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Abstract—The strategic communication problem consists of a
joint source-channel coding problem in which the encoder and
the decoder optimize two arbitrary distinct distortion functions.
This problem lies on the bridge between Information Theory
and Game Theory. As in the persuasion game of Kamenica
and Gentzkow, we consider that the encoder commits to an
encoding strategy, then the decoder selects the optimal output
symbol based on its Bayesian posterior belief. The informational
content of the source affects differently the two distinct distortion
functions, therefore each symbol is encoded in a specific way. In

this work, we consider that the decoder has side information.
Accordingly, we reformulate the Bayesian update of the decoder
posterior beliefs and the optimal information disclosure policy of
the encoder. We provide four different expressions of the solution,
in terms of the expected encoder distortion optimized under an
information constraint, and it in terms of convex closures of
auxiliary distortion functions. We compute the encoder optimal
distortion for the doubly symmetric binary source example.
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I. INTRODUCTION

Communication between autonomous devices that have

distinct objectives is under study. This problem, referred to as

the strategic communication problem, is at the crossroads of

different disciplines such as Control Theory [1], [2], Computer

Science [3] and Information Theory [4], [7], [8], [9], [10],

[11], [12], where it was introduced by Akyol et al. in [5], [6].

Three different formulations of the strategic communication

problem are originally proposed in the Game Theory literature,

see [13]. The cheap talk game of Crawford and Sobel [14]

relies on the Nash equilibrium solution. In the mechanism

design problem of Jackson and Sonnenschein [15] the receiver

commits to a prescribed decoding strategy, as the leader of a

Stackelberg game. The hypothesis of decoder commitment is

also considered in the mismatched rate-distortion problem in

[16], [17]. In the persuasion game of Kamenica and Gentzkow

[18] it is the sender who commits to a strategy whereas the

decoder computes its Bayesian posterior belief and selects the

optimal output symbol. In [19], we characterize the impact of

the channel noise in the solution to the persuasion problem.

In this article, we extend these previous results with encoder

commitment by considering that the decoder has side infor-

mation. More specifically, we formulate a joint source-channel

coding problem with decoder side information in which the

encoder and the decoder are endowed with distinct distortion

functions. Given an encoder strategy, the decoder selects an

optimal strategy for its distortion function. The encoder antic-

ipates the mismatch of the distortion functions and commits to

implement the encoding strategy that minimizes its distortion.

The technical novelty consists in controlling the distance

of the posterior beliefs induced by Wyner-Ziv’s coding to the

target posterior beliefs. This demonstrates that the Wyner-Ziv’s

encoding reveals nothing but the exact amount of information

needed to implement the optimal decoding strategy. Conse-

quently at the optimum the decoder produces a sequence of

outputs which is almost the same as the one generated by the

Wyner-Ziv’s coding [20], for a specific probability distribution.

Zn

Un Xn Y n V n

PUZ TY |Xσ τ

de(u, v) dd(u, v)

Fig. 1. The source PUZ is i.i.d., the channel TY |X is memoryless. The
encoder and the decoder have arbitrary mismatched distortion functions
de(u, v) 6= dd(u, v).

II. SYSTEM MODEL

We denote by U , Z , X , Y , V , the finite sets of information

source, side information, channel inputs, channel outputs and

decoder’s outputs. Uppercase letters Un = (U1, . . . , Un) ∈
Un and Zn, Xn, Y n, V n stand for n-length sequences of

random variables with n ∈ N⋆ = N \ {0}, whereas lowercase

letters un = (u1, . . . , un) ∈ Un and zn, xn, yn, vn, stand

for sequences of realizations. We denote by ∆(X ) the set of

probability distributions QX over X . The support of QX is

denoted by suppQX = {x ∈ X , Q(x) > 0}.

We consider an i.i.d. information source and a memoryless

channel distributed according to PUZ ∈ ∆(U×Z) and TY |X :
X → ∆(Y), as depicted in Fig. 1.

Definition 1 We define the encoding strategy by σ : Un −→
∆(Xn) and the decoding strategy by τ : Yn×Zn −→ ∆(Vn),
and we denote by Pσ,τ the distribution defined by

Pσ,τ =

( n
∏

t=1

PUtZt

)

σXn|Un

( n
∏

t=1

TYt|Xt

)

τV n|Y nZn , (1)

where σXn|Un , τV n|Y nZn denote the distributions of σ, τ .



Definition 2 The encoder and decoder distortion functions

de : U × V −→ R and dd : U × V −→ R are arbitrary and

distinct, i.e. we consider any pair of functions. The long-run

distortion functions dn
e (σ, τ), dn

d
(σ, τ) are given by

dn
d (σ, τ) =

∑

un,vn

Pσ,τ
(

un, vn
)

·

(

1

n

n
∑

t=1

dd(ut, vt)

)

.

Definition 3 Given n ∈ N⋆, we define:

1. the set of decoder best responses to strategy σ by

BRd(σ) =argmin
τ

dn
d (σ, τ), (2)

2. the long-run encoder distortion value by

Dn
e = inf

σ
max

τ∈BRd(σ)
dn

e (σ, τ). (3)

In case BRd(σ) is not a singleton, we assume that the

decoder selects the worst strategy for the encoder distortion

maxτ∈BRd(σ) d
n
e (σ, τ), so that the solution is robust to the

exact specification of the decoding strategy.

We aim at characterizing the asymptotic behavior of Dn
e .

Definition 4 We consider an auxiliary random variable W ∈
W with |W| = min

(

|U|+ 1, |V||Z|
)

and we define

Q =
{

PUZQW |U , max
PX

I(X ;Y )− I(U ;W |Z) ≥ 0
}

. (4)

Given QUZW , we define the single-letter best responses

Ad

(

QUZW

)

= argmin
QV |ZW

E QUZW
QV |ZW

[

dd(U, V )
]

. (5)

The encoder optimal distortion D⋆
e is given by

D⋆
e = inf

QUZW∈Q
max

QV |ZW ∈

Ad(QUZW )

E QUZW
QV |ZW

[

de(U, V )
]

. (6)

If Ad

(

QUZW

)

is not a singleton, the decoder selects the

worst distribution QV |ZW from the encoder perspective.

Theorem 1

∀n ∈ N⋆, Dn
e ≥ D⋆

e , (7)

∀ε > 0, ∃n̄ ∈ N⋆, ∀n ≥ n̄, Dn
e ≤ D⋆

e + ε. (8)

The proof of Theorem 1 is stated in [22, App. B and C].

Sketch of proof of (7). For all n ∈ N⋆, the converse result

relies on the identification of the auxiliary random variables

W = (Y n, ZT−1, Zn
T+1, T ) and (U,Z, V ) = (UT , ZT , VT ),

where T is uniformly distributed over {1, . . . , n}. We denote

by Qσ
UZW , Qτ

V |ZW the distributions induced by (σ, τ) over

(U,Z,W, V ). In [21], it is proved that the Markov chain Z−
−
U−
−W holds and that I(U ;W |Z) ≤ maxPX

I(X ;Y ), hence

Qσ
UZW ∈ Q. We show that dn

e (σ, τ) = E Qσ
UZW

Qτ
V |ZW

[

de(U, V )
]

and {PV |ZW , ∃τ ∈ BRd(σ), Qτ
V |ZW = PV |ZW } =

Ad(Q
σ
UZW ). Then for any σ̃, we have

max
τ∈BRd(σ̃)

dn
e (σ̃, τ) = max

PV |ZW ,∃τ∈BRd(σ̃)

Qτ
V |ZW

=PV |ZW

E Qσ̃
UZW

PV |ZW

[

de(U, V )
]

(9)

= max
QV |ZW ∈

A
d
(Qσ̃

UZW
)

E Qσ̃
UZW

QV |ZW

[

de(U, V )
]

(10)

≥ inf
QUZW∈Q

max
QV |ZW ∈

Ad(QUZW )

E QUZW
QV |ZW

[

de(U, V )
]

= D⋆
e , (11)

which implies (7).

Note that the sequence (nDn
e )n∈N⋆ is sub-additive. Indeed,

when σ is the concatenation of several encoding strategies, the

optimal τ in (3) is the concatenation of the optimal decoding

strategies. Theorem 1 and Fekete’s lemma, show that

D⋆
e = lim

n→+∞
Dn

e = inf
n∈N⋆

Dn
e . (12)

III. CONVEX CLOSURE FORMULATION

We denote by vex f : X → R ∪ {−∞} the convex closure

of a function f , i.e. the largest convex function everywhere

smaller than f on X . We reformulate D⋆
e in terms of a convex

closure, similarly to [18, Corollary 1].

Lemma 1 For all QW |U ∈ ∆(W)|U|, for all (u, z, w) ∈
supp

(

PUZQW |U

)

we have

Q(u|w, z) =
Q(u|w)P(z|u)

∑

u′ Q(u′|w)P(z|u′)
. (13)

The proof is direct. The conditional distribution QU|WZ ∈
∆(U)|W×Z| reformulates in terms of QU|W ∈ ∆(U)|W|.

Definition 5 For p ∈ ∆(U), the decoder selects v⋆(p) in

V⋆(p) = argmax
v∈argminEp

[

dd(U,v)
]

Ep

[

de(U, v)

]

, (14)

and the robust distortion function writes

ψe(p) = Ep

[

de

(

U, v⋆(p)
)

]

, v⋆(p) ∈ V⋆(p). (15)

Definition 6 For p ∈ ∆(U), the average distortion function

Ψe(p) and the average entropy function h(p) are defined by

Ψe(p) =
∑

u,z

p(u)P(z|u) · ψe

(

p(·)P(z|·)
∑

u′ p(u′)P(z|u′)

)

, (16)

h(p) =
∑

u,z

P(z)
p(u)P(z|u)

∑

u′ p(u′)P(z|u′)

× log2

∑

u′ p(u′)P(z|u′)

p(u)P(z|u)
. (17)

The function h(p) is the conditional entropy H(U |Z) evalu-

ated with respect to p · PZ|U instead of PUZ .

Lemma 2 The function h(p) is concave in p ∈ ∆(U).



Proof. [Lemma 2] The entropy H(U) is concave in p ∈ ∆(U),
the mutual information I(U ;Z) is convex in p ∈ ∆(U) for

fixed PZ|U and moreover H(U |Z) = H(U)− I(U ;Z).

Theorem 2

D⋆
e = inf

{

∑

w∈W

λwΨe(pw),
∑

w∈W

λwpw = PU ,

∑

w∈W

λwh(pw) ≥ H(U |Z)−max
PX

I(X ;Y )

}

, (18)

where the infimum is taken over (λw , pw)w∈W with |W| =
min

(

|U|+1, |V||Z|
)

, such that for each w ∈ W , pw ∈ ∆(U),
λw ∈ [0, 1], and

∑

w∈W λw = 1.

The proof of Theorem 2 is stated in [22, App. A]. It is a

consequence of the Markov chain property Z−
−U−
−W . Note

that all the channels such that maxPX
I(X ;Y ) ≥ H(U |Z)

lead to the same value for D⋆
e . The optimal parameters

(λ⋆w, p
⋆
w)w∈W in (18) are referred to as the optimal splitting

of the prior distribution PU , see [24]. When removing the

decoder side information, e.g. |Z| = 1, and changing the

infimum into a supremum, we recover the value of the optimal

splitting problem of [19, Definition 2.4].

• Since
∑

w λwh(pw) = H(U |Z,W ), the information

constraint in (18) is a reformulation of I(U ;W |Z) ≤
maxPX

I(X ;Y ).
• The dimension of the problem (18) is |U| + 1.

Caratheodory’s Lemma [23, Corollary 17.1.5, pp. 157]

induces the cardinality bound |W| ≤ |U|+ 1.

• The cardinality of W is also restricted by the vector

of recommended symbols |W| ≤ |V||Z|, telling to the

decoder which symbol v ∈ V to select when the side

information is z ∈ Z .

The encoder optimal distortion D⋆
e can be reformulated in

terms of Lagrangian and in terms of the convex closure of

Ψ̃e(p, ν) =

{

Ψe(p), if ν ≤ h(p),

+∞, otherwise.
(19)

Theorem 3

D⋆
e =sup

t≥0

{

vex
[

Ψe + t · h
]

(

PU

)

− t ·
(

H(U |Z)−max
PX

I(X ;Y )
)

}

(20)

=vex Ψ̃e

(

PU , H(U |Z)−max
PX

I(X ;Y )
)

. (21)

Equation (20) is the convex closure of a Lagrangian with

the information constraint. Equation (21) corresponds to the

convex closure of a a bi-variate function where the information

constraint requires an additional dimension. The proof follows

directly from [19, Theorem 3.3, pp. 37] by replacing concave

closure by convex closure.

Remark 1 When de = dd, then ψe(p) = minv Ep

[

de

(

U, v
)]

and we obtain a reformulation of the Wyner-Ziv’s solution [20]

D⋆
e = inf

(λw,pw)w∈W ,
∑

w λw=1

{

∑

w∈W

λw
∑

u,z

pw(u)P(z|u)

×min
v

E pw(·)P(z|·)
∑

u′ pw(u′)P(z|u′)

[

de

(

U, v
)

]

,
∑

w∈W

λwpw = PU ,

∑

w∈W

λwh(pw) ≥ H(U |Z)−max
PX

I(X ;Y )

}

. (22)

When de = −dd, then V⋆(p) = argmaxv Ep

[

de(U, v)
]

and

both functions ψe(p), Ψe(p) are convex in p ∈ ∆(U). By

Jensen’s inequality, the infimum in (18) is achieved by p⋆w =
PU , ∀w ∈ W , i.e. no information is transmitted and D⋆

e =
maxv EPU

[

de

(

U, v
)]

.

IV. DOUBLY SYMMETRIC BINARY SOURCE

We consider the doubly symmetric binary source (DSBS)

example introduced by Wyner-Ziv in [20, Sec. II], depicted in

Fig. 2 with parameters (p0, δ0, δ1) ∈ [0, 1]3. The cardinality

bound is |W| = min
(

|U|+ 1, |V||Z|
)

= 3, hence the random

variable W is drawn according to the conditional probability

distribution QW |U with parameters (αk, βk)k∈{1,2,3} ∈ [0, 1]6

such that
∑

k αk =
∑

k βk = 1.

u1

u0

b

b

b

b

b

b

b

b

b

w3

w1

w2

z1

z0
α1

β3

1− p0

p0

α3
α2

β1 β2

1− δ0

δ0

1− δ1

δ1

Fig. 2. Joint probability distribution P(u, z)Q(w|u) with |W| = 3
depending on parameters p0, δ0, δ1, (αk , βk)k∈{1,2,3} that belong to [0, 1].

u1

u0

v0 v1

0

1

1

0

Fig. 3. Encoder distortion de(u, v).

u1

u0

v0 v1

0

1

1 + κ

κ

Fig. 4. Decoder distortion dd(u, v).

0 1 p

Ep

[

dd(U, v)
]

1 + κ = 7
4

κ = 3
4

1

v1

v0

γ
b

Fig. 5. Decoder’s expected distortion Ep

[

dd(U, v)
]

= (1− p) · dd(u0, v) +
p · dd(u1, v) for v ∈ {v0, v1} depending on the belief Q(u1|w, z) ∈ [0, 1].

The distortion functions are given by Fig. 3 and 4 for which

the extra cost κ ∈ [0, 1] in the decoder distortion may capture a

computing cost, an energy cost, or the fact that an estimation

error of the symbol v1 is more harmful than an estimation

error of the symbol v0.



0

1

1 qp
0

p0

P(u1|z0)

P(u1|z1)

b

b

b

b

b b

b

γ

ν
0

ν
1

bb

bb b

b

b

b

b p0(ν1)

p1(ν0)

p1(q)

p0(q)

Fig. 6. Equations (23) and (24), depending on the interim belief q ∈ [0, 1],
for p0 = 0.5, δ1 = 0.05, δ2 = 0.5 and γ = 0.875.

The optimal decision for the decoder depends on the pos-

terior belief QU (·|w, z) ∈ ∆(U) after observing the symbols

(w, z). We denote by γ = 1+κ
2 = 7

8 the belief threshold at

which the decoder changes from symbol v0 to v1, as in Fig.

5. The decoder chooses v⋆0 (resp. v⋆1) when the posterior belief

belongs to [0, γ] (resp. ]γ, 1]).

The correlation of (U,Z) is fixed whereas the correlation

of (U,W ) is selected by the encoder. Lemma 1 formulates the

posterior belief QU|WZ in terms of the iterim belief QU|W .

For the symbols w ∈ W , z0 ∈ Z , z1 ∈ Z we have

Q(u1|w, z0) =
qδ1

(1 − q)(1− δ0) + qδ1
=: p0(q), (23)

Q(u1|w, z1) =
q(1− δ1)

(1 − q)δ0 + q(1− δ1)
=: p1(q). (24)

Equations (23) and (24) are depicted on Fig. 6. Given the

belief threshold γ = 7
8 , we define ν0 and ν1 such that

γ = p0(ν0) ⇐⇒ ν0 =
γ(1− δ0)

δ1(1− γ) + γ(1− δ0)
, (25)

γ = p1(ν1) ⇐⇒ ν1 =
γδ0

γδ0 + (1− δ1)(1 − γ)
. (26)

0 1 q
b
q
2 =

p
0

b b
ν
1

ν
2

δ0 = δ1

bb

b

b

H(U |Z)− C

h(q⋆)

b b

b

b

b

b

q
3q

1 =
q ⋆

b b

b b D⋆
e

Fig. 7. The optimal splitting has three posteriors when C ∈ [0,H(U |Z)−
h(q⋆)], with p0 = 0.5, δ0 = δ1 = 0.3, C = 0.2, κ = 0, then D⋆

e = 0.2098.

Without loss of generality, we assume that δ0+δ1 < 1 ⇐⇒
ν1 < ν0. The robust and average distortion functions writes

ψe(p) =p ·1
(

p ≤ γ
)

+ (1− p) · 1
(

p > γ
)

, (27)

Ψe(q) =Prq(z0) · ψe

(

p0(q)
)

+ Prq(z1) · ψe

(

p1(q)
)

(28)

=q ·1
(

q ≤ ν1
)

+ (1− q) ·1
(

q > ν0
)

+
(

qδ1 + (1 − q)δ0
)

·1
(

ν1 < q ≤ ν0
)

. (29)

The average distortion function Ψe(q) is depicted by the

orange lines in Fig. 7, Fig. 8 and Fig. 11, where the black

curve is the average entropy h(q) = Hb(q)+(1−q) ·Hb(δ0)+

q ·Hb(δ1)−Hb

(

(1 − q)δ0 + q(1 − δ1)
)

and Hb denotes the

binary entropy.

0 1 q
b
q
2 =

p
0

b b
ν
1

ν
2

δ0 = δ1

b

b

b

b

b b
H(U |Z)− C

h(q⋆)

b b

b b

1
−
q ⋆

q ⋆ q
3

q
1

b bb b

b D⋆
e

Fig. 8. The optimal splitting has only two posteriors when C ∈ [H(U |Z)−
h(q⋆), H(U |Z)], with p0 = 0.5, δ0 = δ1 = 0.3, C = 0.4, κ = 0, then
D⋆

e = 0.1212.

The optimal splitting has posteriors (q1, q2, q3) ∈ [0, 1]3

with respective weights (λ1, λ2, λ3) ∈ [0, 1]3 that satisfy

1 =λ1 + λ2 + λ3, (30)

p0 =λ1q1 + λ2q2 + λ3q3, (31)

H(U |Z)− C =λ1 · h(q1) + λ2 · h(q2) + λ3 · h(q3). (32)

Equation (32) is satisfied when the information constraint

is binding, therefore we obtain [19, Equations (58) - (60)].

Without loss of generality, we assume that q1 ∈ [0, ν1[, q2 ∈
[ν1, ν2[, q3 ∈ [ν2, 1] and characterize the optimal solution in

three different scenarios. According to the Splitting Lemma

[24], we have for k ∈ {, 1, 2, 3},

Q(wk|u0) =Q(wk)
1 −Q(u1|wk)

1− P(u1)
= λk

1− qk

1− p0
= αk, (33)

Q(wk|u1) =Q(wk)
Q(u1|wk)

P(u1)
= λk

qk

p0
= βk. (34)

A. Wyner-Ziv’s Example With Equal Distortions

We consider p0 = 0.5, δ0 = δ1 = 0.3, κ = 0, hence

both encoder and decoder minimize the Hamming distortion

and hence γ = 1
2 . The average distortion and average entropy

write

Ψe(q) =q ·1
(

q ≤ δ
)

+ δ ·1
(

δ < q ≤ 1− δ
)

+ (1− q) ·1
(

q > 1− δ
)

, (35)

h(q) =H(U |Z) +Hb(q)−Hb

(

q ⋆ δ
)

, (36)



with the notation q ⋆ δ = (1− q)δ + q(1− δ).

Proposition 1 We denote by q⋆ the unique solution to

h′(q) =
H(U |Z)− h(q)

δ − q
. (37)

1) If C ∈ [0, H(U |Z)− h(q⋆)] then at the optimum (Fig. 7)

q1 =q⋆ = 1− q3, q2 =
1

2
, (38)

λ1 =
1

2
·

C

H(U |Z)− h(q⋆)
= λ3 =

1− λ2

2
, (39)

which correspond to the distribution parameters α1 = (1 −
q⋆) · C

H(U|Z)−h(q⋆) = β3, α2 = 1− C
H(U|Z)−h(q⋆) = β2, α3 =

q⋆ · C
H(U|Z)−h(q⋆) = β1, and to the optimal distortion

D⋆
e =δ − C ·

δ − q⋆

H(U |Z)− h(q⋆)
. (40)

2) If C ∈ [H(U |Z) − h(q⋆), H(U |Z)] then at the optimum

(Fig. 8) q1 = h−1
(

H(U |Z) − C
)

= 1 − q3, q2 = 1
2 , λ1 =

1
2 = λ3, λ2 = 0, which correspond to the distribution

parameters α1 = 1 − h−1
(

H(U |Z) − C
)

= 1 − α3 = β3 =
1− β1 and α2 = β2 = 0 and to the optimal distortion

D⋆
e =h−1

(

H(U |Z)− C
)

, (41)

where the notation h−1
(

H(U |Z)− C
)

stands for the unique

solution q ∈ [0, 1] of the equation h(q) = H(U |Z)− C.

3) If C > H(U |Z), then the optimal splitting rely on the two

extreme posterior beliefs (0, 1) and D⋆
e = 0.

0

C

1 D⋆
e

b
p
0

q ⋆ δ
b

b

b

b

b

b b

H(U |Z)

H(U |Z)− h(q⋆)

H(U |Z)− h(δ)

Fig. 9. Optimal trade-off between the capacity C and the optimal distortion
D⋆

e for the DSBS with parameters p0 = 0.5, δ0 = δ1 = 0.3, κ = 0.

The proof of Proposition 1 is provided in [22, App. D].

When C ≤ H(U |Z)− h(q⋆), the optimal strategy consists of

a time-sharing between (D⋆
e , C) =

(

q⋆, H(U |Z)−h(q⋆)
)

and

the zero rate point (δ, 0), as depicted in Fig. 9.

B. Mismatched Distortions Without Side Information

We consider p0 = 0.5, C = 0.2, κ = 3
4 and δ0 = δ1 = 0.5

so that Z is independent of U , as in [19]. We have Hb(δ0) =
Hb(δ1) = Hb

(

(1−q)δ0+q(1−δ1)
)

= 1 and ν1 = ν2 = γ = 7
8 .

The average entropy and average distortion write

h(q) =Hb(q), (42)

Ψe(q) =ψe(q) = p ·1
(

p ≤ γ
)

+ (1− p) ·1
(

p > γ
)

, (43)

0

11

1 qp
0

b
q
2 =

γ

b

bbH(U)− C

b

b

b

b

q
1

b b

b

D⋆
e

Fig. 10. For p0 = 0.5, δ0 = δ1 = 0.5, C = 0.2, κ = 3

4
, D⋆

e = 0.2668.

and are depicted in Fig. 10. Applying [19, Corollary 3.5], the

optimal splitting has two posteriors, i.e. |W| = 2, and satisfy

p0 − q2

q1 − q2
·Hb(q1) +

q1 − p0

q1 − q2
·Hb(q2) ≥ H(U)− C. (44)

By numerical optimization, the above inequality is satisfied

for p0 = 0.5, δ0 = δ1 = 0.5, C = 0.2, κ = 3
4 , hence the

optimal distortion is achieved by using q2 = γ, as in Fig. 10.

C. Mismatched Distortions With Side Information

We consider p0 = 0.5, δ0 = 0.05, δ1 = 0.5, C = 0.2,

κ = 3
4 . By numerical simulation, we determine the optimal

triple of posteriors (q1, q2, q3) represented by the red dots in

Fig. 11, corresponding to D⋆
e = 0.1721. The parameters of

the optimal strategy in Fig. 2, are given by the following table.

q1 = 0.0715 q2 = 0.4118 q3 = 0.9301
λ1 = 0.1288 λ2 = 0.6165 λ3 = 0.2548

α1 = 0.2392 α2 = 0.7252 α2 = 0.0356
β1 = 0.0184 β2 = 0.5077 β3 = 0.4739

0

1

1 q
b
p
0

b b
q ⋆
3 =

ν
1

q ⋆
2 =

ν
2

bb

b
q ⋆
1

H(U |Z)− C

b

b b

b

b b

bbD⋆
e

Fig. 11. p0 = 0.5, δ0 = 0.05, δ1 = 0.5, C = 0.2, κ = 3

4
, D⋆

e = 0.1721.
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[9] S. Sarıtaş, P. Furrer, S. Gezici, T. Linder, and S. Yüksel, “On the number
of bins in equilibria for signaling games,” in 2019 IEEE International

Symposium on Information Theory (ISIT), pp. 972–976.
[10] A. S. Vora and A. A. Kulkarni, “Achievable rates for strategic communi-

cation,” in 2020 IEEE International Symposium on Information Theory

(ISIT), pp. 1379–1384.
[11] A. S. Vora and A. A. Kulkarni, “Information extraction from

a strategic sender: The zero error case,” [on-line] available:

https://arxiv.org/abs/2006.10641, 2020.
[12] S. G. S. Y. Ertan Kazıklı, Serkan Sarıtaş, “Optimal signaling with
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