
HAL Id: hal-03218970
https://hal.science/hal-03218970v1

Submitted on 6 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In-Memory Resistive RAM Implementation of Binarized
Neural Networks for Medical Applications

Bogdan Penkovsky, Marc Bocquet, Tifenn Hirtzlin, Jacques-Olivier Klein,
Etienne Nowak, Elisa Vianello, Jean-Michel Portal, Damien Querlioz

To cite this version:
Bogdan Penkovsky, Marc Bocquet, Tifenn Hirtzlin, Jacques-Olivier Klein, Etienne Nowak, et al.. In-
Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications. 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE), Mar 2020, Grenoble, France.
pp.690-695, �10.23919/DATE48585.2020.9116439�. �hal-03218970�

https://hal.science/hal-03218970v1
https://hal.archives-ouvertes.fr


In-Memory Resistive RAM Implementation
of Binarized Neural Networks

for Medical Applications
Bogdan Penkovsky∗, Marc Bocquet†, Tifenn Hirtzlin∗, Jacques-Olivier Klein∗,
Etienne Nowak‡, Elisa Vianello‡, Jean-Michel Portal† and Damien Querlioz∗
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Abstract—The advent of deep learning has considerably accel-
erated machine learning development. The deployment of deep
neural networks at the edge is however limited by their high
memory and energy consumption requirements. With new mem-
ory technology available, emerging Binarized Neural Networks
(BNNs) are promising to reduce the energy impact of the forth-
coming machine learning hardware generation, enabling machine
learning on the edge devices and avoiding data transfer over
the network. In this work, after presenting our implementation
employing a hybrid CMOS - hafnium oxide resistive memory
technology, we suggest strategies to apply BNNs to biomedical
signals such as electrocardiography and electroencephalography,
keeping accuracy level and reducing memory requirements. We
investigate the memory-accuracy trade-off when binarizing whole
network and binarizing solely the classifier part. We also discuss
how these results translate to the edge-oriented Mobilenet V1
neural network on the Imagenet task. The final goal of this
research is to enable smart autonomous healthcare devices.

I. INTRODUCTION

With recent advances in machine learning, multiple chal-
lenging tasks are now solved by computers with human-level
accuracy [1], or even better [2], and smart assistance services
are available for anyone. However, those services operate in
the cloud, requiring energy-expensive data transfer over the
network. We envision that the quality of medical services can
be substantially improved with the use of machine learning,
with applications such as stroke and heart attack prevention,
epileptic seizure prediction, post-hospital monitoring and re-
habilitation, and brain-computer interfaces for people with
disabilities. Those services should be available at the edge to
ensure privacy, security, and low latency. This mobility rises
new challenges: maximizing battery life and making hardware
as small and lightweight as possible.

The major drain of energy in modern digital electronics, es-
pecially when performing data-intensive artificial intelligence
tasks, comes from data shuffling between processing logic
and memory [3]. This issue can be substantially alleviated
by applying in-memory computing principles, which eliminate
the von Neumann bottleneck and are especially applicable for
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neural network architectures. This idea is particularly relevant
today, with the emergence of novel non-volatile memory
technologies that are fully compatible with modern CMOS
processes and appear ideal for the in-memory implementation
of neural networks [4], [5]. An obvious drawback of this
approach is the limited amount of on-chip memory. Indeed,
when talking about in-memory computing we cannot rely on
external memories, thus adhering to the amount of on-chip
memory becomes critical. Unfortunately, deep neural networks
often require considerable amounts of memory [6].

Significant efforts have been made to reduce the memory
footprint of neural networks. Compact network design aims
at reducing the number of neural network parameters and op-
erations, while maintaining accuracy [7]–[9]. These networks
still use real-valued weights and activations represented as 32-
bits floating point numbers. Quantized neural networks aim
at reducing memory requirement by reducing the number of
bits in weights and activations [10]. Eight-bit quantization is
particularly successful in applications, as it usually requires
no retraining [11]. Binarized neural networks (BNNs) are
the extreme evolution of quantized networks with a precision
reduced to a single bit [12], [13]. Beyond weight and activa-
tion, the memory footprint can also be reduced with binary
representation of the inputs using stochastic sampling [14].

In this work, we address the energy efficiency challenge by
proposing an in-memory implementation of binarized neural
network using emerging memories. We realize that bit errors
inherent to resistive memory technologies are a challenge and
introduce a two transistor - two resistor approach to mitigate
the issue. We validate our approach, which is adaptable to
different emerging memory technologies, using measurements
on a fabricated hybrid CMOS/resistive memory chip [15], [16].
We evaluate our all-binarized convolutional neural network
approach on medical time-signals such as electroencephalo-
gram and electrocardiogram. We suggest that partial binariza-
tion may sometimes be an option to minimize the accuracy
loss compared to original neural networks with real weights,
while substantially reducing memory requirements. Finally, we
speculate about the application of the same partial binarization
strategy for generic computer vision, which could have direct



relevance to medical imaging.
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Fig. 1. Illustration of a temporal 1D convolution.

II. IN-MEMORY IMPLEMENTATION OF BINARIZED
NEURAL NETWORKS

A. Binarization of Neural Networks

Convolutional neural networks (CNNs) are a state-of-the-art
supervised deep learning architecture [17], which consists of
a feature extractor and a classifier. The feature extractor has
multiple sparsely-connected convolutional layers, whereas the
classifier exhibits dense, all-to-all connection topology in its
layers. In both cases the elementary network unit, the artificial
neuron, performs a nonlinear transformation f over a dot
product between an input vector x and learned weights w:

y = f

∑
j

wjxj + b

 , (1)

where b is a bias term. Neural networks are trained using a
gradient-descent family optimization method to minimize the
error between their actual and desired outputs. Convolutional
layers connection topology is based on the discrete convolution
transformation between an input tensor x and a sliding window
w, called convolution kernel. A discrete convolution in the 1-D
case (Fig. 1) is defined as

(x ∗ w)i =

DK−1∑
m=0

wi−mxm, (2)

where w ∈ RDK , x ∈ RDF , and 0 ≤ i < DK + DF − 1.
This operation can be extended to multiple dimensions in a
straightforward manner. Convolutional neural networks also
feature pooling layers, to reduce the spatial resolution of
layers, therefore reducing the number of subsequent computa-
tions. Finally, the classifier discriminates outcomes between
the known classes, based on features forwarded from the
convolutional layers.

Considerable work has investigated the implementation of
convolutional neural networks in hardware using emerging
memory, with architectures such as ISAAC [18] or PRIME
[19], using either digital or analog coding for the weights.
Digital coding has substantial memory requirements. Analog
coding, by contrast, requires only two devices per weight
(two devices are needed for the possibility to store negative
weights), but has the disadvantage of requiring complex pe-
ripherals such as analog-to-digital and digital-to-analog con-
verters with their associated high area overhead [18], [19].
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Fig. 2. (a) Schematic of a 1K synapses RRAM cells (b) Scanning Electron
Microscopy image of an RRAM device integrated in the BEOL of our
technology (c) Photograph of the die of our test chip with 1K synapses /
2K RRAM cells.
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Fig. 3. (a) Schematic of the sense amplifier used to extract the binary weight
from a 2T2R synapse. (b) Version augmented with an XNOR feature.

Binarizing the neural network provides an alternative route
to reducing the area and energy consumption of hardware
neural networks. In binarized neural networks (BNNs), we use
weights with values of either +1 or −1, and the sign function
as activation function. This allows simplifying Eq. (1) to

y = sign (popcount (XNOR(wj , xj))− b) , (3)

where popcount is a function counting the number of 1 bits
and b is a learned neuron threshold. On top of the low memory
requirements of BNNs, replacing multiplication circuits with
simple XNOR logic gates can greatly reduce the circuit area.

B. Implementing Binarized Neural Networks

We now introduce our technique for the energy-efficient
in-memory implementation of binarized neural networks ex-
ploiting resistive memory. Our test chip uses hafnium oxide-
based resistive memory, fully integrated within the back end of
line (BEOL) of a commercial 130 nanometer CMOS process
(Fig. 2(b)). A photograph of our die is presented in Fig. 2(c)
and its simplified schematic in Fig. 2(a). The considerable
challenge to implement in-memory computing with resistive
memory is their inherent device variation, which leads to
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Fig. 4. Mean bit error rate comparison between 1T1R & 2T2R configuration
over 10 million cycles as a function of the number of cycles that a device has
been programmed.

bit errors [20], [21]. Conventional digital designs suppress
these errors by relying on multiple error correcting codes
(ECC). However, the use of ECC in the context of in-memory
binarized neural network is not satisfying: the computation
of error detection and correction is more complicated than
the one of binarized neural network, and would dominate
area and energy consumption. Additionally, ECC goes against
the idea of integrating part of the computation within the
memory array or sensing circuit, a major idea of in-memory
computing. Our design therefore uses an alternative ECC-less
approach to reduce the number of bit errors, by relying on
a two transistor/two resistor (2T2R) architecture (Fig. 2(a)),
where synaptic weights are stored in a differential fashion:
by convention, a device pair programmed in the low resis-
tance/high resistance state means a synaptic weight of +1,
and reciprocally a pair programmed in the high resistance/low
resistance state means a synaptic weight −1. Precharge sense
amplifiers (PCSA, Fig. 3(a)) are used to compare the resistance
states of the two devices of a pair, and therefore read the
synaptic weight. An attractive possibility of the approach is the
option to incorporate the XNOR operation of BNNs directly
within the precharge sense amplifier, by the addition of solely
four transistors (Fig. 3(b)).

Experimental results on the fabricated test confirm that the
2T2R approach reduces the amount of bit errors. Fig. 4, for
example, shows bit error rate measurements on a pair of
devices within a kilobit memory array. The pair is repro-
grammed 700 million times, alternating the programming in
high resistance/low resistance states and low resistance/high
resistance states. The weight is measured after each program-
ming event using the on-chip precharge sense amplifier in
the 2T2R case, and is compared with direct sensing when
single devices are used (1T1R). We see that the 2T2R error
rate is two orders of magnitude below the 1T1R error. More
extensive experimental results on this test chip, involving
various programming conditions and whole memory array
measurements, are shown in [15], [16]. In particular, the results
reported in these references indicate that the benefits of the
2T2R approach in terms of bit error rate reduction are similar
to the one of formal single error correction of equivalent
redundancy.

The memory arrays (Fig. 2) that we characterized can
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Fig. 5. Schematic of the basic architecture for implementing fully connected
BNN layer from in-memory computing basic blocks.

be used as basic building blocks for complete architectures
implementing binarized neural networks. Fig. 5 presents an
architecture to implement fully connected layers, minimizing
data movement, as described in detail in [14]. The architecture
incorporates RRAMs arrays with sense amplifiers augmented
with XNOR to perform binary multiplication; additional logic
elements are added to perform popcount operations. The
devices are programmed to neural network weights obtained
by off-chip training. This programming occurs before the
use of the inference circuit and is managed by a memory
controller. This type of architecture can be adapted for convo-
lutional layers, with a key decision between minimizing data
movement and data reuse: several works have investigated the
implementation of convolutional layers from basic in-memory
computing processing elements using static RAM [22] of
emerging memories [18], [19], [23].

III. BIOMEDICAL TIME-SIGNALS

BNNs have been mostly investigated for computer vision
tasks. Their potential for low power hardware also makes
them particularly attractive for medical signal analysis. For
this reason, here, we investigate BNNs for that purpose, and
discuss resulting hardware implications.

A. Electroencephalography (EEG) Task

Electroencephalography is used to measure electric poten-
tials from a human scalp surface, and has numerous ap-
plications, such as epilepsy diagnosis and prediction, brain-
computer interfaces or sleep stages monitoring. As EEG suf-
fers from low signal to noise ratio, complex analysis is usually
required. For this study we utilized data from the public EEG
Motor Movement/Imagery Dataset [24], [25]. Here we con-
sider a task of motor imagery: a subject has to imagine moving
their left or right fist, and our neural network aims at detecting
which of the two movements has been imagined, based on six
seconds time EEG measurements. The complete set contains
data of 109 subjects with 64 electrodes sampled at 160 Hz.
We used a subset of 105 subjects with 42 trials of left-right
imaginary movements recorded. The four remaining subjects
data were discarded as incomplete. The only preprocessing
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Fig. 6. End-to-end EEG classification model proposed in [27].

step performed was per-channel normalization by subtracting
the mean and dividing by variance. As the dataset is not
large, we used a relatively shallow neural network model,
and we added small amplitude noise to each training sample
for data-augmentation. As a baseline, we exploit the end-
to-end EEG classification neural network model proposed in
[26], [27] (Fig. 6 and Table I). This model consists of two
convolutional layers followed by average pooling and a two-
layer classifier. The first layer processes individual signals as
1D images, therefore performing 64 individual convolutions
in time (Fig. 1) over incoming EEG time-signals. The second
convolutional layer correlates obtained signals in space simul-
taneously over all 64 channels. We apply ReLU activations
throughout the EEG model and replace them by sign in a
binarized setting. The final softmax layer is necessary only
for training. The real-weight version of this neural network
was reported to achieve 88% accuracy [27]. To evaluate our
binarization strategies, similarly to the baseline, we apply five-
fold cross-validation meaning that the dataset is partitioned
into five non-overlapping validation subsets not seen during
the training. We report an average over five experiments where
we train a new model from scratch over 1000 epochs with the
Adam method [28] in each experiment.

B. Electrocardiogram (ECG) Task

Electrocardiogram signals measure electrical changes as a
result of cardiac muscle depolarization, and are used e.g.
for diagnosing different kinds of arrhythmia. Typically, ECGs
are recorded using 12 electrodes, which need to be properly
positioned: inverting any pair of electrodes may lead to wrong
diagnosis. We here consider the task of detecting such elec-

TABLE I
EEG CLASSIFICATION NETWORK ARCHITECTURE FROM [27].

Kernels Padding Output shape
Conv 40 30× 1 15 961× 64× 40
Conv 40 1× 64× 40 No 961× 1× 40
Avg. pool 30× 1 No 63× 1× 40
Flatten - - 2520
FC 80 - - 80
Softmax - - 2

trode inversion. We used a dataset from the Challenge Data
competition [29]. The dataset contains 1000 trials of three
second recordings performed at 250 Hz. Our custom CNN
model is summarized in Table II. Each convolution/linear layer
is followed by batch normalization and nonlinear activation.
We replace hardtanh activation by a sign in a binarized setting.
In addition, we also perform batch normalization of the input
data. We train the model using the Adam optimizer [28] over
1000 training epochs and, as in the EEG task, we perform
five-fold cross-validation five times. To address overfitting, we
employ a dropout regularization with keep probability 0.95
within convolution layers and 0.85 within the classifier.

TABLE II
ECG CLASSIFICATION NETWORK ARCHITECTURE.

Kernels Padding Output shape
Conv 32 13× 1× 12 No 738× 1× 32
Max. pool 2× 1 No 369× 1× 32
Conv 32 11× 1× 32 No 359× 1× 32
Max. pool 2× 1 No 179× 1× 32
Conv 32 9× 1× 32 No 171× 1× 32
Conv 32 7× 1× 32 No 165× 1× 32
Conv 32 5× 1× 32 No 161× 1× 32
Flatten - - 5152
FC 75 - - 75
Softmax - - 2

TABLE III
ACCURACY COMPARISON OF CNN WITH REAL WEIGHTS, BINARIZED

CNN (BNN), AND CNN WHERE ONLY THE FULLY-CONNECTED PART WAS
BINARIZED. IN PARENTHESES, NUMBER OF FILTER AUGMENTATIONS.

Task Real-weight NN BNN Bin. Classifier

EEG 88% [27] 84.6% (1×)
86% (11×) 87% (1×)

ECG 96.3% 92.1% (1×)
94.9% (7×) 95.9% (1×)

ImageNet Top-1 70.6% [8] 54.4% (4×) [30] 70% (1×)
ImageNet Top-5 89.5% [8] 77.5% (4×) [30] 89.1% (1×)

C. Results

We performed simulations on the ECG and EEG neural
network architectures in three cases: real weights (32-bit
floating point), fully binarized neural network, and a mixed
situation (binarized classifier) where fully-connected layers
are binarized, while convolutional layers remain real. Fig. 7
shows a detailed result in the ECG case. We see that a fully



TABLE IV
MODEL MEMORY USAGE COMPARISON BETWEEN DIFFERENT TASKS AND

SAVINGS WITH CLASSIFIER BINARIZATION.

Model Total
params

Classifier
params

Model size
32-bit / 8-bit

Bin classif.
saving %

EEG 0.31M 0.2M 1.17MB / 305KB 64% / 57.8%
ECG 0.31M 0.27M 1.17MB / 305KB 84% / 75.8%
ImageNet 4.2M 1M 16.2MB / 4.1MB 20% / 7.3%

binarized neural network on average performed worse than a
real weight neural network if an equivalent number of filters
is used (92.1% vs. 96.3% accuracy). The introduction of more
filters allows enhancing the accuracy of the BNN; however, the
accuracy of the real network is not reached. Fig. 7 also shows
that the network where only the classifier has been binarized is
able to match the accuracy of the real neural network (within
error bar), without any augmentation of the number of filters.
Similar results were obtained with the EEG task, as reported
in Table III.

These results have interest for hardware development. For
both ECG and EEG models, most of the weights reside in
fully-connected classifier layers, and the strategy of binarizing
only the classifier has therefore high memory benefits. A
detailed analysis of the memory savings of the different
strategies is presented in Table IV. For example, the EEG
model requires 0.31M total parameters, occupying 1.17MB of
memory; 0.11M of parameters (406 KB) are in convolutional
layers and 0.2M (789 KB or 66% of total parameters), in
the classifier. Therefore, binarizing only the classifier can save
about 64% compared to the 32-bit model. If we compare with
a neural network quantized to eight-bit numbers, the memory
saving would be 57.8% of memory. Even better memory
savings are obtained with the ECG model: by binarizing only
the classifier, the memory reduction is 84% compared to
the original 32-bit model. If we used an eight-bits numbers
quantized network as a reference, we would save 75.8%
memory. The strategy of only binarizing the classifier also
achieves better accuracy than a fully binarized network using
an equivalent amount of memory: the binarized classifier
model accuracy is by 1% better for EEG and by 1% for ECG,
compared to those with all-binarized network of equivalent
number of bits (11 times BNN convolution filter augmentation
for EEG, 7 times augmentation for ECG BNN model). If we
assume that convolutional layers can be quantized to eight-
bits precision, the accuracy gap is then 2.3% for EEG (3×
augmentation) and 1% for ECG (2×).

IV. PARTIAL BINARIZATION ON MOBILENET

Machine learning can be effectively applied to analyze data
obtained by medical imaging, and we envision that binarized
neural networks could be successful in such contexts. To
evaluate the applicability of our approach to vision tasks
on neural networks optimized for mobile applications, we
evaluate our approach of classifier binarization on the generic
ImageNet dataset [31], containing 1.2 million images repre-

1 2 4 8 16
Filter augmentation, times

90

92

94

96

Ac
cu

ra
cy

, %

ECG Task

Real Weights
Bin Classifier
All-Binarized

Fig. 7. Cross-validated accuracy on the ECG task, for different models. BNN
accuracy is improved when increasing the number of convolution filters.

0 100 200
Epochs

0

40

80

Ac
cu

ra
cy

, %

Top-5 MobileNet
Top-5 ours
Top-1 MobileNet
Top-1 ours

Fig. 8. Training modified MobileNet-224 model with a binarized classifier
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senting 1000 classes. We utilize MobileNet V1, a compact
network specifically designed for mobile devices with less
computing power [8]. MobileNet architecture is characterized
by replacing most of standard convolutions with depthwise-
separable convolutions, which require less computations. In
this work, we replaced the fully-connected classifier with a
binarized classifier of two layers. We trained the network from
scratch with stochastic gradient descent method in 255 epochs.
We achieved Imagenet Top-1 accuracy close to the original
MobileNet-224 (70.6% vs. 70% bin classifier) and equally,
Top-5 accuracy (89.5% vs. 89.1% bin classifier) (Fig. 8),
whereas fully binarizing Mobilenet V1 is associated with ac-
curacy degradation (Table III). This result further confirms that
classifiers binarize more naturally than convolutional layers.

The MobileNet-224 model has 4.2M parameters (16.2MB),
3.2M parameters (12.28MB) of which are used by convolu-
tional layers and 1M (4.05MB), by the original single-layer
classifier (Table IV). Therefore, the classifier occupies about
24% of memory. As a binarized classifier we use two layers of
5.7M binary parameters (696KB), therefore this allows us to
save about 20% of memory compared to the network with all



32-bit weights. In case if we used 8-bit numbers as a reference,
we would still spare about 7.3% memory.

V. CONCLUSION

In this work, we highlighted that binarized neural network
can be a road to implement particularly efficient neural net-
works hardware. We introduced an implementation, validated
by measurements on a fabricated test chip using hafnium oxide
resistive memory. Our implementation is designed around the
principles of in-memory computing, limiting the amount of
data movement, and avoiding error correcting code altogether.
As BNNs have mostly been evaluated on vision tasks, and
medical signal analysis is believed to be an essential applica-
tion for highly efficient AI chips, we evaluated BNNs on two
sample ECG and EEG signal analysis task. We report that
all-binarized neural networks can be a tool to reduce memory
requirements. On the other hand, if keeping the highest accu-
racy is vital, we propose an alternative route where only the
classifier part of the neural network is binarized. Moreover, as
these neural networks are dominated by classifier, non volatile
memory requirement can be considerably reduced by classifier
binarization. We also evaluated the strategy of binarizing only
the classifier on a vision task, on an architecture optimized for
modest memory requirement (MobileNet V1). The resulting
neural network matches the original MobileNet V1 network
accuracy on ImageNet large-scale benchmark, however the
nonvolatile memory benefits are smaller than in the EEG and
ECG tasks, as MobileNet V1 is dominated by convolutions.

These first results are very encouraging to reduce efficiently
memory requirement of edge devices and thus to obtain
low energy hardware. This is particularly useful for medical
applications where little energy is available. The results also
highlight that such hardware development should be pursued
in co-development with neural network architecture and in
conjunction with application development, as the most efficient
approaches can be considerably task-dependent.
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