inf
x∈X ,t∈[0,T ]

zx(t,v) > 0.

This assumption holds for many classical population models and allows us to consider
functions ψ which go to infinity on the boundary.

We are interested in the limiting ψ-spine construction and consider a function ψ from
X×[0,∞)X to (0,∞), such that for any x ∈ X , ψx : z ∈ (0,∞)X → ψ(x, z) is continuously
differentiable. Besides, we assume that for any ε > 0, there exists L such that for any
x ∈ X and z ∈ (ε, 1/ε)X and k ∈ Z,

‖ ψx(z + k)− ψx(z) ‖1≤ L ‖ k ‖1 .(11)

The ψ-spine construction is initiated with a single individual, the root E(0) = ∅, whose
type Y (0) is chosen as follows:

P(Y (0) = x) =
ψ(x,v)

〈v, ψ(.,v)〉
(x ∈ X ).

Let us explain informally why the spine construction is restricted in this section to one
single initial individual. Indeed, the other initial individuals behave independently in the
large population approximation, since the density dependance reduces to a deterministic
effect of the limiting population. Like for propagation of chaos, the individuals behave
independently and the (time inhomogeneous) branching property holds. We observe then
a branching time inhomogeneous structure due to the limiting type composition of the
population. When considering a limiting ODE which converges to an equilibrium, this
non-homogeneity actually vanishes, as discussed below. In this vein, let us refer to [12],
for a more complex model in infinite dimension motivated by adaptation to environmen-
tal change, which uses the branching limiting structure and also describes the backward
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process appearing in sampling.

Let us be more specific. The spine with type x branches with the following rate at time t

τ̂ ?k (x, t,v) = τk(x, z(t,v)))
〈k, ψ(., z(t,v))〉
ψ(x, z(t,v))

,

while individuals with type x but the spine branch at time t with rate

τ̂k(x, t,v) = τk(x, z(t,v)).

We use as in Section 2 the Ulam Harris Neveu notation to label individuals and denote
by A?(t) the tree rooted in the spine. Observe also that (A4) ensures that ψ(., z(t,v))
is bounded on finite time intervals. Using (A1−A2) then ensures that this spine con-
struction is not explosive. Recall that E(t) is the label of the spine at time t and set

Vincent: c’est

surtout ici ou
il faut de la

continuite

Gf(x, z) =
∑
k∈Z

τk(x, z) 〈k− e(x), f(., z)〉+ Lfx(z)

for z ∈ RX+ and x, y ∈ X , where L is the adjoint operator associated to zA(z) :

Lg(z) =
∑

y,x∈X ,k∈Z

zyτk(y, z)(kx − δyx)
∂g

∂zx
(z),

where δyx = 1 if y = x and 0 otherwise. Using (A1) and differentiability of ψ, ψ in the
domain of G and we define λ as

λ(x, z) =
Gψ(x, z)

ψ(x, z)

for x ∈ X and z ∈ RX+ and can state the result on the subtree containing the sample.
More precisely, recall that LNv is the light length of individual v in the original process
ZN , LNv (t) this life length when the process is stopped at time t, and ZN

v the type of
individual v. Writing u0 the ancestor of u at time 0, we set

T Nu (t) = {(v, LNv (t), ZN
v ) : ∃s ≤ t, (u0, v) ∈ GN(s)}.

where GN(s) is the set of labels alive in T N at time s. The random tree T Nu (t) is the tree
associated containing with the ancestral lineage of u and their decendants, rooted in ∅. We
endow the space T×X with a `1 topology on the collection of labels together with their life
lengths and types, defined as follows. Recall that a finite tree t = {(v, `v, zv) : v ∈ U(t)}
of T is a collection U(t) ⊂ U of labels corresponding to individuals v ∈ U(t) of the
population with time lenght `v and type zv. For two trees t = {(v, `v, zv) : v ∈ U(t)} and
t′ = {(v, `′v, z′v) : v ∈ U(t′)}. We write t∆t′ = U(t)∆U(t′) the set of labels of U in one tree
but not in the other and t ∩ t′ = U(t) ∩ U(t′) the set of labels in both. We consider the
following distance on treesVincent: Ask

Ig, Cy ? ref ?

d(t, t′) = #(t∆t′) +
∑
u∈t∩t′

(|`u − `′u|+ |ku − k′u|)

and endow T with this distance and T×X with the product topology.
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Proposition 7. Assume that (A1-2-3-4) hold. Let t ≥ 0 and UN(t) be a uniform choice
among individuals of T N(t) alive at time t. Then for any F continuous and positive from
T×X to R+,

lim
N→∞

ExN

(
F (T NUN (t)(t), U

N(t))
)

= E

exp
(∫ t

0
λ(Y (s), z(s,v)) ds

)
ψ(Y (t), z(t,v)) ‖z(t,v)‖1

F (A?(t), E(t))

 .

This result can be extended to finite multiple sampling at time t with independent con-
struction started at initial time. Indeed, in this large population approximation and finite
time horizon, the different samples at time t come from different original individuals and
behave independently. We can more generally consider a finite number of initial particles
in the description but considering a infinite number may require to change the topology
for convergence. Besides, relaxing the `2 uniform bound of (A1) should be interesting.
Keeping the `1 uniform bound would give a continuous limiting ODE with infinite rate
of branching along the spine (and the uniform sampling). Considering even larger jumps
would give stochastic limit and more complex spinal constructions. It is another interest-
ing direction.

Let us prepare the proof of Proposition 7. Following Section 2, we write (AN , EN) the
ψN -spine construction associated to T N , with

ψN(x, z) = ψ(x, z/N)

for x ∈ X and z ∈ (0,∞)X and initial condition xN . It is extended to the space X × RX+
by 1. We introduce

λN(x, z) =
GNψN(x, z)

ψN(x, z)

on X × RX+ , where

LNg(z) =
∑

y∈X ,k∈Z

zyτk(y, z/N) (g(z + k− e(y))− g(z))

and

GNf(x, z) =
∑
k∈Z

τk(x, z/N) 〈k− e(x), f(., z + k− e(x))〉+ LNfx(z).

Theorem 1 yields

ExN

(
1{GN (t) 6=∅} F (T N(t), UN(t))

)
=

〈[Nv]/N, ψ(., [Nv]/N)〉ExN

(
GN(AN(t), EN(t))

)
,(12)

where

GN(AN(t), EN(t)) =
e
∫ t
0 λ

N (Y N (s),ΞN (s))ds

ψ(Y N(t),ΞN(t)/N) ‖ΞN(t)‖1

F (AN(t), EN(t)).

Roughly speaking, all the quantities involved converge as N →∞. The process ΞN which
counts the types of individuals in the ψN -spine construction converges to the same limit
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as ZN . This comes from the fact in this scaling there is a no large jumps and for fixed
z,k,

lim
N→∞

ψ(x, ([Nz]− k + 1)/N)

ψ(x, [Nz]/N)
= 1.

Thus the contribution of the spine vanishes in the large population limit, despite the biased
rate. Besides, macroscopically the other individuals behave as in the original process. We
can now turn now to the proof.Vincent:

Ecrire les q et

les β Proof of Proposition 7. First, following the proof of Theorem 2 in Chapter 11 of [22], we
obtain that the sequence of (ΞN

t )t≥0 converges in law in D(R+,RX+) to (z(t,v))t≥0 as N
tends to infinity. To adapt the proof, we note that ΞN alone is not a Markov process. One
has to consider the couple (Y N ,ΞN)N but the influence of the type of the spine Y N is
vanishing in computations using `2 bound (A1) and the fact the population is renormal-
ized by N . Assumptions (A1,A2,A3) thus allow us to get the counterpart of conditions
(2.6), (2.7), (2.8) of Theorem 2 in Chapter 11 of [22], while the initial condition converges
in law by definition of the model.

Now, we check that (x, z) → λN(x,Nz) converges uniformly on compacts sets of X ×
(0,∞)X and use a localization procedure to get the convergence in (12). Indeed,

LN(ψN)x(Nz) = N
∑

y∈X ,k∈Z

zyτk(y, z) (ψ(x, z + (k− e(y))/N)− ψ(x, z)) .

Since ψx is continuously differentiable on (0,∞)X and using (A1)− (A2),

N
∑

y∈X ,‖k‖1≤
√
N

zyτk(y, z)

∣∣∣∣ψ
(
x, z +

k− δy′y
N

)
− ψ(x, z)−

∑
y′∈X

ky′ − e(y)

N

∂ψx
∂zy′

(z)

∣∣∣∣
tend to 0 as N →∞, uniformly for z ∈ (ε, 1/ε)X , where ε ∈ (0, 1) is fixed. Besides, using
(11) and (A1),

N
∑

y∈X ,‖k‖1>
√
N

zyτk(y, z)
∣∣ψ(x, z + (k− e(y))/N)− ψ(x, z)

∣∣
≤ ε−1

∑
y∈X ,‖k‖1>

√
N

‖k‖1τk(y, z)
N→∞−→ 0,

uniformly for z ∈ (ε, 1/ε)X . Recalling the definition of λ and controlling the terms for

‖k‖1 >
√
N as above with (A1) ensures that for any ε > 0,

sup
x∈X ,z∈(ε,1/ε)X

|λN(x,Nz)− λ(x, z)| N→∞−→ 0.

Then, using the convergence of ΞN to z(.,v) and (A4),

lim
N→∞

∣∣ExN

(
1{GN (t) 6=∅} F (T NUN (t)(t), U

N(t))
)

− 〈[Nv]/N, ψ(., [Nv]/N)〉ExN

(
H(AN(t), EN(t))

) ∣∣ = 0,
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for F positive and bounded, where

H(AN(t), EN(t)) =
e
∫ t
0 λ(Y N (s),z(t,v)))ds

ψ(Y N(t), z(t,v)) ‖z(t,v)‖1

F (AN? (t), EN(t))

and AN? is the tree AN where only keep the tree rooted in the initial spine individual.
The conclusion can be achieved by a coupling argument, since the first time when one
individual of AN? has an offsprings of size greater that

√
N tends to infinity. Thus the

individuals branching rates of AN? converge uniformly to the rates of A?, using the same
localization as above to keep the process ΞN in compact sets excluding boundaries. �

In general and as in the previous subsection, one may expect to solve the limit eigen-
problem : ∑

k∈Z

τk(x, z) 〈k− e(x), ψ(., z)〉

+
∑

y,x∈X ,k∈Z

zyτk(y, z)(kx − δyx)
∂ψx
∂zx

(z) = λ(x, z)ψ(x, z)

for any x ∈ X and z ∈ RX+ such that zx > 0. And that uniqueness of positive normalized
solution holds under irreducibility conditions. We only illustrate the result with two
simple and more explicit examples. In one dimension X = {x1}, taking ψ(z) = 1/z is
reminiscent from the previous section for single type models. It yields λ = 0 and as
N →∞, (T NU(t)(t), U

N(t) initiated in xN converges in law to (A(t), E(t))) as N →∞.
Second, when the population process is at equilibrium, we can also be more explicit. Vincent: Un

cas non
equilibre dim 2

?

More precisely, assume that there exists z∗ ∈ RX+ such that

z∗A(z∗) = 0.

Then Lfx(z∗) = 0 for any f and x ∈ X . The spectral problem Gψ = 0 simplifies since the
influence of the influence of the population on the spinal tree is constant. The solution of
the problem is then given by ψ(x, z) = ϕ(x) where ϕ : X → (0,∞) is solution of

∀x ∈ X ,
∑
k∈Z

τk,∗(x) 〈k− e(x), ψ〉 = 0,

and

τk,∗(x) = τk(x, z∗)
〈k, ψ(., z∗)〉
ψ(x, z∗)

.

It means that
∀x ∈ X ,

∑
y∈X

ψ(y)Ay,x(z∗) = 0.

Existence and uniqueness of positive ψ under irreducibility assumption is then again a
consequence of Perron Frobenius theorem and we recover in that case the spine construc-
tion for critical multitype Galton Watson process proposed in [32, 24].
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[3] V. Bansaye and S. Méléard. Stochastic Models for Structured Populations (2015). Scaling Limits
and Long Time Behavior. Springer, Columbus, OH: Ohio State University, Mathematical Biosciences
Institute.

[4] V. Bansaye. B. Cloez, P. Gabriel and A. Marguet. A non-conservative Harris’ ergodic theorem.
Available on Arxiv https://arxiv.org/pdf/1903.03946.pdf.

[5] J.-B. Baillon, P. Clément, A. Greven, F.A. den Hollander (1993). Variational approach to branching
random walk in random environment. Ann. Probab. 21, no. 1, 290-317.

[6] J. Berestycki, M. C. Fittipaldi, J. Fontbona (2018). Ray-Knight representation of flows of branching
processes with competition by pruning of Lévy trees. Probab. Th. Rel. Fields. 172 (4).
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[20] J. Engländer (2004). Spatial Branching In Random Environments And With Interaction. Advanced
Series On Statistical Science And Applied Probability. World Scientific.

[21] A. Etheridge (2004). Survival and extinction in a locally regulated population.Ann. Appl. Probab.
Vol. 14, No. 1, 188-214.

[22] A. Etheridge and T. Kurtz (2019). Genealogical construction of population models. Ann. of Proba-
bility, Vol. 47, No. 4, 1827-1910.

[23] S. N. Ethier and T. G. Kurtz. Markov processes. Characterization and convergence. Wiley Series in
Probability and Mathematical Statistics: Probability and Mathematical Statistics, New York, 1986.

[24] H.O. Georgii, E. Baake (2003) Supercritical multitype branching processes: the ancestral types of
typical individuals. Adv. Appl. Prob. 35 1090-1110.



31

[25] S. Harris, S. Johnston and M. Roberts (2020). The coalescent structure of continuous-time Galton-
Watson trees. Ann. Appl. Probab.. Vol. 30, No 3.1368-1414.

[26] Y. Hu and Z. Shi (2009). Minimal position and critical martingale convergence in branching random
walks, and directed polymers on disordered trees. Ann. Probab. Volume 37, Number 2, 742-789.

[27] P. Jagers and O. Nerman (1996). The asymptotic composition of supercritical multi-type branching
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