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ABSTRACT 

Acoustic detection and tracking of UAVs is considered by 
means of Unattended Ground Sensors equipped with 
microphonic sensors. Experimental campaigns were 
conducted with flying drones (DJI, Parrot…) in an 
anechoic chamber and in countryside. The acoustic 
database includes various scenario such as hovering flight, 
translation flight, etc. At the same time, “disturbing 
noises” have been recorded: ambient noises including 
birds, insects, people speaking, detonations and fire shot 
noises have been recorded to feed our database.  

A part of the recorded database has been used to train a 
classifier (learning phase). Then another part of the dataset 
was used to estimate the F-score to evaluate both the 
precision and recall of the classifier. Adding artificial noise 
to the data, and selecting acoustic features with 
evolutionary programming enabled the detection of an 
unknown drone in an unknown soundscape within 200 
meters with the JRip classifier (Fscore of 0.88 for distances 
between 0 and 100 m, and 0.56 between 100 and 200 m). 

Main results obtained during the signature analysis and 
the classifier assessment will be presented and the 
perspectives in terms of performance improvement with 
the use of MEMS multi-microphones array. 

1. INTRODUCTION 

The large diffusion of small unmanned aerial vehicles 
(sUAV) for both civil and military applications is a major 
concern for security problems as well as for protection of 
private life of the citizen. Network of detectors of various 
types (Acoustic, Optical, Radio waves, Radar…) are 
envisaged for surveillance system against UAVs. Within 
the envisaged technologies of detection, acoustics is a 
passive technique interesting for the detection, localization 
and reconnaissance of small UAVs. 

For this purpose, we have used some background 
knowledge gained in the years 1990-2000 on helicopter 
detection and tracking. The main results gained by the ISL 
team on this topic will be discussed in the next paragraph. 

Then we will present the experimental measurements 
done in order to have a physical insight of sUAV noises, 
the signal processing technique for the localization and 
tracking of the flight, the reconnaissance and classification 

of such a “threat”. This paper is based on the work done 
by the CNAM/LMSSC [1], by the ISL [2] and with a 
prominent contribution of a common PhD study [3]. 

2. BACKGROUNDS 

2.1 Helicopter noises 

Helicopter noise has been studied intensively in the 90’s 
for environmental purposes (diminution of the noise 
pollution generated by heliports) or for military purposes 
(detection of attacking helicopters flying at low altitude in 
small valleys in order to be undetectable by classical air-
control radars [4 and 5]). This noise is mainly of 
aerodynamic origin and is situated in a frequency band at 
the lower limit of the audible frequencies and even slightly 
lower for some types of helicopters. The acoustic energy 
results largely from the main rotor (with a fundamental 
frequency between ten and thirty hertz), from the tail rotor 
(its fundamental frequency is close to hundred Hertz for a 
classical rotor tail and to 1 kHz for a “fenestron”), from the 
gear box and the turbine (some kilohertz), (Fig. 1). The 
most intense noise is created at very low frequencies by the 
main rotor, which is favorable for long range detection, 
because these low frequencies propagate very well and are 
only very little attenuated during their travel through the 
atmosphere. 
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Figure 1. Typical spectrum of helicopter noise 

 
The noise generated by the main rotor is composed by 3 

main sources: a monopole sound caused by the volume of 
air displaced by the movement of the blades; a dipole 
sound caused by the fluctuations in pressure impinging on 
the surface of the blades and a quadrupole sound caused 
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by shearing phenomena within the fluid streams disturbed 
by the passage of the blades. This latter noise dominates 
when the part of the blade in question is moving at a 
transonic or supersonic speed; this is the case with the 
advancing tip of a blade when the helicopter is in high-
speed forward flight, or when turbulence created by a 
blade meets another blade (e.g. during rapid descent). 

Since the acoustic level is very high, the propagation in 
the atmosphere has a highly non-linear behavior, with the 
creation of important harmonics and a tendency of acoustic 
waves to evolve towards a form of shock (nested "N" 
waves, Fig. 2). The frequency analysis of these signals 
shows that the fundamental frequency and the different 
harmonics of the main rotor and tail rotor form two 
"combs" of nested lines (Fig. 1 and 4). 

These two basic frequencies are related to certain 
characteristics of the helicopter (number of blades, rotation 
speed of rotors, mass, speed, etc.). At first approximation, 
the fundamental rotor frequency depends only on the 
rotation speed ( ) and the number of blades (n). The 
following simple formulae as in Eqn. (1) and (2) make it 
possible to calculate it in the case of a hovering helicopter 
(f0) and in the case of a steady-speed (V) advance flight 
(fv), with C0: speed of sound. In some publication f0 is also 
called Blade Passing Frequency (BPF). 

                                   (1) 

                                  (2) 

 
Some other parameters complicate this characterization: 

the acoustic emission of a helicopter is directive in site and 
field, it also depends on the flight configuration (speed, 
load, maneuver), and will be perceived differently 
depending on the distance and altitude of the helicopter. 
 

 
 

Figure 2. Time signals of a translation flight  
(global and zoom for 3 distances) 

 
Fig. 3 and Fig. 4 show that the frequency line family’s 

characteristics of the main rotor and the rear rotor are 
clearly visible. On Fig. 3 the frequency inflection due to 
the Doppler Effect when the helicopter passes through the 
microphone is visible. In more detail, we observe that 
when the helicopter is very close, a broadband noise 

superimposes itself on the noise of lines. At greater 
distances, only a few pure frequencies emerge from the 
background noise. After the helicopter passes, the spectral 
richness and the acoustic level drop very quickly. 

In comparison with the problem of the study of noise 
nuisances, only low frequency contributions are to be 
taken into account for remote sensing applications.  

The next graph (Fig. 5) illustrates the fact that an 
helicopter is well heard, even if it is masked behind a hill, 
which is an important feature in military context [6]. The 
value of the attenuation due to the hill is relatively low for 
the main rotor frequency and its first harmonics (as 
expected the attenuation is greater for higher frequencies).  
 

 
Figure 3. Spectrogram of a helicopter noise (translation flight) 
 
 

 
 

Figure 4. Example of spectrum of a helicopter noise 
 

 
Figure 5. Spectrum for a masked and a visible helicopter [6] 

2.2 Acoustic antenna for helicopter detection 

The tasks to be performed by the surveillance systems 
studied can be defined into three main items: detection, 
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recognition, localization of the “threat”. These functions 
correspond to the three basic questions: is there an 
abnormal (noise) event? What is it? Where is it?  

The main advantages of using acoustics in such a system 
are: Passive and discrete means; Low cost sensors; Non 
line of sight detection capability. 
The main disadvantages are: Variable performances with 
environmental conditions (including false alarm 
management); Time delay due to the acoustic wave 
propagation. 

A very simple algorithm may be used to calculate the 
azimuth of the acoustic events (more sophisticated and 
more robust algorithm was presented in previous 
publications to be used on an operational sensor network 
[5]). The main equation uses the differences in the time of 
arrival of the waves between the pairs of microphones 
(eqn. 3 and Fig. 6). In the presence of a good signal to noise 
ratio, the previous simple formula gives good results. It is 
more difficult for weak signals in adverse conditions. 
Example of results of the angular localization of a 
helicopter versus time is given in Fig. 7. These results 
correspond to instantaneous detections given by two close 
arrays of 1 m (array A) and 0.5 m (array B) width. 

 noise 
source 

C 

Mic. 2 

Mic. 1 

Mic. 3 

 

 
Figure 6. Spectrum for a masked and a visible helicopter 

 
  (3) 

with : 
tij :  time delay between the signals of microphones i et j 
    :   azimuth of the source 

 
Figure 7. Angular localization of a helicopter versus time 

(bold points: validated localization, small points: unvalidated 
localization) 

3. MEASUREMENT OF UAV NOISES IN AN 
ANECHOIC CHAMBER 

3.1 Bibliography 

Recently, some research on the noise generated by sUAV 
has been published. In [7], measurements have been 
carried-out in an anechoic chamber with a DJI Phantom 2 
and 4 types of commercial blades. The authors show 
clearly the contribution of the Blade Passing Frequency 
(BPF, 128 Hz) and harmonics, then the contribution of the 
electric motors at mid frequency (600 – 6000 Hz). The 
individual contribution of 1, 2 and 4 rotors at nominal 
rotational speed (around 6000 RPM) was also 
characterized. 

Another study investigates more in details the 
aerodynamic origin of these noises [8]. The tonal noise is 
associated with the dynamic loading of the rotor blade. The 
broadband noise level is largely determined by the 
complex turbulent flow structures and shear layers. Effects 
of rotor-to-rotor interactions on the aerodynamics and 
aeroacoustics performances of sUAV was also noticed. 

The NASA Langley Research Center [9] has published 
a study with 4 main areas: outdoor measurements of noise 
generated by flyovers of sUAV, measurements in 
controlled test facilities to understand the generated noise, 
computational predictions, and psychoacoustic tests to 
assess human annoyance from these noises. Published 
results confirm and complete the ones obtained by other 
authors. In particular they noticed that the under-airframe 
configuration results in greater tonal noise compared to 
placing the rotors above the airframe. They noticed also 
that, at an equal sound exposure level, test subjects rated 
the sUAV as more annoying than road vehicles. 

3.2 ISL measurements 

Unlike most of the bibliographical results reported in the 
previous paragraph where the drones were fixed on a 
stand, we have first measured the acoustical signals in an 
anechoic chamber in “free flight conditions” (Fig. 8). We 
have recorded the noise generated by a DJI Phantom 3 
(quadcopter, 2 blades per propeller), a Parrot Bebop 
(quadcopter, 3 blades per propeller) and a Parrot Mars 
(quadcopter, 2 blades per propeller). 

 
Figure 8. UAV flying in the ISL anechoic chamber (rotating 

device for the microphonic array on the right) 
 

Before take-off, the rotational speed of the motors and 
blades are very stable, the spectrogram of the acoustic data 
exhibit a great number of horizontal spectral lines with 
quite constant frequencies from 1 to 1.8 kHz (Fig. 9). After 
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take-off, we can observe the emergence of lower frequency 
lines. As the UAV needs to do small corrections to 
maintain a stationary flight, the rotation speeds of the 
quadcopter’s rotors are slightly different which generates 
frequency variations around the observed fundamental 
frequency and its harmonics. (Fig. 10 and 11). The main 
contribution of the aerodynamic noises and of the motor 
noises are clearly shown in Fig. 12. 
 

 
Figure 9. Spectrogram of a DJI Phantom 3 (before take-off) 

 

 
Figure 10. Spectrogram of a DJI Phantom 3 (hovering) 

 

 
Figure 11. Spectrogram of a Parrot Bebop-2 (hovering) 

 

 
Figure 12. Spectrum of a DJI Phantom 3   

Compared with the helicopter noises, the spectrograms 
exhibit similar frequency lines, but at higher frequencies 
due to the higher rotation speed of the rotors (main 
frequency in the range 200-400 Hz for UAVs compared to 
10-20 Hz for helicopters). Due to the absence of tail rotor, 
no corresponding frequency lines may be observed. The 
other main difference is the frequency variations of these 
lines of the multi-rotors UAVs, visible in the spectrograms 
but also in the spectrum were consequently some 
frequency contributions are less visible. 

 

4. FREE FIELD TEST 

ISL organized free field experiments with various acoustic 
arrays and UAVs in order to acquire acoustic signals in 
realistic conditions (real flights and various environmental 
conditions). This section gives a short overview of the 
measurement systems deployed and of the results 
obtained. 

First, a Real Time Kinematics (RTK) system based on 
GNSS receivers was implemented on a Base Station and 
an extra GNSS receiver on the UAV. This RTK System is 
used to collect ground truth points in a local “East North 
Up” (ENU) coordinate System. It was used in order to have 
precise localization of the UAV for post-processing 
analysis of the acoustic data. To compensate the extra 
weight of the GNSS/Receiver device we have removed the 
camera and corresponding gimbal (Fig. 13). 

Acoustic arrays using conventional metrological 
microphones as well as prototypes of new arrays using 
MEMs microphones have been deployed at different 
points of the site (for more details see paragraph 5). 

Specific microphone(s) of these arrays have been used 
in order to build the acoustic database that will be used for 
the classification study (for more details see paragraph 6). 

Recordings have been done with various types of 
flights: stationary flight (hovering), translation flight S-N 
and E-W at a constant height, circular or square flight 
pattern around the sensors … Most of the tests have been 
done with one drone flying at a time, some have been done 
with 2 drones having a common or a different trajectory. 
In this context, the RTK system is of a great help for the 
post-processing of the data. 

The drones tested outdoor are quadrotors, same as 
previously used in the anechoic chamber, to which a new 
one was added: a flying wing (Parrot Disco). 

 
Figure 13. GNSS/RTK receiver mounted on a DJI Phantom 3  
 

The spectrograms of the signals measured outdoor 
exhibit similar features as seen previously, but the spectral 
lines are less pronounced due to the greater distance 
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between the sUAV and the microphones and to the 
frequency variability due to variations of the rotors speed 
(Fig. 14 and Fig. 15). The variability is still greater in case 
of the flying wing (Fig. 16, Fig. 17).  
 

 
Figure 14. Spectrogram of a DJI Phantom 3 (outdoor) 

 
Figure 15. Spectrum of a DJI Phantom 3 (outdoor) 

 
Figure 16. Spectrogram of a Parrot Disco (outdoor) 

 
Figure 17. Spectrum of a Parrot Disco (outdoor) 

 
Fig. 18 illustrates the evolution of the Sound Pressure 

Level (calculated on the frequency band [80-3500 Hz]) 
during E-W and N-S paths. The comparison with the RTK 
data shows that the local maximum of the pressure 
corresponds to the local closest points of approach (CPA) 
of each segment of the trajectory. A “classical” 6 dB 

difference is observed when the distance of the closest 
points of approach (d_CPA) is varying from 20 to 40 m. 

 
a) True distance between the UAV and the sensor (RTK) 

 
b) SPL_rel 20 Pa  

Figure 18. Results with DJI Phantom 3 (N-S and E-W flights) 

5. LOCALIZATION ANTENNAS 

5.1 Arrays with metrological microphones 

During the field experiment, three seven-microphones 
acoustic array have been deployed with pre-polarized 
metrological microphones (2 with B&K 4189 
microphones and 1 with G.R.A.S. 46AE). These arrays are 
constituted with two interlocked tetrahedrons respectively 
of 10 and 2.5 centimeters in width (Fig. 19). The measured 
acoustic signatures are low-pass filtered at a cut-off 
frequency of 6.8 kHz adapted to the array’s shape before 
the localization process is started.  

 
Figure 19. Microphonic array (7 microphones) 

 

5.2 Localization and tracking 

The localization process is based on the MUltiple SIgnal 
Classification (MUSIC) algorithm [10]. This high-
resolution localization algorithm allows localizing 
multiple acoustic sources synchronously. It is based on the 

6 dB 

10.48465/fa.2020.0224 3159 e-Forum Acusticum, December 7-11, 2020



  
 
decomposition of the measured data s(Θ,f) into its signal 
and noise subspaces, where Θ represents the position of the 
source (azimuth and elevation information), and f the 
frequency. 

In order to minimize the number of outliers in the 
estimated values, two predictive filtering techniques have 
been applied: Kalman filtering and particle filtering [11]. 
In the context of our data, it has been shown that the 
particle filter provides more stable results and a better 
rejection of the artefacts (Fig. 20 and 21). This filtering 
step is applied first for each array on the estimated azimuth 
and elevation values (live streamed data). In a second step 
a fusion of the predicted data sent by the 3 arrays is 
processed, providing estimated latitude and longitude 
coordinates. Finally, these latitude-longitude coordinates 
are processed again using a particle filter to smooth the 
estimated trajectory estimates. 
The Fig. 22 shows the data fusion resulting from the 
processing of the angular data of the three acoustic 
antennas. The obtained filtered results are compared to the 
ground truth data recorded with the RTK GPS System.  

 
Figure 20. Kalman filter data compared to raw, and 

ground truth data for a measured azimuth angle over time  

 
Figure 21. Particle filter data compared to raw data for a 
measured azimuth angle over time with the array “BK1”  

 
Figure 22. Ground truth (white dots) and estimated 

drone positions using data of three acoustic arrays (red 
dots)  

This filtering process leads to sensible increase in 
performance as the estimation error standard deviation 
drops from 50% on the East-West axis, while it drops of 
33% on the North-South axis. 
 

5.3 MEMS array 

Prototypes of compact microphone arrays (CMA) using 16 
and 32 digital MEMS microphones have been designed for 
the localization and tracking of the UAVs acoustical 
sources. These compact arrays consist in two orthogonal 
lines of 8 or 16 MEMS microphones which are placed in 
the horizontal plane. Multiple microphone pairs are used 
to estimate the pressure (P) and the particle velocity 
components (VX, VY) on two orthogonal axes at the center 
of the array, i.e. at the crossing of the two lines of 
microphones. Different spacing between the microphones 
are used either separately to measure the acoustic field at 
different frequencies (in this case decreasing spacing is 
used for increasing frequencies) or together to obtain a 
more accurate estimate (higher order estimations). The use 
of logarithmic spacing between the microphones allows to 
perform localization in log scaled frequency bands with a 
limited number of microphones (Fig. 23). 
 

 
Figure 23. View of an array (16 MEMS microphones) 

 
An original Direction Of Arrival (DOA) estimation 

algorithm is proposed. This real-time time-domain method 
uses the RANSAC algorithm (RANdom SAmple 
Consensus) on broadband [100 Hz - 10 kHz] pressure and 
particle velocity data which are estimated using finite 
differences and sums of signals of microphone pairs with 
frequency-dependent inter-microphone spacing (Eqn. 4 to 
6).  

  (4) 
  (5) 

  (6) 
 
The principle of the DOA estimation and tracking of a 

trajectory has been first tested in the CNAM/LMSCC 
laboratory, using their spatialization sphere. This sphere is 
able to generate moving sound sources in the Ambisonic 
domain. An average DOA estimation error of 4 degrees 
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has been observed (Fig. 24). The use of such a sphere may 
be very useful in the future to extend our database with 
synthetic acoustic data generated in flight configurations 
not yet experienced. Outdoor experiments with the MEMS 
CMA will be organized in the next months. 
 

 
 
Figure 24. Filtered latitude and longitude coordinates 

6. UAVS CLASSIFICATION 

A global approach has been suggested [1]. This original 
approach consists in an initial detection of a potential 
target, followed by a DOA estimation and tracking 
process, along with a refined detection, facilitated by 
adaptive spatial filtering (Fig. 25). 
 

 
Figure 25. Global schematic of the signal processing 

tasks 
 

The initial phase of drone detection was addressed as a 
quick and binary classification problem of presence/no-
presence of drone in a noise sound recording. Few 
computer resources must be used for continuous on-site 
use, and lead to a low rate of false negatives, even if it may 
have a relatively high rate of false positives at first, which 
can be reduced in a second time during a later refined 
detection phase.  

6.1 Detection / classification 

For this initial phase, the signals are processed to obtain 
acoustic descriptors for each signal frame (duration of 20 
ms) and are averaged by groups of 5 successive 
observations, giving a probability of presence between 0 
and 1 on which a detection threshold is set to obtain a cost-
sensitive classifier. A more detailed analysis is proposed 

in [3]. In order to facilitate the detection and extend its 
range, a spatial filtering by differential channel formation 
in four main directions (North, South, East, West) [12] has 
been implemented. The directivity diagram obtained by 
each of the microphone lines is quasi-constant with the 
frequency, thus not altering the frequency signature of the 
sources to be detected.  

Standard audio descriptors have been selected and 
associated to the Jrip classifier [13] from the WEKA 
library (Waikato Environment for Knowledge Analysis). 
The Mel-frequency cepstral coefficients (MFCCS) are 
coefficients that together form a particular representation 
of the signal. MFCC coefficients give a compressed 
representation of the signal, which is commonly used as a 
set of descriptors in machine learning from audio data [14, 
15]. In order to minimize the computation load, a set of 
nine optimized descriptors have been selected ([3]) and 
five additional descriptors from the MIR toolbox [16], 
leading to a total of 14 descriptors used in the presented 
classification process. 

In a second step called “refined detection/classification” 
machine learning tools will be used to detect the presence 
or absence of drones from the calculated descriptors. The 
refined detection stage is preceded by MVDR (Minimum 
Variance Distortionless Response) beamforming informed 
by the target’s DOA. For this second step, the signal is 
processed on a greater number of successive frames (up to 
one second). 

6.2 Construction of the database 

Using the experimental data described in the paragraph 4 
(Baldersheim tests), a database has been set up, using 
segments of 20 ms of the acoustic signals of the flying 
UAVs, with the knowledge of the distance between the 
drone and the sensor. It has been noticed in the literature 
[16] that the robustness of real outdoor sound classification 
may be improved or at minimum “strengthened” by the 
addition of various artificial noises. Consequently, the 
database has been extended by mixing the short duration 
signals from 4 drones with 4 environmental sounds from 
the TUT/DCASE 2016 residential sounds data base 
(Detection and Classification of Acoustic Scenes and 
Events) [17]. Drones flying from 4 categories of distances 
have been considered [0 to 50 meters], [50 to 100 meters], 
[100 to 200 meters], [200 to 400] meters. The 2/3 first 
samples of both Baldersheim and DCASE sounds are 
dedicated to the training database, while the 1/3 last 
samples are dedicated to the test database.  

During the learning phase the tested drone and the 
environment corresponding to the recording have been 
excluded. 

6.3 Main results 

The F-score is used to express the global performance of 
the classifier. Both the precision and the recall are 
considered in order to estimate the score. For the 4 tested 
drones, we observed that this score is globally decreasing 

Spatial filtering 
north     south      east       west 

Initial detection 

Localization and tracking 

Adaptative spatial filtering 

Refined detection 
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for increasing distances and decreasing SNR values. 
Globally the detection of an unknown drone in an 
unknown soundscape is very good within 100 meters and 
good within 200 meters (Fig. 26). 

 
Figure 26. Results of classification F-score (JRip) 

7. CONCLUSIONS 

We have presented an overall view of the ISL & CNAM 
work done on the topic of acoustic detection and tracking 
of small UAVs. This study includes an experimental part, 
some electronic developments and a signal processing 
part. Original aspects are related to the pressure/velocity 
array and on the detection/recognition part combining two 
successive phases of detection/localization. 

The next phase of our work will further investigate the 
use of deep-learning techniques [18]. 
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