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Spine for interacting populations and sampling
VINCENT BANSAYEa

CMAP, Ecole polytechnique, Palaiseau, France, avincent.bansaye@polytechnique.edu

We consider some Markov jump processes which model structured populations with interactions via density de-
pendence. We propose a Markov construction involving a distinguished individual (spine) which allows us to
describe the random tree and random sample at a given time via a change of probability. This spine construction
involves the extension of the type space of individuals to include the state of the population. The jump rates off the
spine individual can also be modified. We exploit this approach to study issues concerning population dynamics.
For single type populations, we derive the phase diagram of a growth fragmentation model with competition as
well as the growth of the size of transient birth and death processes which permit multiple births. We also describe
the ancestral lineages of a uniform sample in multitype populations.
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1. Introduction

The aim of this paper is the study of the long time behavior and ancestral lineages of Markov jump
processes describing density dependent populations. These models are used in population dynamics or
genetics or epidemiology, see e.g. [6,18,30]. They allow to describe competition, mutualism, contam-
ination, sexual reproduction or predation. The individual rate of birth, death or change of state then
depends on the state of population, that is sizes and relevant characteristics. Density dependent models
appear also in various other contexts, including chemistry, queueing systems or networks, see e.g. [2].

Each individual is characterized by a type x in a finite or denumerable type space X. The type may
represent e.g. a position, age, size, phenotype, genotype, species, sex. The population is then described
by a vector z = (zx : x ∈ X), where zx is the number of individuals with type x. Among a population
z, each individual with type x is replaced at rate τk(x,z) by a finite set of individuals whose types are
given by k. The process Z counting the number of individuals of each type is thus a Markov jump
process taking values in the space Z of compositions. This process jumps from z to z + k − ex at rate
zxτk(x,z), where ex is the vector representing one single individual with type x. For references on such
processes, let us mention [19,30].

We study these density dependent processes by constructing another Markov process. It allows us to
follow a typical individual, the spine, in a Markovian way. This spine construction involves a function ψ
defined on the product space X ×Z of space type and state space of the population. The construction
is achieved for any positive function and the choice of ψ will depend on the question asked on the
original process. In particular, harmonic functions will appear to simplify the construction and capture
the behavior of a sample at fixed time.

Spine techniques have a long and fruitful story in branching processes. The main objective of this
work is to provide an analogous construction when the branching property breaks down. At the same
time, it complements the existing theory for branching processes in denumerable type space. Indeed, we
allow a general function ψ and we can modify also the rates outside the spine. It gives the description
of a uniform sample at fixed time in the original process, without considering a size biased tree.

Spine techniques and size biased trees have played a deep role in the analysis of branching Brownian
motion and branching random walk from the works of Chauvin and Rouault [12] and Lyons [35]. Lyons,
Peres and Pemantle [36] have given a conceptual approach of the famous L log L criterion involved
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in the asymptotic analysis of branching processes. Their spine construction provides an illuminating
proof of the non-degeneracy of limiting martingale using branching processes with immigration. This
Markov construction has been extended to multitype branching processes [29] and infinite dimension
and we refer e.g. to [3,16,17]. We propose here an extension to density dependent process. Spine con-
struction has allowed also to prove ergodic properties of type distribution among the population and
shed light on sampling [37] for structured (multitype) branching processes. More generally, we refer
to the description of reduced tree and backbone [15,21] and multispine construction [22]. It has finally
proved to be a powerful way to analyse the first moment semigroup of branching processes, and more
generally non-conservative semigroups or linear PDEs, see e.g. [4,10] and references therein.

Our original motivation for this work is the study of population models with competition. We use
our spine construction for sampling in single type and multitype Markov processes with competition.
For related motivations, let us mention the recent works [1] and [11]. In these models, some spine tech-
niques for branching processes can be exploited. In the applications considered here, which motivates
this work, our new construction is required to deal with the absence of branching property.

In recent decades, much attention has been paid to the study of genealogical structures of population
and sampling. For branching processes, the contour (or exploration) process provides a full description
of the genealogy, see e.g. [33]. The effect of competition as a pruning of trees has been introduced and
studied in [7,34]. Spine construction offers a complementary insight by focusing on a typical individual
in various senses. It can be extended to structured population and varying environment. The look-down
construction also captures the genealogy. In this point of view, introduced by Kurtz and Donnelly, a
level is added to individuals. The Poisson representation of this enlarged process allows in particular to
build the genealogy of large population approximations and describe the longest branch in the tree. We
refer to [31] for the look-down construction of branching processes and to [18] for a recent extension
to interacting populations. The latter allows for a description of genealogy and samples by a tracing
which follows the evolution of the levels back in time. We consider in this paper simpler models and
propose a forward Markov consistent construction for samples.

The spine construction consists in a new process with a distinguished individual and all rates are
modified using a positive function ψ on X × Z. Roughly, the rate of the spine is first biased by the
number of offsprings and types of descendants as for multitype branching process [29,36]. These rates
are also modified following a Doob transform on the population sizes. We need to perform this second
modification on the rates of non-distinguished individuals too. The last point differs from the classical
construction for branching processes and allows in particular to get rid of the size bias in sampling on
branching processes. The spine describes the lineage of a typical individual, which includes its time of
branching, number of offsprings, types and so on. The construction contains more useful genealogical
information than this ancestral path of a sample. Indeed the full tree seen from this lineage is described.
It can be useful when tracing an infected individual in epidemiology or when looking at the subpop-
ulation carrying a common mutation in population genetics. Among stimulating open questions is the
way multisampling could be obtained, which will be just briefly evoked here and will be considered in
forthcoming works.

We focus in this paper on the continuous time setting. Our spine construction has a counterpart in
discrete time. As far as we see, the fact that in continuous time branching events are not simultaneous
is more convenient for construction and analysis. Besides, models which motivate this work may be
more classical in continuous time. For applications, we focus here on a finite type space X and we
plan to deal with infinite state space in forthcoming works. The construction is achieved (only) in
the denumerable case since it is a natural general setting. It requires less technicalities and a minimal
number of assumptions. In particular no regularity conditions are necessary for now.

Example. To motivate this construction and illustrate it, we briefly present a result in the single type
case and we refer to Section 3.1 for details. All the individuals are exchangeable. When the population
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size is z, each individual branches and is replaced by k individuals at rate τk(z). In other words, an
event occurs inside the population at rate zτ(z) and then one individual is chosen uniformly at random
and is replaced by k individuals with probability τk(z)/τ(z). For simplicity, we consider the case where
the jump Markov process Z on N counting the number of individuals is well defined for any time
(non-explosive) and does become extinct a.s. At a given fixed time, sample uniformly at random one
individual alive. Then the times when the ancestral line of this sample has branched and its successive
number of offsprings are given by the so called 1/z-spine construction, which consists in realizing our
construction for ψ(z) = 1/z. More precisely, the distinguished individual (the spine) is replaced by k
individuals at rate kτk (z)z/(z + k − 1) the other individuals branch independently and are replaced by
k individuals at rate τk(z)z/(z + k − 1). The joint law of the random tree of the original process and a
uniform sample at this fixed time coincides with the law of the 1/z-spine markovian construction. This
result allows to specify how sampling bias the reproduction of individuals along time and the effect
of population size. For Galton-Watson process in continuous time, it also complements the size biased
construction [36] by describing the uniform sampling at fixed time. Finally, it allows us to classify the
long time behavior of growth fragmentation process with density dependance of fragmentation, see
forthcoming Corollary 1.

Outline of the paper. The paper is organized as follows. In the next section, we describe more pre-
cisely the original process and the so called ψ-spine construction associated to a positive function ψ
on X × Z. The main result provides a Girsanov type result (change of probability) to transform the
original random tree with a randomly chosen individual at a give time into a new random tree with a
distinguished individual, the spine. We complement this section by considering the associated semi-
group and martingale, and a many-to-one formula, which focuses on the ancestral lineage of a typical
individual. The two next sections are devoted to applications. In Section 3, we consider the single
type case. In that case, computations can be achieved. It allows in particular to describe explicitly the
uniform sampling at a given time when extinction does not occur. We exploit and illustrate this con-
struction by considering a simple growth fragmentation process with competition and we determine
the criterion of regulation of growth by competition and fragmentation. We also provide in this sec-
tion a L log L criterion for the non-degeneracy of the natural positive martingale associated with the
growth of the process, thus extending the criterion of Kesten-Stigum and the approach of [36]. In Sec-
tion 4, we consider a population with a finite number of types. We describe the ancestral lineage of a
uniform sample when the population size is bounded. Finally, we evoke sampling in large population
approximation when the limiting process is a differential equation.

Notation. In the paper, we denote as N = {1,2, . . .}, N0 = {0,1,2, . . .} =N ∪ {0}. The type space X is
finite or denumerable. For two vectors u = (ux)x∈X and v = (vx)x∈X , we denote as 〈u,v〉 =

∑
x∈X uxvx

the inner product.
We note ‖z‖1 =

∑
x∈X zx the �1 norm of z and work with the associated normed and countable space

Z = {z ∈ NX
0 : ‖z‖1 <∞}.

It gives the state space of the population, by counting the number of individuals of each type. We do
not only need the number of individuals of each type but also the genealogical links. For that purpose,
we use the Ulam-Harris-Neveu notation to label the individuals of the population and each label will
have a type and life length and offsprings (which may be empty). We thus introduce

U = ∪k≥1N
k,

where u = (u1, . . . ,uk) ∈ Nk means that u is an individual of the generation k = |u| and the uk-th child
of (u1, . . . ,uk−1). We denote as v � u (equivalently u � v) when v is an ancestor of u (v is a descendant
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of u). Finally, for several objects of the original process such as times, filtrations, rates.., we will use •̂
for the corresponding object in the spine construction and •̂� for the spine individual.

2. Density dependent process and spine construction

2.1. The original Markov process and the associated tree

Let us construct the process Z and the corresponding tree T of individuals with their types, until any
first explosion time. The population alive at time t is a random subset of U, denoted by G(t), and the
types of individuals at time t are (Zu, u ∈ G(t)). The vector counting the number of individuals of each
type is Z(t) = (Zx(t), x ∈ X), where Zx(t) = #{u ∈ G(t) : Zu = x}. We start with an initial population
labeled by a non-empty, finite and deterministic subset g of N together with their types are (xu, u ∈ g).
We denote as

x = {(u, xu), u ∈ g}

this initial condition. We denote by v ∈ Z = {z ∈ NX
0 : ‖z‖1 <∞} the initial number of individuals of

each type, that is v = (vx : x ∈ X) and vx = #{u ∈ g : xu = x}. Thus, G(0) = g and Z(0) = v.
Let us now construct the process for positive time, until any first explosion. The construction of the

jump Markov process Z is classical [6,30]. It is achieved here together with labeling of individuals to
keep track of the tree. We can proceed by iteration and use a sequence of independent exponential and
uniform r.v. for times and choice of transition for the successive events, see [6].

Each individual u has a random life length Lu ∈ (0,+∞] and a type Zu during all its life. Thus, u
is born at time

∑
v≺u Lv and dies at time

∑
v�u Lv . The life length Lu is given by the rate of replace-

ment: each individual is replaced at rate τ(x,z) =
∑

k∈Z τk(x,z) when its type is x and the population
composition is z. The types of its offsprings are then given by k with probability τk(x,z)/τ(x,z). In
other words, each individual with type x is replaced by individuals with types k at rate τk(x,z) when
the population composition is z. Then the composition of the population moves to z + k − e(x). When
an individual u ∈ U is replaced by k, its offsprings are labeled by (u,1), . . . ,(u, ‖k‖1). We need now to
put labels and types together for these offsprings. The assignment of types will actually play no role
but we will need do it in coherent way later in the spine construction. Thus, we consider a probability
law Qk on

Xk = {x ∈ X‖k‖1 : ∀x ∈ X, #{i ≥ 1 : xi = x} = kx}

and (Z(u,i) : 1 ≤ i ≤ ‖k‖1) is distributed as Qk. This assignment is achieved independently for each
branching event and its law only depends on the type composition k of offsprings. A generic natural
law is an exchangeable one, choosing successively the types of individuals uniformly at random among
available choices, but models may suggest another one.

The process is then constructed iteratively. Writing Tn the successive events for n ≥ 0, the process is
constant in time intervals [Tn,Tn+1), where T0 = 0 and Tn+1 = +∞ if no event occurs after Tn. At these
times Tn, we may say jump or branching event, indifferently. Note that for any branching event, only
one individual disappears. It may be replaced by a single individual with the same type (but a different
label). The process is well defined until the limiting time of successive branching events (Tn)n≥1:

TExp = lim
n→∞

Tn ∈ R+ ∪ {+∞}.

This latter is finite if the sequence of branching events accumulate and as usual, we speak then of
explosion. We denote as T the random tree obtained with this construction and T(t) the tree truncated
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at time t ≥ 0. Formally T = {(u,Lu,Zu) : u ∈ U, ∃t ≥ 0 s.t. u ∈ G(t)} and T(t) = {(u,Lu(t),Zu) : u ∈
U, ∃s ≤ t s.t. u ∈ G(s)} with Lu(t) the life length of u, when u is killed at time t.

2.2. The ψ-spine construction associated to the original process

Recall that Z = {z ∈ NX
0 : ‖z‖1 <∞} is denumerable and gives the state space of the composition of the

population. We introduce the state space for the type of the spine and composition of the population:

Z = {(x,z) ∈ X ×Z : zx ≥ 1}.

We consider a (fixed) positive function ψ : Z → (0,∞) which satisfies, for any (x,z) ∈ Z,∑
k∈Z

τk(x,z)〈k,ψ(.,z + k − e(x))〉 <∞. (1)

Let us construct a new Markov process Vψ = V and the associated tree Aψ = A. This construction
contains a distinguished individual Eψ = E for any time. We follow the point of view of [29,36] for
Galton-Watson processes. We denote now asV(t) ⊂ U the random set of individuals alive at time t ≥ 0.
The types of individuals are given by (Vu, u ∈ V(t)) and Vx(t) = #{u ∈ V(t) : Vu = x} is the number of
individuals with type x at time t. Thus E(t) ∈ V(t) is the label of the spine at time t and the type of the
spine is then Y (t) =VE(t).

The initial population x = {(u, xu), u ∈ g} is the same as the initial state of the original process X(0)
and types are also counted by v initially. Among this initial population, the distinguished individual
E(0) (the spine) is chosen randomly as follows

P(E(0) = e) = ψ(xe,v)
〈v,ψ(.,v)〉 (e ∈ g).

The initial type Y (0) of the spine is distributed as P(Y (0) = r) = vrψ(r,v)/〈v,ψ(.,v)〉.
We can construct the process and the tree for positive time, in a similar way as the original process,

writing now L̂u the life length of the individual u and Ẑu its type during its life. Among a population
whose types are counted by z, the spine E with type x branches and is replaced by offsprings of types
k at rate

τ̂�k (x,z) = τk(x,z)
〈k,ψ(.,z − e(x) + k)〉

ψ(x,z) .

The total branching rate of the spine individual is then τ̂�(x,z) =
∑

k∈Z τ̂�k (x,z), which is finite by (1).
Labels of offsprings are (E(t−),1), . . . ,(E(t−), ‖k‖1) and their types are chosen using the probability
law Qk as above. Among these offsprings, each individual with type y ∈ X is chosen to be the new
distinguished individual E with probability

qy(k,z) =
ψ(y,z − e(x) + k)

〈k,ψ(.,z − e(x) + k)〉 .

Outside the spine, i.e. for individuals u ∈ V(t)− {E(t)} at time t, rates of jumps are modified as follows.
Inside a population z with spine of type x, the individuals (except the spine) with type y branch and
yield offsprings composed by k at rate

τ̂k(y, x,z) = τk(y,z)
ψ(x,z − e(y) + k)

ψ(x,z) .
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This process with a distinguished individual is constant between successive jumps T̂n and T̂n+1, where
T̂0 = 0 and T̂n+1 = +∞ if no event occurs after T̂n. This process is well defined by induction until
explosion time

T̂Exp = lim
n→∞

T̂n ∈ R+ ∪ {+∞},

which may be finite or not.
The Markovian construction achieved here provides the process V and the associated random tree A,

as for the original process, with an additional distinguished individual E . We can also define the tree
A(t) truncated at time t ≥ 0. This construction is associated to the original random process through
the rates (τk(x,z) : x ∈ X,k ∈ Z,z ∈ Z) and the initial type composition v. It then depends only on the
choice of ψ, which will play a key role.

2.3. General result linking the original tree to the spine construction

We introduce now the linear operator G which will link the original process to the ψ-spine construction.
For a function f : Z → R, we consider the function G f on Z given by

G f (x,z) =
∑
k∈Z

τk(x,z) 〈k, f (.,z + k − e(x))〉 (2)

+
∑

y∈X,k∈Z
τk(y,z)(zy − δxy ) f (x,z + k − e(y)) − ���

∑
y∈X

τ(y,z)zy
�	
 f (x,z),

where δxy is the Kronecker symbol (δxy = 1 if y = x and 0 otherwise). The first term corresponds to
the contribution of the spine and the second of individuals outside the spine. This operator G is well
defined on the set DG of positive functions ψ on Z which satisfy (1) and for any (x,z) ∈ Z,∑

y∈X,k∈Z
τk(y,z) zy ψ(x,z + k − e(y)) <∞.

In particular, DG contains all the bounded positive functions on Z which satisfy (1). By now, we
assume that ψ belongs toDG and we define the real valued function

λ =
Gψ
ψ

on Z.

Observe that the ψ-transform f → G(ψ f )/ψ − λ f yields the generator of (Y (t),V(t))t≥0. For any t ≥
0, we consider a random variable U(t) by choosing an individual alive at time t among the original
population process, when the population is alive. Its law is specified by the function pe which yields
the probability to choose e when the tree and times are given, i.e. for t ≥ 0,

1G(t)�∅,TExp>t P(U(t) = e | T (t)) = 1G(t)�∅,TExp>t pe(T (t)) a.s.

and
∑

e∈G(t) pe(T (t)) = 1 a.s. on the event {G(t) � ∅,TExp > t}. Our main interest in this paper is the
uniform choice at time t, i.e. pe(T (t)) = 1/#G(t) = 1/‖Z(t)‖1. But sampling at a given time with a type
bias may also be relevant, for instance. We introduce the process W associated to the spine construction
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(A,E) and the sampling p:

W(t) = 1
T̂Exp>t

exp
(∫ t

0 λ(Y (s),V(s))ds
)

ψ(Y (t),V(t)) pE(t)(A(t)).

We can now state the general result and link the random choice of an individual among our in-
teracting population to the Markovian spine construction. It extends spine constructions of branching
processes and allows to take into account density dependence. Let T be the space of finite trees where
each node has a life length and an X valued type. Elements of T are identified to a finite collection of
elements of U × (R+ ∪ {+∞}) ×X endowed with the product σ-algebra.

Theorem 1. Let ψ ∈DG . For any t ≥ 0 and any measurable non-negative function F : T ×U → R,

Ex

(
1{TExp>t ,G(t)�∅} F(T (t),U(t))

)
= 〈v,ψ(.,v)〉Ex (W(t)F(A(t),E(t))) .

In particular, if U(t) is a uniform choice among the set G(t) of individuals at time t,

Ex

(
1{TExp>t ,G(t)�∅} F(T (t),U(t))

)
= 〈v,ψ(.,v)〉Ex

(
1
T̂Exp>t

e
∫ t

0 λ(Y(s),V(s))ds

ψ(Y (t),V(t)) ‖V(t)‖1
F(A(t),E(t))

)
.

The proof is a consequence of the following lemma, where we specify the successive jumps. Recall
that the successive branching times of the original process Z and of the spine process V are respectively
denoted by (Ti,1 ≤ i ≤ N), with N ∈ N∪ {+∞} and (T̂i, 1 ≤ i ≤ N̂), with N̂ ∈ N∪ {+∞} and T0 = T̂0 = 0
a.s. The variable N ∈ N∪ {+∞} yields the total number of branching events and N = i <∞ means that
the process does not branch after time Ti . The same holds for N̂ .

For 1 ≤ i ≤ N , we denote as Ui (respectively Ki) the random label in U (respectively in Z) which
realizes the ith branching event in the original process (respectively the types of its offsprings at this
event). We denote by (Xi, j, j ≤ ‖Ki ‖1) the types of the successive offsprings of Ui . At time Ti , the
individual Ui is thus replaced by individuals (Ui, j), for 1 ≤ j ≤ ‖Ki ‖1, whose types are (Xi, j,1 ≤ j ≤
‖Ki ‖1). We denote similarly as Ûi , K̂i and (X̂i, j, j ≤ ‖K̂i ‖1) the variables involved in the ith branching
event of the spine construction for 1 ≤ i ≤ N̂ . Besides, we denote as Ei the label of the distinguished
individual just before the ith branching event occurs. Thus, if Ei = Ûi , then Ei+1 � Ei and Ei+1 = (Ei, j)
with 1 ≤ j ≤ ‖K̂i ‖1; otherwise Ei+1 = Ei . For convenience we denote as

Ai =
(
Ui,Ki,(Xi, j)1≤ j≤‖Ki ‖1

)
, Âi =

(
Ûi,K̂i, (X̂i, j )1≤ j≤‖K̂i ‖1

)
the discrete variables describing these successive branching events.

Let A�n be the subset of non-extinct discrete trees with n internal nodes (i.e. n branching events),
where a type in X each node. The roots of these tree are fixed and given by x = {(u, xu), u ∈ g}. Each
element of a ∈ A�n is thus a finite sequence a = (ai)1≤i≤n which describes the successive branching
events (forgetting the time). More precisely ai = (ui,ki,(xi, j)1≤ j≤‖ki ‖1 ) ∈ U ×Z×∪k≥0Xk means that
individual ui has offsprings whose types are counted by ki and successively given by (xi, j)1≤ j≤‖ki ‖1 .
For 0 ≤ k ≤ n, we denote by gk(a) ⊂ U the labels of individuals alive just after the k-th event (and
before the k + 1-th) and zk(a) ∈ Z the vector giving the type composition of the population. We also
denote as yk(e) the type of the ancestor of e between these k-th and k + 1-th branching event. The
fact that the tree a ∈ A�n is non-extinct means that we require that gk(a) �∅ for k ≤ n. Note also that
g0(a) = g and see Figure 1.
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Figure 1. Illustration of the construction and notation for Lemma 1 and its proof. The label un realizes the nth
branching. The lines correspond to individuals and their label is indicated just above the line. Below the line we
give the types of these individuals. The spine is represented in red. At time T̂n−1, an individual outside the spine
branches and at T̂n, the spines branches. They are replaced respectively by 2 and 3 individuals. The spine keeps
the same label e′ at the first event T̂n−1 but move from label e′ to label e at time T̂n.

Lemma 1. Let n ≥ 0 and G be a measurable non-negative function from Rn+. Then

Ex

(
1{N ≥n}G(T1, . . . ,Tn)1{Ai=ai : 1≤i≤n}

)
= 〈v,ψ(.,v)〉Ex

(
1{N̂ ≥n,En+1=e}W

(a,e)
n G(T̂1, . . . ,T̂n)1{ Âi=ai : 1≤i≤n}

)
,

for any a = (ai)1≤i≤n ∈ A�n and any e ∈ gn(a), where

W(a,e)
n =

exp
(∑n−1

k=0(T̂k+1 − T̂k)λ(yk (e),zk(a))
)

ψ(yn(e),zn(a))
.

Proof. The initial population x is fixed and notation is omitted in this proof. For convenience, we also
denote as zn = zn(a) the composition of the population between the n-th and (n+ 1)-th branching event
and gn = gn(a) the set of labels alive at this time.

We proceed by induction and start with n = 0. For any e ∈ g0 = g,

〈v,ψ(.,v)〉E(1{E1=e}W
(∅,e)
0 ) = E

(
1{E1=e}

〈v,ψ(.,v)〉
ψ(xe,v)

)
= 1.

Let us now consider n ≥ 1 and assume that the identity holds for n − 1. We consider Gn(ti : 1 ≤ i ≤
n) = G(ti : 1 ≤ i ≤ n − 1)H(tn − tn−1), where G and H are measurable and non-negative and bounded
respectively on Rn−1

+ and R+. We fix also a = (ai)1≤i≤n ∈ A�n and first observe that

E
(
1{N ≥n} Gn(Ti, 1 ≤ i ≤ n)1{Ai=ai : 1≤i≤n}

��FTn−1

)
= 1{N ≥n−1} G(Ti, 1 ≤ i ≤ n − 1)1{Ai=ai : 1≤i≤n−1} Bn, (3)
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where

Bn = E
(
1{N ≥n} H(Tn −Tn−1)1{An=an }

��FTn−1

)
and FTn−1 = σ(Ti,Ai : i ≤ n − 1) is the filtration generated until time Tn−1 in the original construc-
tion. Conditionally on FTn−1 , on the event {Ai = ai : 1 ≤ i ≤ n − 1} the random variable Tn − Tn−1 is
exponentially distributed with parameter

τn =
∑

u∈gn−1

τ(xu,zn−1).

When the label un branches, it is replaced by individual with types (xn, j)1≤ j≤‖kn ‖1 and composition
kn. For convenience, we also denote as

Qn =Qkn (xn, j,1 ≤ j ≤ ‖kn‖1),

the probability to choose the types (xn, j,1 ≤ j ≤ ‖kn‖1). On the event {N ≥ n − 1} ∩ {Ai = ai : 1 ≤ i ≤
n − 1}, we get

Bn = 1{τn�0} τkn (xun ,zn−1)Qn

∫
R+

H(t) e−τn tdt . (4)

Similarly for e ∈ gn, with direct ancestor e′ ∈ gn−1 before the last branching event,

E

(
1{N̂ ≥n,En+1=e}W

((ai :i≤n),e)
n Gn(T̂i, 1 ≤ i ≤ n)1{ Âi=ai : 1≤i≤n}

�� F̂Tn−1

)
= 1{N̂ ≥n−1,En=e′ }W

((ai :i≤n−1),e′)
n−1 G(T̂i, 1 ≤ i ≤ n − 1)1{ Âi=ai : 1≤i≤n−1}

ψ(y′,zn−1)
ψ(y,zn)

B̂n, (5)

where

B̂n = E
(
1{N̂ ≥n,En+1=e} e(Tn−Tn−1)λ(y′,zn−1) H(T̂n − T̂n−1)1{ Ân=an }

�� F̂Tn−1

)
and y (respectively y′) is the type of the spinal individual e (respectively e′) after (respectively before)
the nth branching event. We denote respectively as

τ̂n =
∑

u∈gn−1−{e′ }
τ̂(xu, y′,zn−1), τ̂�n = τ̂

�(y′,zn−1),

the total branching rates of the population oustide the spine and of the spine. Recalling that zn =
zn−1 − e(xun ) + kn, we also denote as

τ̂n,kn = τkn (xun ,zn−1)
ψ(y,zn)
ψ(y′,zn−1)

the rate at which an individual outside the spine is replaced by kn. If the branching indeed occurs
outside the spine, y′ = y and this rate τ̂n,kn coincides with τ̂kn (xun , y′,zn−1). Besides,

τ̂�n,kn
= τ̂�kn

(y′,zn−1) = τkn (y′,zn−1)
〈kn,ψ(.,zn)〉
ψ(y′,zn−1)
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yields the branching rates for the spine. If the branching event indeed concerns the spine, y′ = xun may
differ from y. Similarly, the probability to choose a spine with type y at step n is

qn = qy(kn,zn) =
ψ(y,zn)

〈kn,ψ(.,zn)〉
.

We distinguish two cases, corresponding to the fact that the nth branching event concerns the spine or
not, i.e. either un = e′ or (un � e′ and y = y′). On the event {N̂ ≥ n − 1, En−1 = e′} ∩ { Âi = ai : 1 ≤ i ≤
n − 1}, the time T̂n − T̂n−1 is exponentially distributed with parameter τ̂n + τ̂�n and we get

B̂n = 1{τ̂n+τ̂�
n �0, un�e′ }

∫
R+

H(t)et(λ(y′,zn−1)−(τ̂n+τ̂�
n )) τ̂n,kn Qn dt

+ 1{τ̂n+τ̂�
n �0, un=e′ }

∫
R+

H(t)et(λ(y′,zn−1)−(τ̂n+τ̂�
n ))τ̂�n,kn

qnQn dt

= 1{τ̂n+τ̂�
n �0}

ψ(y,zn)
ψ(y′,zn−1)

τkn (xun ,zn−1)Qn

∫
R+

H(t)et(λ(y′,zn−1)−(τ̂n+τ̂�
n )) dt .

Recalling Definition (2) of G and the definition λ = Gψ/ψ, we observe that

τ̂n + τ̂
�
n − λ(y′,zn−1) = τn.

Then we obtain from (5)

E

(
1{N̂ ≥n,En+1=e}W

((ai :i≤n),e)
n Gn(T̂i, 1 ≤ i ≤ n)1{ Âi=ai : 1≤i≤n}

�� F̂Tn−1

)
= 1{N̂ ≥n−1,En=e′ }W

((ai :i≤n−1),e′)
n−1 G(T̂i, 1 ≤ i ≤ n − 1)1{ Âi=ai : 1≤i≤n−1, τ̂n+τ̂�n�0}

×
∫
R+

H(t)e−τn t dt × τkn (xun ,zn−1)Qn.

Using (3) and (4) and the fact that τ̂n + τ̂�n = 0 is equivalent to τn = 0, the induction hypothesis ensures

E
(
1{N ≥n} Gn(Ti, 1 ≤ i ≤ n)1{Ai=ai : 1≤i≤n}

)
= 〈v,ψ(.,v)〉E

(
1{N̂ ≥n,En+1=e}W

((ai :i≤n),e)
n Gn(T̂i, 1 ≤ i ≤ n)1{ Âi=ai : 1≤i≤n}

)
by conditioning both sides with respect to their filtration until the (n+ 1)th branching event. It ends the
proof by a monotone class argument.

Proof of Theorem 1. The result is a consequence of the previous lemma. For each t ≥ 0 and n ≥ 0 and
e ∈ U, we introduce a measurable non-negative function Gt ,e

n from Rn+ × A�n such that, on the event
{Tn ≤ t < Tn+1,N ≥ n} we have

F(T (t),e)pe(T (t)) =Gt ,e
n (T1, . . . ,Tn,A1, . . . ,An) a.s,

recalling that Tn+1 =∞ if n + 1 > N . Then

Ex

(
1{TExp>t ,G(t)�∅} F(T (t),U(t))

)
=

∑
n≥0,

a∈A�n , e∈gn(a)

Ex

(
F(T (t),e)pe(T (t))1Ai=ai :1≤i≤n,Tn≤t<Tn+1 ,N ≥n

)
=

∑
n≥0,

a∈A�n , e∈gn(a)

Ft ,e
n (a),
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where for n ≥ 0, a = (ai)1≤i≤n ∈ A�n and e ∈ gn(a),

Ft ,e
n (a) =Ex

(
1{N ≥n,Tn≤t }G

t ,e
n (T1, . . . ,Tn,a) ft (Tn,a)1{Ai=ai :1≤i≤n}

)
and

ft (Tn,a) = P(Tn+1 > t |Tn,An = an, . . . ,A1 = a1).

W apply Lemma 1 which yields an express Ft ,e
n (a) in terms of the spine construction:

Ft ,e
n (a) =Ex

(
1{N̂ ≥n, T̂n≤t }G

t ,e
n (T̂1, . . . ,T̂n,a) ft (T̂n,a)1{Ai=ai :1≤i≤n}W(a,e)

n

)
.

Recalling that yn(e) the type of the spine e at the nth event and following the last lines of the proof of
Lemma 1, we observe also that

1{En+1=e} ft (T̂n,a) = 1{En+1=e}e
(t−T̂n)λ(yn(e),zn(a))P(T̂n+1 > t |T̂n, Ân = an, . . . , Â1 = a1).

This ends the proof.

2.4. Positive semigroup and martingale

For each (r,v) ∈ Z, we associate an initial labeling x = x(v) = ((u, xu) : u ∈ g), where xu is the type of
u ∈ g and #{u ∈ g : xu = x} = vx for any x ∈ X. Since vr ≥ 1, there exists at initial time a label whose
type is r . Let us choose one (for instance the smallest one) and note it ur : ur ∈ g and xur = r .

For any t ≥ 0 and f function from Z to R+ ∪ {+∞}, we define for any (r,v) ∈ Z,

Mt f (r,v) = Ex(v)
���1{TExp>t }

∑
u∈G(t), u�ur

f (Zu(t),Z(t))�	
 ,
where Z and Z are defined in Section 2.1 with initial condition x(v). This corresponds to the first mo-
ment associated to the empirical measure of the descendance of a specific initial individual, together
with the composition of the population. We observe that this definition does not depend on the as-
signments of types and labels, and in particular it does not depend on the choice of ur . We observe
that

Mt f (r,v) = Ex(v)
(
1{TExp>t } 〈Z

�ur (t), f (.,Z(t))〉
)
,

where Z�u
x (t) = #{w ∈ G(t) : w � u, Zw(t) = x} is the number of individuals with type x at time t who

are descendant of u and we recall that 〈u,v〉 =
∑

x∈X uxvx is the inner product. Let us first observe that
the generator of the semigroup M is the linear operator G introduced in (2). This will be made explicit
in applications.

Recall that ψ is positive and λ = Gψ/ψ on Z. Recall also that V is the process counting types in the
ψ-spine construction and Y (t) =VE(t)(t) is the type of the spine at time t. Observe that (Y,V) is a jump
Markov process whose jump rates are given by τ̂k(y, x,z) and τ̂�k (x,z) for k,z ∈ Z and y, x ∈ X. It starts
from (Y (0),V(0)) = (r,v).
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Proposition 1. Let ψ ∈DG . The family (Mt )t≥0 is a positive semigroup on the set of functions from Z
to R+ ∪ {+∞}. Besides, for any t ≥ 0, for any non-negative function f on Z and (r,v) ∈ Z,

Mt f (r,v) = ψ(r,v)E(r ,v)

(
1{T̂Exp>t }

e
∫ t

0 λ(Y(s),V(s))ds

ψ(Y (t),V(t)) f (Y (t),V(t))
)
.

Furthermore, for any G measurable function from D([0, t],X ×Z) to R+,

Ex(v)
���1{TExp>t }

∑
u∈G(t)

ψ(Zu(t),Z(t))G((Zu(s),Z(s))s≤t )
�	


= 〈v,ψ(.,v)〉E(r ,v)
(
1{T̂Exp>t } e

∫ t

0 λ(Y(s),V(s))ds G((Y (s),V(s))s≤t )
)
,

where for u ∈ G(t), Zu(s) is the type of the (unique) ancestor of u at time s ≤ t

This result provides a Feynman-Kac representation of the semigroup and a so-called many-to-one
formula for the population. We refer to [14] for a general reference on Feynman-Kac formulae. For sim-
ilar representations for structured branching processes and in particular for fragmentations or growth
fragmentations, we mention the works of Bertoin [8,9] and Cloez [13] and Marguet [37]. We note that
the event {T̂Exp > t} is measurable with respect to filtration associated to V since it corresponds to the
absence of accumulation of jumps for V before time t.

Proof. For convenience, we omit the initial condition in the notation. To prove that M is a semigroup,
we condition by the filtration Ft generated by the original process until time t. For any u ∈ U and
non-negative function f ,

E

(
1{TExp>t+s, u∈G(t)} 〈Z

�u(t + s) , f (.,Z(t + s))〉
��Ft ) = 1{TExp>t , u∈G(t)}Ms f (Zu(t),Z(t)).

We get

Mt+s f = E
(
1{TExp>t }

∑
u∈G(t), u�ur

E

(
1{TExp>t+s, u∈G(t)} 〈Z

�u(t + s) , f (.,Z(t + s))〉
��Ft ) )

= E
(
1{TExp>t } 〈Z

�ur (t) , Ms f (.,Z(t))〉
)
= Mt (Ms f ).

To prove the Feynmac Kac representation of the semigroup M and get the ancestral lineage of a typical
individual, we prove that for t ≥ 0,

E

(
1{TExp>t }

∑
u∈G(t), u�ur

ψ(Zu(t),Z(t))G((Zu(s),Z(s))s≤t )
)

= ψ(r,v)E
(
1{T̂Exp>t } e

∫ t

0 λ(Y(s),V(s))ds G((Y (s),V(s))s≤t )
)
. (6)

Indeed, we can apply Theorem 1 to

F(treet,u) = #{v ∈ g(t) : v � ur }ψ(zu(t),z(t))G((zu(s),z(s))s≤t ), pu(t) =
1u∈g(t), u�ur

#{v ∈ g(t) : v � ur }
,
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where treet is a tree with life length t ≥ 0, g(t) is the set of labels alive at time t in this tree, z(s) is
the type composition at time s ≤ t of the population and zu(s) the type of the ancestor of individual u
alive at time s ≤ t. We observe that E

(
1TExp>t ,G(t)�∅ F(T (t),U(t))

)
gives the left hand side of (6) by

exploiting the law p(T (t)) of U(t) conditionally on T(t), while E (W(t)F(A(t),E(t))) yields the right
hand side of (6) by conditioning by E(0) = ur . Identity (6) proves the first identity of the proposition by
considering marginal functions at time t and dividing by ψ. It also yields the second one by summation
over initial individuals, which ends the proof.

Let us remark that (6) amounts to a spine construction with initial condition E(0) = e, Y (0) = r , which
focuses on the lineages of individuals whose initial ancestor is ur . This would provide an alternative
proof of the previous proposition. We complement this result by the following one:

Proposition 2. Let ψ ∈DG . If TExp = +∞ p.s. and T̂Exp = +∞ p.s., then

M(t) =
∑

u∈G(t)
e−

∫ t

0 λ(Z
u (s),Z(s))ds ψ(Zu(t),Z(t))

is a non-negative martingale with respect to the filtration (Ft )t≥0 generated by the original process Z.
Furthermore, it converges a.s. to W ∈ [0,∞).

The case when the semigroup M has a positive eigenfunction (harmonic function) allows to sim-
plify the exponential term, since λ is then constant. It is of particular interest and will be exploited in
applications of the next sections. We refer to [4,38] and references therein for general results ensuring
existence and/or uniqueness of eigenelements of positive semigroup in related contexts.

Proof. The initial condition x is fixed and omitted in notation. The fact TExp = +∞ p.s and Proposition 1
applied to

G((Zu(s),Z(s))s≤t ) = e−
∫ t

0 λ(Z
u (s),Z(s))dsψ(Zu(t),Z(t))

ensure that

〈v,ψ(.,v)〉P
(
T̂Exp > t

)
=E

���
∑

u∈G(t)
e−

∫ t

0 λ(Z
u (s),Z(s))dsψ(Zu(t),Z(t))�	
 (7)

for any t ≥ 0. This identity guarantees the integrability of M . Similarly Markov property and (6) yield
for u, t fixed, on the event u ∈ G(t),

E
���

∑
v∈G(t+s), v�u

e−
∫ t+s

t
λ(Zu (τ),Z(τ))dτψ(Zv(t + s),Z(t + s))

����Ft�	
 = ψ(Zu(t),Z(t))

since T̂Exp =∞ a.s. We get

E(M(t + s)|Ft ) =
∑

u∈G(t)
e−

∫ t

0 λ(Z
u (τ),Z(τ))dτψ(Zu(t),Z(t)) = M(t),

which proves the proposition.
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Let us observe from (7) that under the condition TExp = +∞ p.s, the fact that M is a martingale
(and not only a local martingale) is equivalent to T̂Exp = +∞ a.s. Besides, the limit W may degenerate
to 0. In the case of branching processes, the criterion for non-degeneracy is the L log L condition for
reproduction law, coming from Kesten and Stigum theorem. In Section 3.2, we deal with a counterpart
with interactions.

3. Single type density dependent Markov process and neutral
evolution

In this section, we consider single type populations and some issues which have originally motivated
this work. In that case, when the size of the population is z ∈ N, each individual branches and is replaced
by k individuals with rate τk(z), for k ∈ N0. We do not use bold letters in this section since there is a
single type and (Z(t))t≥0 is the jump Markov process on N0 giving the population size along time. It
jumps from z to z + k − 1 at rate zτk(z).

We consider ψ : N→ (0,∞) and specify the ψ-spine construction in this single type setting. The
distinguished individual is replaced by k ∈ N individuals at rate

τ̂�k (z) = kτk (z)
ψ(z − 1 + k)

ψ(z) (z ≥ 1).

Among these k offsprings, each individual may become the new spine with probability 1/k. The indi-
viduals but the spine branch and are replaced by k ∈ N0 individuals at rate

τ̂k(z) = τk (z)
ψ(z − 1 + k)

ψ(z) (z ≥ 2).

We observe that the size V of the population in the ψ-spine construction is a density dependent Markov
process with transition rates from z to z + k − 1 equal to

(k + z − 1)τk (z)
ψ(z − 1 + k)

ψ(z) (z ≥ 1).

Thus, the population size V evolve with individual branching rates τk(z)ψ(z − 1 + k)/ψ(z), plus addi-
tional size depend immigration, where k ≥ 2 immigrants arrive in the population of size z ≥ 1 at rate
(k − 1) τk(z)ψ(z − 1 + k)/ψ(z). Generator G is now defined for real valued functions f on N and for
z ≥ 1

G f (z) =
∑
k∈N0

τk (z)(z + k − 1) f (z + k − 1) − zτ(z) f (z).

Consequently, for single type population the function λ = Gψ/ψ becomes for z ≥ 1,

λ(z) = Gψ(z)
ψ(z) =

∑
k∈N0

τk(z)(z + k − 1)ψ(z + k − 1)
ψ(z) − zτ(z).

3.1. Harmonic function

Exchangeability in the single type case suggests the choice ψ(z) = 1/z for z ≥ 1. We get λ(z) = 0 if
z ≥ 2 and λ(1) = −τ0(1). In particular the inverse function is an eigenelement of G when the process
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cannot reach (and be absorbed) in 0. More precisely, if τ0(1) = 0 we obtain that the function λ is null
and W(t) = 1TExp>t a.s. Theorem 1 becomes, for uniform sampling U(t) at time t:

Proposition 3. Let τk(z) ∈ R+ for z ≥ 1 and k ≥ 0 with τ0(1) = 0. Consider the Markov process Z on
N whose jump rate from z to z + k − 1 is equal to zτk(z) for z ≥ 1 and k ≥ 0. Let T be the associated
tree and (A,E) be the 1/z-spine construction associated to these rates as defined in Section 2. Let t ≥ 0
and U(t) a random variable in U such that P(U(t) = e|T (t)) = 1/Z(t) a.s. for any e ∈ G(t).

Then, 1TExp>t (T (t),U(t)) is distributed as 1
T̂Exp>t

(A(t),E(t)).

This 1/z-spine construction consists here in a single type density dependent Markov process with a
distinguished individual. Individual jump rates given respectively for the spine and off the spine by

τ̂�k (z) = k τk(z)
z

z − 1 + k
, τ̂k(z) = τk(z)

z
z − 1 + k

for z ≥ 1, k ≥ 0. We can observe here that Z and V are identically distributed, since τ̂�
k
(z)+(z−1)τ̂k (z) =

zτk(z). The last proposition goes beyond that by describing a uniform sample.
We give now a useful consequence of the previous proposition about ancestral lineage of samples.

We consider the case when the size of the population of the spine construction V(t) =law Z(t) converges
in law to a stationary distribution π = (πz)z≥1. Then, the number of branching events with k offsprings
along the ancestral lineage of a uniform sample in G(t) grows linearly with rate

π̂k = k
∑
z≥1

πz τk (z)
z

z − 1 + k
.

A growth fragmentation model with competition. We consider a neutral model of dividing cells in-
cluding competition, which induces death of cells. The mass of the cell grows during its life at a fixed
exponential speed, and two mechanisms may regulate this mass: division (random splitting of the mass)
and death (with individual death rate of cells increasing with total number of cells). Without interac-
tions, for branching structures, such processes have received lots of attention, including deterministic,
random and structured frameworks. We refer e.g. to [4,9,10,13,37] and references therein. In our model
here, we assume that cells divide in two daughter cells or die, i.e. for z ≥ 1:

bz = τ2(z), dz = τ0(z), τ1(z) = τk(z) = 0 for k ≥ 3. (8)

We assume also that the individual birth rate is bounded and death is only caused by competition:

sup
z≥1

bz ≤ b, d1 = 0. (9)

So Z is a birth and death process and well defined on R+ (no explosion a.s.) and positive for any time.
Each cell is now characterized by a size in R+ and grows at exponential rate r > 0. Let us denote by

(ζu(t))u∈G(t) the process giving the size of each cell alive at time t. Thus, between two jumps (division
or death) of the cell population,

ζ ′u(t) = rζu(t).

When the cell dies, its mass is lost. When it divides, it is shared randomly between each daughter
cell, using a random fraction F ∈ (0,1) a.s. More precisely, we draw an i.i.d. family of r.v. (Fu)u∈U
distributed as F and when cell u divides at time t with mass ζu(t−), its two daugthers get masses

(ζ(u,1)(t), ζ(u,2)(t)) = (Fuζu(t−),(1 − Fu)ζu(t−)).
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Without loss of generality, we assume that F is distributed as 1 − F. We refer to [5,37] for similar
constructions in general context of branching processes. We start for simplicity from a single cell with
size ζ0 > 0: Z(0) = 1, ζ1(0) = ζ0. Let us give a trajectorial description of the population process together
with the spine individual. We use a Poisson representation for constructing the original birth and death
process Z , given by a Poisson point measure N on R2

+ × (0,1) with intensity dsduP(F ∈ df ). For
convenience, we use the same measure for the 1/z-spine construction. More precisely, we define the
process (Z(t), ζ�(t))t≥0 as the unique strong solution of the following stochastic differential equation

Z(t) = 1 +
∫ t

0

∫
R

2
+

(
1u≤Z(s−)bZ (s−) − 1Z(s−)bZ (s−)<u≤Z(s−)(bZ (s−)+dZ (s−))

)
N(ds,du,df ),

ζ�(t) = ζ0 +

∫ t

0
rζ�(s) ds −

∫ t

0

∫
R+×(0,1)

(1 − f )ζ�(s)1u≤2bZ (s−)Z(s−)/(Z(s−)+1) N(ds,du,df ).

Existence and strong uniqueness are classical and we refer e.g. to [6,23]. In words, ζ� is a Markov
process growing exponentially at speed r , which undergoes multiplicative jumps distributed as F. These
jumps occur at the birth rate along the spine, which itself lives under population Z . Non explosion and
survival of the original process are guaranteed by (8)-(9) and Proposition 3 yields the following result.
We let again U(t) be a uniform choice among G(t), which is here also independent of (ζu(s))s≥0,u∈G(s)
conditionally on G(t).

Proposition 4. Under Conditions (8)-(9), for any t ≥ 0, (Z(t), ζU(t)(t)) is distributed as (Z(t), ζ�(t)).

We stress that this identity in law holds (only) for fixed time t, not for the full processes. This result
allows to use Markov techniques to study the regulation of the size of cells through a typical (uniformly
chosen) lineage. In particular, we can state here a new transition phase exploiting Birkhoff ergodic
theorem, when the number of cells is regulated by competition.

Corollary 1. Assume that (8)-(9) hold and that the Markov process Z is irreducible and positive re-
current on N. Then Z(t) converges in law to the unique stationary distribution π = (πz)z≥1 as t tends
to infinity. We set

π̂ = 2
∑
z≥1

πzbz
z

z + 1

and assume also

E(log(F)2) <∞. (10)

i) If r < E(log(1/F)) π̂, then ζ�(t) tends a.s. to 0 as t →∞ and

lim
t→∞

max{ζu(t) : u ∈ G(t)} = 0 in probability.

ii) If r > E(log(1/F)) π̂, then ζ�(t) tends a.s. to infinity as t →∞ and

lim
t→∞

min{ζu(t) : u ∈ G(t)} = +∞ in probability.

We refer to [25,26] for explicit conditions for positive recurrence of birth and death processes.
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Proof. Recalling the SDE representation of ζ� given above, we have

log(ζ�(t)) = log(ζ0) + rt +
∫ t

0

∫
R+×(0,1)

log( f )1u≤g(Z(s−)) N(ds,du,df ),

where g(z) = 2bz z/(z + 1). The classification and asymptotic behavior of ζ� is inherited from ergodic
averaging of Birkhoff theorem. Indeed, writing α = E(log(F)),

log(ζ�(t)) = log(ζ0) + rt + α
∫ t

0
g(Z(s))ds +M(t),

where, by denoting Ñ the compensated measure of N ,

M(t) =
∫ t

0

∫
R+×(0,1)

log( f )1u≤g(Z(s−)) Ñ(ds,du,df ).

Birkhoff theorem for continuous time Markov processes [39] ensures that

1
t

∫ t

0
g(Z(s))ds

t→∞−→
∑
z≥1

g(z)πz a.s.

since g is bounded by Assumption (9). Besides (M(t))t≥0 is a martingale with bounded quadratic
variation on finite time intervals by Assumption (10). We deduce that M(t)/t

t→∞−→ 0 a.s. and we can
conclude that log(ζ�(t)) tends to +∞ or −∞ depending on the fact that r +α

∑
z≥1 g(z)πz is positive or

negative.
We conclude on the original process by using Proposition 4. Indeed, let ε > 0 and A > 0,

P (max{ζu(t) : u ∈ G(t)} ≥ ε, #G(t) ≤ A) ≤ AP
(
ζU(t)(t) ≥ ε

)
= AP

(
ζ �(t) ≥ ε

)
and the right hand tends to 0 if r < E(log(1/F))π̂. We conclude for i) by letting A go to infinity and ε
go to 0 and by using that #G(t) = Z(t) is stochastically bounded. The other case is treated similarly.

Let us comment briefly this result and the proof. The assumptions of boundedness of the individual
birth rate bz and the second moment of log F could be probably relaxed using finer ergodic techniques.
The critical case is interesting. We expect that in general ζ� oscillates a.s. and that for any ε > 0,

lim sup
t→∞

P(max{ζu(t) : u ∈ G(t)} ≤ ε) = 1, lim sup
t→∞

P(min{ζu(t) : u ∈ G(t)} ≥ 1/ε) = 1.

We illustrate now Corollary 1 with a classical logistic competition model and the criterion becomes
explicit. The individual birth rate is fixed and equals to b > 0 and the competition coefficient is c > 0:

bz = b, dz = c(z − 1) (z ≥ 1).

The stationary probability π of the population size is

πz =
1

eb/c − 1

( b
c

) z 1
z!

(z ≥ 1).

The criterion for the regulation of the growth of mass can be given in terms of the parameters b (birth)
and c (competition) and r (growth) and F (random repartition at division):

r < 2b f (b/c)E(log(1/F)), with f (y) = (1 − 1/y + 1/(ey − 1)).
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Letting c tend to 0 allows to recover the expected criterion for branching process, with classical ac-
celerated rate of branching 2b along a typical lineage, see e.g. [6]. Both division (by splitting) and
competition (by killing) participate to the regulation of the growth of the cell mass. The value b/c is
linked to a carrying capacity, i.e. a value above which the population size tend to decrease. Besides f
is increasing with respect to y. Competition destroys cells and could help with regulation but its also
makes the carrying capacity decrease and at end it plays against the regulation of the size.

Allowing extinction. We mention that in the case when τ0(1) � 0, an analogous result can be stated
conditionally on the survival of the process. The eigenfunction h is then non-explicit in general, but
can be written as h0(z)/z for z ≥ 1, where h0 is the harmonic function of the killed process. It allows
to describe sampling in the quasi-stionnary regime, i.e. when the process conditioned to survive at a
given time converges in law. In that case the process V survives a.s. but the original process dies out.

3.2. L logL criterion for branching processes with interactions

For branching processes, spine construction yields a conceptual approach for the Kesten-Stigum crite-
rion of non-degeneracy of the limiting martingale [36]. For a Galton-Watson process Z with reproduc-
tion r.v. L, W = limn→∞ Zn/E(L)n is a.s. positive on the survival event iff E(L log(L)) <∞. The same
criterion holds for continuous time Galton-Watson, with similar approaches. We are interested in the
counterpart of this criterion and approach when reproduction is density dependent. We follow the ideas
of [36]. We recall that τ0(z) <∞ for any z ≥ 1 and consider the following first moment assumption:∑

k≥1

kτk(z) <∞ (z ≥ 1). (11)

We can thus achieve the spine construction with ψ = 1 and set for z ≥ 1,

λ(z) =
∑
k≥0

(k − 1)τk (z).

We first get from Proposition 2 or could directly check that

M(t) = exp
(
−

∫ t

0
λ(Z(s))ds

)
Z(t)

is a non-negative martingale which converges a.s. to a finite non-negative r.v.

W = lim
t→∞

M(t).

Similarly, we introduce

N(t) = exp
(
−

∫ t

0
λ(V(s))ds

)
V(t),

where V is the size of the population in the 1-spine construction. Theorem 1 yields the following
expression of E(W) and a way to know when W is degenerate:

Lemma 2. Assume (11) and that TExp = +∞ and T̂Exp = +∞ a.s. Then, for any z ≥ 1,

Ez (W) = z Pz

(
sup

t∈[0,∞)
N(t) <∞

)
.
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Besides, V − 1 is a Markov jump process on N0 whose transition rate from z to z + k − 1 is equal to
kτk (z + 1) + zτk(z + 1) for z ≥ 0, k ≥ 0.

The process V − 1 can thus be seen as the original density dependent Markov process plus a density
dependent immigration of k − 1 individuals with rate k τk(z). This extends the result for branching
processes when λ and τ are constant and M(t) = exp(−λt)Z(t).

Proof. We let t ≥ 0 and K > 0. We apply Theorem 1 with ψ = 1 to function F defined by

F(treet,e) = F(treet ) = #g(t) e−
∫ t

0 λ(#g(s))ds 1{
sups≤t

{
#g(s) exp

(
−

∫ s

0 λ(#g(v))dv)
) }

≤K
}

where treet is a tree of life lenght t; or we can apply (7) as well and get

E

(
1{supu∈[0,t ] M(u) ≤K } M(t)

)
= P

(
sup

u∈[0,t]
N(u) ≤ K

)
.

Bounded and monotone limit as t →∞ ensure

E

(
1{supu∈[0,∞) M(u) ≤K } W

)
= P

(
sup

u∈[0,∞)
N(u) ≤ K

)
.

We conclude the proof of the first part by monotone limit letting K go to infinity. For the second part,
we observe that V jumps from z to z + k − 1 with rate τ̂�

k
(z)+ (z − 1)τ̂k (z) = kτk (z)+ (z − 1)τk(z).

Let us derive moment conditions which guarantee that the limiting martingale is non-degenerate. It
has been largely studied for Galton-Watson processes, even for infinite number of types and we refer to
[3]. For interactions, it has been also studied at least in the discrete framework, for controlled Galton-
Watson processes, and we refer to [27,32]. In these works, a monotonicity assumption or regularity
and convexity assumptions are required. Such assumptions seem to be partially relaxed here. Besides,
the method can be extended to multitype setting. We focus here on the case where the process grows
exponentially but density dependence affects the growth rate. Competition can make it decrease and
cooperation may make it increase, while non monotone behavior appear in particular with Allee effect.

Proposition 5. Assume that

inf
z≥1

λ(z) > 0,
∑
k≥1

k(log(k) + 1) sup
z≥1

τk(z) <∞. (12)

Then TExp = +∞ and T̂Exp = +∞ a.s. and for any for z ≥ 1, Ez(W) = z.

The second assumption is stronger than (11). The uniformity assumptions can be partially relaxed and
required only for z large enough under some irreducibility condition. The L log L moment condition is
known to be necessary for positivity of E(W) in some cases including branching processes.

Proof. We notice that the finiteness of
∑

k≥1 k supz≥1 τk(z) yields an upperbound of the growth rate of
the population size the original process Z . It guarantees that TExp =∞ a.s. Let us deal with the 1-spine
construction and localize the process by considering the stopping times Tm = inf{t ≥ 0 : Vt ≥ m} for
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m ≥ 1. We separate the component coming from immigration and give a trajectorial representation of
Ξ =V − 1. For t ≤ Tm, it is defined as the unique strong solution of the following SDE

Ξ(t) = Ξ(0) +
∫ t

0

∫
R+×N

1{u≤Ξ(s−)τk (Ξ(s−)+1)} (k − 1)N(ds,du,dk)

+

∫ t

0

∫
R+×N

1{u≤kτk (Ξ(s−)+1)} (k − 1)NI (ds,du,dk),

where we use two independent Poisson point measures, N and NI , with intensity ds du n(dk) on R2
+ ×

N, where n =
∑

k∈N0
δk is the counting measure, see e.g. [6]. Defining

Q(t) = Ξ(t)e−
∫ t

0 λ(Ξ(s))ds = N(t) − e−
∫ t

0 λ(Ξ(s))ds,

we get for t ≤ Tm,

Q(t) = Q(0) +
∫ t

0

∫
R+×N

1{u≤Ξ(s−)τk (Ξ(s−))} (k − 1) e −
∫ s

0 λ(Ξ(v))dv Ñ(ds,du,dk)

+

∫ t

0

∫
R+×N

1{u≤kτk (Ξ(s−))} (k − 1) e−
∫ s

0 λ(Ξ(v))dvNI (ds,du,dk),

where Ñ is the compensated measure of N . Thus, conditionally on NI , N1(. ∧Tm) is a submartingale.
Besides, writing c = infλ > 0 and τk = supz≥1 τk(z) <∞, we get for any m ≥ 1 and t ≥ 0

Ez(Q(t ∧Tm) | NI ) ≤ z − 1 +
∫ t

0

∫
R+×N

1u≤kτk (k − 1) e−csNI (ds,du,dk).

Let us check now that the right hand side is a.s. bounded with respect to t. Indeed∫ ∞

0

∫
R+×N

1u≤kpk (k − 1) e−csNI (ds,du,dk) =
∑
i≥0

L̂ie−cSi (13)

is a compound Poisson process, where (Si+1 − Si : i ≥ 0) are i.i.d. exponential random variables with
parameters μ =

∑
k≥2 kτk ∈ [0,∞) and (L̂i : i ≥ 0) are i.i.d random variables with the size bias distri-

bution P(L̂ = k − 1) = kτk/μ for k ≥ 2. By Borel Cantelli lemma, assumption
∑

k≥2 log(k)kτk < ∞
ensures that lim supn→∞ log(L̂n)/n = 0 p.s. Adding that c > 0 and that Si grows linearly a.s. to infinity
as i tends to infinity, the series in (13) are a.s. finite.

We get then that V is not explosive by using that λ is upper bounded and letting m →∞. By Fatou’s
lemma, we obtain that supt≥0 Ez(Q(t) | NI ) <∞ a.s. Thus, the quenched submatingale (Q(t))t≥0 con-
verges to a finite random variable a.s. as t →∞. So does N(t), towards the same limit, since infλ > 0.
Lemma 2 allows then to conclude.

In particular, we can describe the growth of the process Z . When the growth rate λ(z) tends to b
as z →∞ fast enough, the robustness of exponential growth of Galton-Watson process is expected. It
has already been studied in the discrete setting and needs in general some technical conditions, see the
works mentioned above and also Klebaner [28] for the counterpart in discrete time.
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Corollary 2. Assume (12) and limz→∞ λ(z) = b > 0. Then

P

(
lim
t→∞

log(Zt )
t
= b

)
> 0.

Assuming further that there exists a > 1 such that |λ(z) − b| ≤ C log(z + 1)−a for any z > 0, then

P

(
lim
z→∞

e−bt Z(t) ∈ (0,∞)
)
> 0.

A natural question now is to know if the limiting martingale is a.s. positive on the survival event. It
is well known for branching processes. We expect extensions to similar processes with interactions but
size dependence may make the classification more delicate.

Proof. Recall that W = limt→∞ Z(t) exp(−
∫ t

0 λ(Z(s))ds) a.s. and the previous proposition ensures that
P(W > 0) > 0. Then Z survives with positive probability and then goes to infinity. On this event {W >
0}, λ(Zt ) tends to b and limt→∞ log(Zt )/t = b. Besides writing r(z) = λ(z) − b,

∫ ∞
0 |r(Zt )|dt <∞ a.s.

since |r(Zt )| ≤ C log(exp(bt/2) + 1)−a for t large enough. It ensures that exp(
∫ t

0 λ(Zs)ds) is equivalent
to exp(bt) on {W > 0} and ends the proof.

4. Applications to multitype processes

Let us turn to structured populations with a finite number of types. Explicit computations of eigenele-
ments seem to be more delicate in general than in the single type considered above. We consider two
simple relevant regimes for population models. First, random but bounded population size, where con-
ditions for existence and uniqueness of positive eigenelement are well known from Perron-Frobenius
theory. Second, we consider sampling in the large population approximation.

4.1. Finite irreducible case

We consider a simple case relevant for applications: the number of types is finite and the size of the
population is bounded. More explicitly, we assume that #X <∞ and that there exists z̄ > 0 such that

(A) For all (z, x,k) ∈ Z ×X ×Z such that ‖z + k − e(x)‖1 > z̄, τk(x,z) = 0.

In words, the total size of the population can not go beyond z̄. This quantity may correspond to a
carrying (or biological) capacity of the environment where population lives. The corresponding state
space with a distinguished individual is denoted by S defined by

S = {(r,v) ∈ X ×NX
0 : vr ≥ 1, ‖v‖1 ≤ z̄} ⊂ Z.

We assume that the initial condition is a deterministic vector Z(0) = v of NX such that ‖v‖1 ≤ z̄. We
observe that boundedness ensures that the process a.s. does not explode. We recall that x = x(v) is the
finite initial population whose types are counted by v and ur a label of the population with type r .
Besides, the positive semigroup M is defined by

Mt f (a) = Mt f (r,v) = Ex(v)
���
∑
y∈X

Z(ur )
y (t) f (y,Z(t))�	
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for any non-negative function f on S and a = (r,v) ∈ S. Similarly, the operator G is restricted to real
functions f defined on S and defined for any a = (x,z) ∈ S

G f (a) =
∑
k∈Z

‖z+k−e(x)‖1≤z̄

τk(x,z) 〈k, f (.,z + k − e(x))〉

+
∑

y∈X,k∈Z
‖z+k−e(y)‖1≤z̄

τk(y,z)(zy − δxy ) f (x,z + k − e(y)) − ���
∑
y∈X

τ(y,z)zy
�	
 f (x,z).

Functions on S can be identified to vectors indexed by S, which is finite. The operator G is a positive
linear operator on the finite dimensional space RS and can be identified to a finite square matrix.
Under irreducibility conditions, Perron-Frobenius theorem ensures the existence (and uniqueness up to
a positive constant) of a positive eigenfunction h for the semigroup M and its generator G. Using the
corresponding h-spine construction, we obtain a characterization of the ancestral lineage (or pedigree)
of a typical individual, and in particular the ancestral types. We refer to [20,24] and references therein
for similar results for branching processes using the eigenelements of the first moment semigroup.
Function h corresponds to reproductive value in population dynamics or genetics.

We can now state and prove the result. Let us consider t ≥ 0 and again a uniform choice U(t) in G(t).
We set for a ∈ S and k ∈ Z,

Pa(t) =
∫ t

0
1(ZU (t )(s),Z(s))=a ds, Na,k(t) = #{u �U(t) : (Zu,Zu+) = a, Ku = k},

where Zu(s) is the type of the unique ancestor of u at time s, Zu+ (respectively Ku) is the composition
of the population (respectively of offsprings of u) when u branches. In words, Pa records the time spent
in state a by the ancestral lineage and Na,k the number of branching events with offsprings k.

Proposition 6. Assume (A) and that for any a,b ∈ S, M11b(a) > 0. Then, there exists a unique triplet
(λ,h,γ) such that λ ∈ (−∞,0] and h,γ : S → (0,∞) and

∑
a∈S γ(a) =

∑
a∈S h(a)γ(a) = 1 and

Gh = λ h, γG = λ γ.

Moreover, writing (A,E) the corresponding h-spine construction, for any t ≥ 0 and any measurable
non-negative function F : T ×U → R, we have for any non-empty initial condition x,

Ex

(
1{G(t)�∅} F(T (t),U(t))

)
= 〈v,h(.,v)〉eλt Ex

(
1

h(Y (t),V(t)) ‖V(t)‖1
F(A(t),E(t))

)
.

Note that γG = λ γ means that for any b ∈ S,
∑

a∈S γ(a)G1b(a) = λγ(b). Assumption M11b(a) > 0
guarantees irreducibility of the population process Z, with a distinguished particle. It is equivalent to

∀(r,v) ∈ S, ∀(x,z) ∈ S, Px(v)
(
Z(ur )
x (1) > 0, Z(1) = z

)
> 0.

This irreducibility condition concerns the states where the population is alive (i.e. z � 0). Let us il-
lustrate this condition on the following spatial model with competition. Consider a finite number of
sites with finite carrying capacities. On each site, the individuals give birth with positive rate, when
it has not reached the carrying capacity, and dies with a positive rate. These individual rates may be
dependent of the local and global density of individuals. Besides, each individual may move from one
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site to another. This model satisfies the assumptions of the previous statement as soon as the motion
of individuals (including their offsprings) is irreducible, i.e. when the graph of nodes whose oriented
edges correspond to positive probability of transition at branching events is strongly connected.

Proof. The first point (uniqueness of normalized positive eigenelements, associated with the maximal
eigenvalue) is guaranteed by Perron-Frobenius theorem. The fact that the eigenvalue λ is not positive
is due to the fact that the process is bounded. The second part is then a consequence of Theorem 1,
recalling that there is no explosion and that λ = Gh/h is constant since h is an eigenvector of G.

The Markov process (Y,V) takes values in a finite state space and the assumption and the positivity
of h ensures that it is irreducible. We derive the following ergodic behavior, where the limiting law
does not depend on the initial (non empty) condition x (omitted in notation).

Corollary 3. Under conditions of Proposition 6, (Y (t),V(t)) converges in law to π = (π(a))a∈S as
t → ∞, where π(a) = h(a)γ(a) for a ∈ S. Besides for any a = (x,z) ∈ S and k ∈ Z such that
‖z + k − e(x)‖1 ≤ z̄,(

Pa(t)
t

,
Na,k(t)

t

)
|G(t)�∅

−→ (π(a) , γ(a) τk(a) 〈k , h(.,z + k − e(x))〉)

as t →∞, where the convergence of the couple holds in probability conditionally on the eventG(t) �∅.

Proof. First, we recall that the generator of (Y,V) is the h-Doob-transform of G, i.e. f →G(h f )/h −
λ f . We can then check that (h(a)γ(a))a∈S is a stationary law, using that γG = λγ. Uniqueness of
stationary law holds by irreducibility and the first part is proved.

We consider now the h-spine construction (A,E) and we consider for a = (x,z) ∈ S and k ∈ Z,

N�
a,k(t) = #{u � E(t) : (Vu,Vu+) = a, K̂u = k},

where K̂u (respectively Vu+) is the composition of the offsprings of the spine u (respectively the state
of the population) when u branches. Then ergodic theorem ensures the a.s. convergence:

lim
t→∞

N�
a,k(t)

t
= π(a) τk(a)

〈k,h(.,z + k − e(x))〉
h(a) =: π̃(a,k). (14)

We did not find the appropriate reference in continuous time but the proof can be achieved for instance
by standard renewal argument (strong renewal theorem) using that the successive times when a Markov
jump process is in a given state and make a given jump forms a renewal process, here with finite
expected mean. The result is then a consequence of the previous proposition. Indeed for any t ≥ 0 and
F measurable and positive, we get

E
(
1G(t)�∅F(Na,k(t))

)
= eλt 〈v,h(.,v)〉E

(
1

h(Y (t),V(t))‖V(t)‖1
F(N�

a,k(t))
)

and

E
(
1G(t)�∅

)
= eλt 〈v,h(.,v)〉E

(
1

h(Y (t),V(t)) ‖V(t)‖1

)
.
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Considering F(n) = 1 |n/t−π̃(a,k) |≥ε for ε > 0 and using that h and V are bounded and taking the ratio
of the two expectations, (14) yields

P
(
|Na,k(t)/t − π̃(a,k)| ≥ ε

��G(t) �∅) t→∞−→ 0.

The proof is analogous for the limit of Pa(t)/t when t →∞.

To get finer results on ancestral lineages with a spinal approach, one may be inspired from e.g.
[11,20]. We also expect to extend results to infinite type space X, using for instance [4,38].

4.2. Large population approximation

We consider in this section the deterministic regime appearing when the initial population is large and
the process renormalized. The set of types X is still finite but the size of the population is not bounded.
Our aim is to describe uniform sampling in classical dynamical systems for some macroscopic evo-
lution of populations. The scaling parameter is denoted by N ≥ 1 and corresponds to the order of
magnitude of the size of the population, see [6,19,30] for general references. The space of types X is
finite and the types of the initial population are given by

[Nv] = ([Nvx], x ∈ X),

for some fixed positive v ∈ (0,∞)X . Each individual with type x ∈ X living in a population z ∈ NX
0 is

replaced by k offsprings at rate

τNk (x,z) = τk(x,z/N),

where z ∈ RX+ → τk(x,z) is a continuous function. Let us denote as

xN = {(u, xu), u ∈ gN }

the labels and types of the initial population with type composition [Nv].
Following the rest of the paper, we denote as ZN the vector counting types in the population and T N

the tree associated to this process. For sake of simplicity and regarding our motivations from population
models, we assume that

(A1) sup
x∈X, z∈RX+

∑
k∈Z, ‖k‖1>1

‖k‖2
1 τk(x,z) <∞,

(A2) ∀K > 0, sup
x∈X,z∈ZK

τ(x,z) <∞,

where ZK = {z ∈ RX+ : ‖z‖1 ≤ K} and τ(x,z) =
∑

k∈Z τk(x,z). The �2 uniform condition in (A1) will
guarantee that the contribution of the spine in the growth of the population size is vanishing as N →∞.
(A1) and (A2) also ensure uniform bound on the growth rate and guarantee non explosion of the
processes ZN and VN for fixed N . To ensure that TN

Exp =∞ a.s., a �1 uniform bound in (A1) would
have been enough. We observe that these assumptions allow non bounded individual death or motion
rate. For instance, the death rate may tend to infinity with respect to the size of the population due to
competition. These assumptions also ensure that the following size dependent growth matrix A(z) =



Spine and interactions 1579

(Ax,y(z))x,y∈X is well defined:

Ax,y(z) =
∑
k∈Z

τk(x,z)ky − τ(x,z)

for z ∈ RX+ and x, y ∈ X.
We also assume that A is locally Lipschitz: for any K > 0, there exists M such that

(A3) ∀x, y ∈ X, ∀z1,z2 ∈ ZK , |Ax,y(z1) − Ax,y(z2)| ≤ M ‖z1 − z2‖1.

Thus z → z A(z) is locally Lipschitz on RX+ . Using (A1) guarantees the non explosivity of the dynam-
ical system associated to this vector filed. Cauchy Lipschitz theorem then ensures the existence and
uniqueness of the solution (z(t,v))t≥0 of the following ordinary differential equation on R+

z′(t,v) = z(t,v) A(z(t,v)), z(0,v) = v.

Under these assumptions, we know that ZN/N converges in law in D(R+,RX+ ) to the non-random
process z(.,v) and refer to Theorem 2 in Chapter 11 of [19]. We are actually needing in the proof
a counterpart for the spine construction, see below. Finally, we assume that the limiting dynamical
system does not come too close to the extinction boundary in finite time:

(A4) ∀T > 0, inf
x∈X,t∈[0,T ]

zx(t,v) > 0.

This assumption holds for many classical population models and allows us to consider functions ψ
which go to infinity on the boundary.

We are interested in the limiting ψ-spine construction and consider a function ψ from X × [0,∞)X
to (0,∞), such that for any x ∈ X, ψx : z ∈ (0,∞)X → ψ(x,z) is continuously differentiable. Besides, we
assume that for any ε > 0, there exists L such that for any x ∈ X and z ∈ (ε,1/ε)X and k ∈ RX+ ,

‖ ψ(x,z + k) − ψ(x,z) ‖1≤ L ‖ k ‖1 . (15)

The ψ-spine construction is initiated with a single individual, the root E(0) = ∅, whose type Y (0) is
chosen as follows:

P(Y (0) = x) = ψ(x,v)
〈v,ψ(.,v)〉 (x ∈ X).

Let us explain informally why in this section the spine construction is restricted to one single initial indi-
vidual. Indeed, the density dependance reduces to a deterministic effect when the size of the population
goes to infinity, since the normalized process converges to the z(.,v). Like for propagation of chaos, in
the large population approximation, the individuals behave independently and a (time inhomogeneous)
branching property holds. Besides, when the limiting object z(.,v) converges to an equilibrium when
times goes to infinity, this non-homogeneity actually vanishes, as discussed below.

Let us be more specific. The spine with type x branches with the following rate at time t

τ̂�k (x, t,v) = τk(x,z(t,v)))
〈k,ψ(.,z(t,v))〉
ψ(x,z(t,v)) ,

while individuals with type x but the spine branch at time t with rate

τ̂k(x, t,v) = τk(x,z(t,v)).
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We use again the Ulam Harris Neveu notation to label individuals and denote by A�(t) the tree rooted
in the spine. Observe also that (A4) and regularity of ψ ensure that ψ(.,z(t,v)) is bounded on finite time
intervals. Using (A1 − A2) then ensures that this spine construction is not explosive. Recall that E(t) is
the label of the spine at time t and set

G f (x,z) =
∑
k∈Z

τk(x,z) 〈k − e(x), f (.,z)〉 +L fx(z)

for z ∈ (0,∞)X and x, y ∈ X, where L is the adjoint operator associated to zA(z):

Lg(z) =
∑

y,x∈X,k∈Z
zyτk(y,z)(kx − δyx )

∂g

∂zx
(z),

where δyx = 1 if y = x and 0 otherwise. Using (A1) and differentiability of ψ, ψ is in the domain of G
and we define λ as

λ(x,z) = Gψ(x,z)
ψ(x,z)

for x ∈ X and z ∈ RX+ and can state the result on the subtree containing the sample. More precisely,
recall that LN

v is the life length of individual v in the original process ZN , LN
v (t) this life length when

the process is stopped at time t, and ZN
v the type of individual v. Writing u0 the ancestor of u at time

0, we set

T N
u (t) = {(v,LN

v (t),ZN
v ) : ∃s ≤ t,(u0,v) ∈ GN (s)},

where GN (s) is the set of labels alive in T N at time s. The random tree T N
u (t) is the tree associated

with the ancestral lineage of u and their descendants, rooted in ∅. We endow the space T × X with a
�1 topology on the collection of labels together with their life lengths and types, defined as follows.
Recall that a finite tree t = {(v,�v, zv) : v ∈ U(t)} of T is a collection U(t) ⊂ U of labels corresponding
to individuals v ∈ U(t) of the population with time lenght �v and type zv . For two trees t = {(v,�v, zv) :
v ∈ U(t)} and t′ = {(v,�′v, z′v) : v ∈ U(t′)}. We denote as tΔt′ :=U(t)ΔU(t′) the set of labels of U
in one tree but not in the other and t ∩ t′ :=U(t) ∩ U(t′) the set of labels in both. We consider the
following distance on trees

d(t, t′) = #(tΔt′) +
∑

u∈t∩t′
(|�u − �′u | + |ku − k′

u |)

and endow T with this distance and T ×X with the product topology.

Proposition 7. Assume that (A1-2-3-4) hold. Let t ≥ 0 and UN (t) be a uniform choice among individ-
uals of T N (t) alive at time t. Then for any F continuous and positive from T ×X to R+,

lim
N→∞

ExN

(
F(T N

UN (t)(t),U
N (t))

)
= 〈v,ψ(.,v)〉E

����
exp

(∫ t

0 λ(Y (s),z(s,v)) ds
)

ψ(Y (t),z(t,v)) ‖z(t,v)‖1
F(A�(t),E(t))

�		
 .
This result can be extended to finite multiple sampling at time t with independent construction started

at initial time. Indeed, in this large population approximation and finite time horizon, the different sam-
ples at time t come from different original individuals and behave independently. We can more gener-
ally consider a finite number of initial individuals in the description. Considering an infinite number of
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initial individuals should lead to change the topology for convergence. Besides, relaxing the �2 uniform
bound of (A1) should be interesting. Keeping the �1 uniform bound would give a continuous limiting
population process with potential infinite rate of branching along the spine (and the uniform sampling).
Considering even larger jumps would give a stochastic limit and more complex spinal constructions. It
is another interesting direction.

Let us prepare the proof of Proposition 7. We denote as (AN ,EN ) the ψN -spine construction asso-
ciated to T N , with

ψN (x,z) = ψ(x,z/N)

for x ∈ X and z ∈ (0,∞)X and initial condition xN . Function ψN is extended to the space X × RX+ by
setting ψN = 1 on the boundary of X ×RX+ . We introduce

λN (x,z) = GNψN (x,z)
ψN (x,z)

on X ×RX+ , where

LNg(z) =
∑

y∈X,k∈Z
zyτk(y,z/N) (g(z + k − e(y)) − g(z))

and

GN f (x,z) =
∑
k∈Z

τk(x,z/N) 〈k − e(x), f (.,z + k − e(x))〉 +LN fx(z).

The spine construction (Theorem 1) yields

ExN

(
1{GN (t)�∅} F(T N (t),UN (t))

)
=

〈[Nv]/N,ψ(.,[Nv]/N)〉ExN

(
GN (AN (t),EN (t))

)
, (16)

where

GN (AN (t),EN (t)) = e
∫ t

0 λ
N (YN (s),VN (s))ds

ψ(Y N (t),VN (t)/N) ‖VN (t)/N ‖1
F(AN (t),EN (t)).

Roughly speaking, all the quantities involved converge as N →∞. The process VN which counts the
types of individuals in the ψN -spine construction converges to the same limit as ZN . Indeed, when N
goes to infinity, Assumption (A1) guarantees that there is no jump of order N and the regularity of ψ
ensures that

lim
N→∞

ψ(x,([Nz] − k + 1)/N)
ψ(x,[Nz]/N) = 1.

Thus the contribution of the spine vanishes in the large population limit, despite the biased rate. Be-
sides, at a macroscopic level, the other individuals behave as in the original process. We can now turn
to the proof.

Proof of Proposition 7. First, following the proof of Theorem 2 in Chapter 11 of [18], we obtain that
the sequence of process (VN )N converges in law in D(R+,RX+ ) to (z(t,v))t≥0 as N tends to infinity.
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To adapt the proof, we note that VN alone is not a Markov process. One has to consider the couple
(Y N ,VN )N but the influence of the type of the spine Y N is vanishing in computations using �2 bound
(A1) and the fact the population is renormalized by N . Assumptions (A1,A2,A3) thus allow us to get
the counterpart of conditions (2.6), (2.7), (2.8) of Theorem 2 in Chapter 11 of [19], while the initial
condition converges in law by definition of the model.

Now, we check that (x,z) → λN (x,Nz) converges uniformly on compact sets of X × (0,∞)X and use
a localization procedure to get the convergence in (16) as N →∞. Indeed,

LN (ψN )x(Nz) = N
∑

y∈X,k∈Z
zyτk(y,z) (ψ(x,z + (k − e(y))/N) − ψ(x,z)) .

Since ψx is continuously differentiable on (0,∞)X and using (A1) − (A2),

N
∑

y∈X, ‖k‖1≤
√
N

zyτk(y,z)
����ψ (

x,z +
k − e(y)

N

)
− ψ(x,z) −

∑
y′ ∈X

ky′ − δy
′

y

N
∂ψx

∂zy′
(z)

����
tends to 0 as N → ∞, uniformly for z ∈ (ε,1/ε)X , where ε ∈ (0,1) is fixed. Besides, using (15) and
(A1),

N
∑

y∈X, ‖k‖1>
√
N

zyτk(y,z)
����ψ (

x,z +
k − e(y)

N

)
− ψ(x,z)

����
≤ Lε−1

∑
y∈X, ‖k‖1>

√
N

(‖k‖1 + 1)τk(y,z)
N→∞−→ 0,

uniformly for z ∈ (ε,1/ε)X . Recalling the definition of λ and controlling the terms for ‖k‖1 >
√

N in λ
as above with (A1) ensures that for any ε > 0,

sup
x∈X,z∈(ε,1/ε)X

|λN (x,Nz) − λ(x,z)| N→∞−→ 0.

Using the convergence of VN to z(.,v) in D(R+,RX+ ) and (A4), (16) yields

lim
N→∞

��ExN

(
1{GN (t)�∅} F(T N

UN (t)(t),U
N (t))

)
− 〈[Nv]/N,ψ(.,[Nv]/N)〉 ExN

(
H(AN (t),EN (t))

) �� = 0,

for F continuous, positive and bounded, where

H(AN (t),EN (t)) = e
∫ t

0 λ(Y
N (s),z(t ,v)))ds

ψ(Y N (t),z(t,v)) ‖z(t,v)‖1
F(AN

� (t),EN (t))

and AN
� is the tree AN where we only keep the tree rooted in the initial spine individual. The conclu-

sion can be achieved by a coupling argument, since the first time when one individual of AN
� has an

offspring of size greater than
√

N tends to infinity. Thus the individual branching rates of AN
� converge

uniformly to the rates of A�, using the same localization as above to keep the process VN in compact
sets excluding boundaries.
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In general and as in the previous subsection, one may expect to solve the limit eigenproblem:∑
k∈Z

τk(x,z) 〈k − e(x),ψ(.,z)〉

+
∑

y,x∈X,k∈Z
zyτk(y,z)(kx − δyx )

∂ψx

∂zx
(z) = λ(x,z)ψ(x,z)

for any x ∈ X and z ∈ RX+ such that zx > 0. One also expects that uniqueness of positive normalized
solution holds under irreducibility conditions. We only illustrate the result with two simple and more
explicit examples. First, in one dimension X = {x1}, taking ψ(z) = 1/z is reminiscent from the previous
section for single type models. It yields λ = 0 and as N →∞, (T N

U(t)(t),U
N (t)) initiated in xN converges

in law to (A(t),E(t))) as N →∞.
Second, when the population process is at equilibrium, we can also be more explicit. More precisely,

assume that there exists z∗ ∈ RX+ such that

z∗A(z∗) = 0.

Then L fx(z∗) = 0 for any f and x ∈ X. The spectral problem Gψ = 0 simplifies since the influence of
the population on the spinal tree is constant. The solution of the problem is then given by ψ(x,z) = ϕ(x)
where ϕ : X → (0,∞) is solution of

∀x ∈ X,
∑
k∈Z

τk,∗(x) 〈k − e(x), ϕ〉 = 0,

and

τk,∗(x) = τk(x,z∗)
〈k, ϕ(.)〉
ϕ(x) .

It means that

∀x ∈ X,
∑
y∈X

ϕ(y)Ay,x(z∗) = 0.

Existence and uniqueness of positive φ under irreducibility assumption is then again a consequence
of Perron Frobenius theorem and we recover in that case the spine construction for critical multitype
Galton Watson process proposed in [20,29]. In this vein, let us refer to [11], for a more complex model in
infinite dimension motivated by adaptation to environmental change, which uses the branching limiting
structure and also describes the backward process appearing in sampling.
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