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1. Introduction 

Many interesting physical phenomena, such as 

atmosphere in weather prediction and climate 

modeling, as well as astrophysics in solar 

climate or supernova explosions, are modeled 

by Euler equations governing the conservation 

of mass, momentum, and energy. In one 

dimension, the system can be written as a 

balance law 

 U F(U) S(U)
x xt

z  
  

  
 , (1.1) 

where the conservative vector , ,U=( )u E  • , 

flux vector 2, , ( )F(U)=( )u u p u E p    • , 

and source term vector 0, ,S(U)=( )u  • .  

P1 : The admissible state vectors form a convex 

invariant set  

3{ R | 0, 0}U p   U . 

One often faces the flow near vacuum, for 

example in the computation of blast waves and 

high Mach number astrophysical jets. If either 

density or pressure becomes negative due to 

numerical oscillations, the calculation will 
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ABSTRACT 
We design a scheme for the Euler equations under gravitational fields 

based on our subcell hydrostatic reconstruction framework. 

To give a proper definition of the nonconservative product terms due to 

the gravitational potential, we first separate the singularity to be an 

infinitely thin layer, on where  the potential is smoothed  by defining an 

intermediate potential without disturbing its monotonicity ; then the 

physical variables are extended and controlled to be consistent with the 

Rayleigh-Taylor stability, which contribute the positivity-preserving 

property to keep the nonnegativity of both gas density and pressure even 

with vacuum states. By using the hydrostatic equilibrium state variables 

the well-balanced property is obtained to maintain the steady state even 

with vacuum fronts.  In addition, we proved the full discrete discrete 

entropy inequality, which preserve the convergence of the solution to the 

physical solution, with an error term which tends to zero as the mesh size 

approaches to zero if the potential is Lipschitz continuous. The new 

scheme is very natural to understand and easy to implement. 

The numerical experiments demonstrate the scheme's robustness to 

resolve the nonlinear waves and vacuum fronts. 

Keywords : 
Balance law, Singularity, Geophysics, 

Biology, Subcell hydrostatic 

reconstruction method, Well-

balancing, Positivity. 
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simply break down. Replacing these negative 

values with small positive ones violates the 

mass conservation property and may results in a 

wrong shock position.  

P2 : Another important issue is about the steady 

states for balance laws, which means that the 

source term is exactly balanced by the flux 

gradient, 

R(U) := F(U) S(U) 0
z

x x

 
  
 

 , 

where R is called the residuum. A special steady 

state, called hydrostatic equilibrium, is when 

0u   and 

x x
p z    , 

which can be solved for polytropic equilibrium 

ln , 1

, 1
1

- =

=

K p const

con

z

z

st

T

T







  

 
  






 
 





 





：

：  

where 1   is for the isothermal case where 

K T ;   stands for isentropic case where 

K s  is the specific entropy.  

In many applications, quasi-steady solutions of 

the balance laws need to be captured on a 

(practically affordable) coarse grid compared 

with the deviation from the steady solutions. In 

such a situation, small physical perturbations of 

steady states may be submerged by the 

numerical truncation error which is proportional 

to the grid size. To prevent such phenomenon, 

one has to develop a well-balanced scheme 

which is capable of exactly balancing the flux 

and source terms to maintain the steady states.  

P3 : It is well known that, the system (1.1) 

admits shock waves solutions. After the work, 

the system must be supplemented by a entropy 

inequality 

0(U)+ (U)G
t x


 


 
 , 

 

where the entropy is defined by  

( )(U) (U)= f s    , 

and its corresponding entropy flux 

( )(U) (U)= UG G u    , 

where ( )f   is a smooth non-decreasing 

function. To make a scheme stable, one needs a 

discrete version of the entropy inequality.  

For the above three properties, the most 

frequently discussed is P2, i.e. the well-

balancing property. This property was pioneerly 

introduced by Greenberg and Leroux [14] for 

shallow water equations with topography. The 

extension to Euler equations under gravitational 

fields has attracted much attention recently 

[3,7,8,9,10].  Property P1 is seldom discussed 

for (1.1). Zhang and Shu extended their positive 

preserving framework for homogeneous Euler 

[12] to the inhomogeneous system (1.1) [11]. 

But their method cannot be applied to preserve 

the equilibrium. The relaxation Suliciu-type 

model given by Desveaux et.al. [5] is the only 

published method preserving P1 and P2 at the 

same time. But this scheme is not easy to follow. 

For P3, i.e. entropy inequality, Audusse, et.al. 

proved the semi-discrete entropy inequalities 

for shallow water equations [2,13] for their 

hydrostatic reconstruction (HR) method. We 

also proved for our recent subcell HR method. 

In another paper of Audusse et.al. [17], it was 

proved that when the classical kinetic solver is 

used, the HR scheme satisfies a fully discrete 

entropy inequality, but with an error term which 

is necessary and tends to zero strongly when the 

mesh size approaches to zero.  

We design the subcell HR method [1] to the 

system (1.1). We will theorically and 

numerically prove that our new scheme have the 

above three properties P1,P2 and P3. 

 

2. Experimental details 

We use the finite volume scheme to solve (1.1) 

which updates the approximate cell average 
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n
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where the cell residual is approximated by 

1 1 1 1
(U , , U , ) (U , , U , )-=R R R

i i i i i i i i i
x z z z z

   


 

with the interface residuals R   contributing to 

the left and right sides of the interface. They are 

defnied as the limit values  
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  (2.1) 

where U , zò ò are smoothed data of the following 

Riemann initial data 
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Algorithm (Subcell HR) 

Step 1. Split the cell interfaces into subcells : 

                    {0} [ ,0] [0, ] ò ò  ;      

Step 2. Reconstruct the potential on subcells : 

Given intermediate potential,  

max

max

,

,

, 1

ˆ ˆmax(min( , ,, ), ) 1
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z z z   
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å      
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Step 3. Reconstruct the state variables on 

subcells :  

K is approximated as a jump function 

 
0,

( )
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,
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=

K x
K x

K x
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
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ò       

For isothermal case 1  ,  is approximated 

as a jump function 
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with , : z z     å å . 

3. Results and discussion 

Results:  Using the above reconstruction, we 

get intermediate physical variables 

    
,

u p u p  
 ， ，， ，

å
 ,          

and the sub-layer average density 
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where the parameters   
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Then we get the interface residuals defined in 

(2.1) to be 
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(

0

( 1) z )R F U zF

u
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

 
 
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 






å å  

where , ,( , )= U UF F  å å å  is the numerical flux. 

Here we use the HLL flux. 

Discussions: We directly give the results 

without giving the proofs. The final results are 

based on three lemmas at the cell interfaces 

Lemma 1(well-balancing). Assume that the 

original interface , , , }{U Uz z    is a 

hydrostatic equilibrium, then 0.R   

Lemma 2(Positivity). Assume that the initial 

data 0{U } U { . Then, Upon the CFL 

restriction 

max(| | ) 14 u a    , 

the updated solution   

{ˆ 0}U =U + R   ： U , 

Lemma 3(Entropy inequality). Assume that 

0{U } U { . Then, upon the CFL restriction 

max(| | ) 14 u a    , 

The entropy production is upper bounded  

ˆ | z |( ( (G( ) )U U ) U c z   
      ) - å åG
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2,

.
2

,
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=
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
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

 
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




，å

å
 

Thus we conclude in the following 

Theorem. Assume that 0{U }
i
U { . Then, 

upon the CFL restriction 

8 max(| | ) 1
i i

t
u a

x
  


 


, 

we have 

(1).The updated solution 1U =Un

i i

  if both the 

two interfaces are hydrostatic equilibrium; 

(2).The updated solution 1 0}U {n

i

 U { ; 

(3).The numerical entropy is upper bounded 
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4. Numerical Experiments 

Example 1. steady state over complex potential. 

We consider a complex potential 

 
sin(4 0.5

( )
sin(4

)

) 2, .50 .

x
x

x

x
z

x



 


 



，，
ò        

For isothermal case with 1  ,  the initial data 

are such that 0, 1, 0.u T     The results are 

displayed in the table which shows that our 

scheme can preserve the steady state. 

 
Table 1. The L1 errors of the numerical 

solutions of isothermal equilibrium problem. 

For polytropic case with 5 / 3  . The initial 

data are such that 0, 1u K  , 

 
max(0, ( )) 0.5

( )
max( ,1.5, ( ) .5) 0

z x x
x

z x x


 

 
 .      

The results are represented in the Figure 1. 

which shows that our scheme can preserve the 

steady state even there are vacuum fronts. 
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Figure 1. The numerical result of the 

polytropic  equilibrium problem. 

Example 2. Perturbation of an steady state. 

---Isothermal case. We consider a linear 

potential ( )z x x over the domain [0,1]x . 

The perturbation 

 2( ) exp( 100( 0.5) )
p

x x      

is added to the pressure from the steady state 

with 0, 1, 0.u T     The results are shown 

in Figure 2.   We also check the convergence of 

the numerical solution  to the steady state after 

long time in Figure 3..  

 
Figure 2. The numerical solution at 0.25 on 

200 points of the perturbation from isothermal 

equilibrium with 0.01=  and 0.0001= . 

 
      Figure 3. The convergence after lone time. 

---Polytropic case. The potential is again a 

linear function ( )z x x  on the domain [0,3] . 

The perturbation 

 (0, t) sin(4 )u A t   

with 1.0 1A e   and 1.0 6A e   imposed on 

the velocity at the left boundary of the equilibria

0, 1, max(1/ 2, ( )).u K z x     The results 

are shown in Figures 4,5.  

 
Figure 4. The numerical solution at 1.5 and 

3.5 on 900 points of the perturbation from 

polytropic equilibrium with A=1.0e-1. 

 
Figure 5. Cont. of Figure 4 with A=1.0e-6. 

 

We also check the convergence to the steady 

state after long time in Fiugre 6,7. 

 
Figure 6. The convergence to the steady 

state of the numerical solution of perturbation 

from polytropic equilibrium : A=1.0e-1.

   
       Figure 7. Cont. of Figure 6 with A=1.0e-6. 
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The results show that the scheme can capture 

the small perturbations and also that the 

numerical solution converges to the steady 

solution after long time simulations. 

Example 3. The Riemann problems and entropy 

production. 

We again consider a linear potential on the 

domain [0,1] . The potential, initial data and 

output time of four tests are shown in the table 

2. 

 
Table 2. Four Riemann problems 

The numerical results are shown in Figure 8. 

They prove that the numerical solutions are 

resolved, and the numerical results produce  

entropy error which will decrease as the mesh is 

refined. 

 

 

 

 
Figure 8. Riemann problems. The densities 

and entropy productions on 200 points and 

12800 points are compared. 

5. Conclusion 

We designed the subcell HR method to solve the 

Euler equations under gravitational potential. 

We proved that our scheme is positive 

preserving, well-balancing and satisfies the full 

discrete entropy inequality. 

It is done by separating the singularity to be an 

infinitely thin layer; then smoothing the 

potential, and extending the physical variables 

on the layer.  

To maintain the steady state numerically, the 

standard subcell reconstruction is applied on the 

hydrostatic state variables. To preserve the 

nonnegativity of both density and pressure, the 

conservative vectors after extension on the 

singular layer are controlled. The first step is 

choosing the local maximum potential for 

preserving the equilibrium at the interface 

interfaces.  

The well-balaning property is proved.  Different 

from the discussion in the literatures, We 

consider preserving the general polytropic 

equilbrium with 1  . We want to mention 

that the isothermal equilibrium( 1= ) cannot be 

connected with the vacuum state, while the 

polytropic equilibrium with 1   can be 

connected with the vacuum front.  

The positivity-preserving property is proved. 

The invariant domain is chosen different from 

the literatures. The vacuum state is included, i.e. 

{ }0U  instead of U is selected for the 

invariant domain.  

We also proved the full discrete entropy 

inequality with an error term which tends to 

zero when the mesh size approaches zero if the 

potential is Lipschitz continuous. It means that 

the numerical solution will converge to a 

entropy solution.  

The derivation of the new scheme is very 

natural and easy to implement. The numerical 

experiments demonstrate that 1) the scheme is 

robust to resolve the nonlinear waves and 

vacuum fronts ; 2) the scheme can maintain the 

general polytropic steady state even with 

vacuum front ; 3) the entropy error is bounded 

and will decrease rapidly when the mesh is 
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refined ; 4) the numerical solution converges to 

equilibrium after long time.  

6. Perspectives of future 

collaborations with the host 

laboratory 

In the future, we can work together on: (1) 

designing the scheme for general steady state; 

(2) the high resolution extension; (3) the 

applications to high dimensional problems; (4) 

the applications to other singular problems 

including the chemotaxis [15] and geophysical 

flows [16]. 

7.   Articles published in the 

framework of the fellowship 

[1] Guoxian Chen. A Positivity-preserving 

well-balanced scheme for Euler equations under 

gravitational fields based on subcell hydrostatic 

reconstructions, SIAM Journal on Numerical 

Analysis (2018). submitted for publication.  

[2] Guoxian Chen. The subcell hydrostatic 

reconstruction method for Euler equations 

under gravitational fields with vacuum front, 

(2019) working preprint.  

8.   Acknowledgements 

This work was supported by the Le Studium, 

Loire Valley Institute for Advanced Studies, 

Orléans & Tours, France under Marie 

Sklodowska-Curie grand agreement no. 

665790, European Commission. 

The authors wish to express their warm thanks 

to Yulong Xing, Francois Bouchut and 

Sebastian Noelle for many fruitful discussions 

9.    References 

[1] G. Chen and S. Noelle. A new hydrostatic 

reconstruction scheme based on subcell 

reconstructions. SIAM Journal on Numerical 

Analysis, 55(2):758–784, 2017. 

[2] F. Bouchut. Nonlinear stability of finite 

Volume Methods for hyperbolic conservation 

laws: And Well-Balanced schemes for sources. 

Springer Science & Business Media, 2004. 

[3] P. Chandrashekar and C. Klingenberg. A 

second order well-balanced finite volume 

scheme for Euler equations with gravity. SIAM 

Journal on Scientific Computing, 37(3):B382–

B402, 2015. 

[4] G. Dal Maso, P. G. Lefloch, and F. Murat. 

Definition and weak stability of 

nonconservative products. Journal de 

mathématiques pures et appliquées, 74(6):483–

548, 1995. 

[5] V. Desveaux, M. Zenk, C. Berthon, and C. 

Klingenberg. A well-balanced scheme to 

capture non-explicit steady states in the euler 

equations with gravity. International Journal for 

Numerical Methods in Fluids, 81(2):104–127, 

2016. 

[6] A. Harten, P. D. Lax, and B. v. Leer. On 

upstream differencing and Godunov-type 

schemes for hyperbolic conservation laws. 

SIAM review, 25(1):35–61, 1983. 

[7] R. Käppeli and S. Mishra. Well-balanced 

schemes for the Euler equations with 

gravitation. Journal of Computational Physics, 

259:199–219, 2014. 

[8] G. Li and Y. Xing. High order finite volume 

WENO schemes for the Euler equations 

undergravitational fields. Journal of 

Computational Physics, 316:145–163, 2016. 

[9] G. Li and Y. Xing. Well-balanced 

discontinuous Galerkin methods for the Euler 

equations under gravitational fields. Journal of 

Scientific Computing, 67(2):493–513, 2016. 

[10] Y. Xing and C.-W. Shu. High order well-

balanced WENO scheme for the gas dynamics 

equations under gravitational fields. Journal of 

Scientific Computing, 54(2-3):645–662, 2013. 

[11] X. Zhang and C.-W. Shu. On positivity-

preserving high order discontinuous Galerkin 

schemes for compressible Euler equations on 

rectangular meshes. Journal of Computational 

Physics, 229(23):8918–8934, 2010. 

[12] X. Zhang and C.-W. Shu. Positivity-

preserving high order discontinuous Galerkin 

schemes for compressible Euler equations with 

source terms. Journal of Computational Physics, 

230(4):1238–1248, 2011. 

https://doi.org/10.34846/le-studium.171.04.fr.01-2019


Chen, G.; Ribot, M. Numerical simulation of singular conservation laws and related applications, LE STUDIUM 

Multidisciplinary Journal, 2019, 3, 49-56 

https://doi.org/10.34846/le-studium.171.04.fr.01-2019 
  56 

[13] E. Audusse, F. Bouchut, M. O. Bristeau, R. 

Klein, and B. Perthame. A fast and stable well 

balanced scheme with hydrostatic 

reconstruction for shallow water flows. SIAM 

Journal on Scientific Computing, 25(6):2050–

2065, 2004. 

[14] J. M. Greenberg and A. Y. Leroux. A well-

balanced scheme for the numerical processing 

of source terms in hyperbolic equations. SIAM 

Journal on Numerical Analysis, 33(1):1–16, 

1996. 

[15] R. Natalini, M. Ribot, M. warogowska. A 

well-balanced numerical scheme for a one 

dimensional quasilinear hyperbolic model of 

chemotaxis , Commun. Math. Sci. 12 (2014), 

no.1, 13-39 

[16] F. James, P.-Y. Lagrée, M.H. Le, M. 

Legrand. Towards a new friction model for 

shallow water equations through an interactive 

viscous layer, (2018) preprint. 

 

[17] E. Audusse, F. Bouchut, M.-O. Bristeau, 

and J. Sainte-Marie. Kinetic entropy inequality 

and hydrostatic reconstruction scheme for the 

saint-venant system. Mathematics of Computa 

tion, 85(302):2815–2837, 2016. 

https://doi.org/10.34846/le-studium.171.04.fr.01-2019

