
HAL Id: hal-03218937
https://hal.science/hal-03218937

Submitted on 6 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Density 3D Monolithically Integrated Multiple
1T1R Multi-Level-Cell for Neural Networks

E. Esmanhotto, L. Brunet, N. Castellani, D. Bonnet, T. Dalgaty, L.
Grenouillet, D. Ly, C. Cagli, C. Vizioz, N. Allouti, et al.

To cite this version:
E. Esmanhotto, L. Brunet, N. Castellani, D. Bonnet, T. Dalgaty, et al.. High-Density 3D Mono-
lithically Integrated Multiple 1T1R Multi-Level-Cell for Neural Networks. 2020 IEEE International
Electron Devices Meeting (IEDM), Dec 2020, San Francisco (virtual), United States. pp.36.5.1-36.5.4,
�10.1109/IEDM13553.2020.9372019�. �hal-03218937�

https://hal.science/hal-03218937
https://hal.archives-ouvertes.fr


 

High-Density 3D Monolithically Integrated Multiple 1T1R Multi-
Level-Cell for Neural Networks

E. Esmanhotto1, L. Brunet1, N. Castellani1, D. Bonnet1, T. Dalgaty1, L. Grenouillet1, D. R. B. Ly1, C. Cagli1, C. Vizioz1,  
N. Allouti1, F. Laulagnet1, O. Gully1, N. Bernard-Henriques1, M. Bocquet2, G. Molas1, P. Vivet1, D. Querlioz3, JM. Portal2,  

S. Mitra4, F. Andrieu1, C. Fenouillet-Beranger1, E. Nowak1 and E. Vianello1 
1CEA-LETI, Minatec Campus, Grenoble, France, email: Eduardo.Esmanhotto@cea.fr, Elisa.Vianello@cea.fr 

2Aix-Marseille Université, IM2NP, Marseille, France, 3Université Paris-Saclay, CNRS, Palaiseau, France 
4Stanford University, Stanford, CA, USA

  
Abstract – We demonstrate, for the first time, 3D 
monolithically integrated multiple 1T1R Resistive RAM 
(RRAM) structure storing up to 3.17 bits per RRAM. We study, 
using a 4 kb 1T1R array, the impact of the conductance 
relaxation after Multi-Level Cell (MLC) programming. We 
show that traditional storage applications may be limited to 2 
bits per RRAM due to the overlap between conductance ranges 
after relaxation. On the other hand, our study concludes that 
conductance relaxation effect is negligible for Neural Network 
(NN), allowing the use of nine distinct conductance levels per 
RRAM (equivalent to 3.17 bits) with minimal inference 
accuracy loss. 

I. INTRODUCTION 

Neuromorphic hardware using 1T1R Resistive RAM 
(RRAM) has been demonstrated (e.g., [1-2]) showing 
improved energy efficiency and lower latency for AI edge 
devices. However, increasing RRAM array density to improve 
accuracy remains challenging. The size of the 1T1R cell is 
constrained by the access transistor (1T). The replacement of 
the 1T access transistor by a BEOL selector drastically reduces 
the 1T1R surface. However, the read margin variability limits 
the crossbar bank size [3]. A single access transistor with 
multiple RRAM (1T4R) is proposed in the literature [4], but 
this approach suffers from disturbances between adjacent cells 
and needs dedicated programming algorithms. To overcome 
these challenges, we present, for the first time, monolithic 3D 
integration of multiple 1T1R structures (Fig. 13), reducing the 
cell size by 1.5x with respect to planar 1T1R. We combined 
the proposed 3D monolithically integrated multiple 1T1R cells 
with Multi-Level Cell (MLC) to enhance memory density.  

The key contributions of this work are: 
1. We evaluate the impact of conductance relaxation after 

MLC programming. 
2. We demonstrate on a 4 kb array that each 1T1R cell can 

store four conductance levels (2 bits) per RRAM without 
overlap (BER<10-3 for a 4 kb array) after relaxation. 

3. We experimentally show 3D monolithically integrated 
multiple 1T1R structures combined with MLC 
programming that can achieve up to nine conductance 
levels per RRAM.  

4. We use a Fully Connected (FC) Neural Network (NN) to 
study the impact of MLC programming as well as of 
conductance relaxation. We show that NN inference is 
strongly resilient to conductance relaxation allowing 
programming up to nine conductance levels per RRAM. 

II. MULTI LEVEL PROGRAMMING STRATEGIES  

To realize RRAM with multiple conductance levels, we rely 
on an iterative programming scheme (Fig. 1(a)), and on two 
different conductance allocation strategies to define the 
conductance ranges for the different levels: a) Sigma-Based 
Allocation (SBA) and b) Linear Allocation (LA) (Fig 1(b)). The 
SBA uses the standard deviation of conductance values 
(referred to as sigma) to allocate the conductance ranges as 
proposed by [4]. This solution results on narrower bins on lower 
conductance and larger bins on higher conductance. The LA 
equally allocates the conductance ranges. MLC is achieved 
experimentally using a computer-in-the-loop with a fabricated 
array of 4,096 HfO2 based RRAM 1T1R planar structures [6] 
to implement the iterative write operation at array level. Table 
1 lists the target conductance ranges to program eight levels and 
the corresponding programming current, which is kept under 
135 µA in order to minimize degradation during endurance 
cycling and to limit the area of the access transistor [8]. Fig. 2 
shows the distributions of the 4,096 cells in nine conductance 
levels (eight-programmed levels plus Reset) with SBA (a) and 
LA (b) strategies. The reported results are consistent over 
different arrays places on different dies (Fig. 2a). 

Fig. 3 shows the number of erroneous cells out of the 4,096 
cells after programming using SBA and LA. The number of 
programming iterations required to achieve these results are 
shown in Fig. 4. SBA requires an average number of 10 
iterations per level to achieve no bit fail. In contrast, for LA, 
few cells continue to be erroneous even after more than 20 
iterations because the LA strategy results in most conductive 
levels having a narrow resistance window. 

III. CONDUCTANCE RELAXATION 

Fig. 5 shows the conductance distributions for the nine 
levels just after programming (t = 0, black) and after 60 seconds 
(blue) for SBA and LA. The conductance spreads towards both 
higher and lower values reducing the read margin and hindering 
the MLC programming. Fig. 6 shows the changes in the 
conductance values with time. We observe that the mean 
conductance values (thick lines) remain stable over time in 
agreement with previously published data [9]. To investigate 
the behavior at cell level, we show (Fig.7) the conductance 
values obtained with the MLC programming strategy (black 
points) and without iterative write operation (grey) after 
relaxation (t= 60 s) as a function of their initial value (t=0). The 
conductance relaxation renders the MLC programming 
ineffective for the lower conductance levels. To eliminate the 



 

hypothesis that relaxation is an artifact due to a design problem 
the measurements were repeated on two different test vehicles 
(Fig. 8). To quantify the effect of the relaxation over time, BER 
per level is showed as a function of time in Fig. 9. The 
conductance relaxation occurs on the first seconds and the BER 
tends to remain stable after the first 60 s. Fig. 10 represents the 
maximum BER (the maximum BER among the individual 
BERs per level) as a function of the number of bit-per-RRAM 
for different relaxation times. These results confirm that the 
BER remains constant after the first 60 s. In order to assure a 
BER lower than 10-3, a maximum of 2 bits-per-RRAM  can be 
stored without overlap. 

Fig. 11 investigates the impact of the initial conductance 
value and of the cell position on the conductance relaxation. 
The relaxation effect occurs randomly, which means that it is 
not possible to predict a cell that is likely to move to a higher or 
lower conductance. 

Thanks to the low compliance current used to program the 
array (limited to 135 µA), we achieve up to 105 cycles until the 
first stuck bit (hard fail) appears (Fig. 12). 

IV. 3D MONOLITHICALLY INTEGRATED MULTIPLE 

1T1R 

3D-monolithic integration technology is based on stacking 
active device layers on top of each other with very small 3D 
contact pitch (similar to standard contact) [10] This integration 
strategy was adopted to fabricate a 3D monolithically integrated 
multiple 1T1R structures: a RRAM is connected to the top 
transistor and another to the bottom transistor (Fig. 13). The 
HfO2 based RRAM cells were fabricated into the BEOL of the 
top tier and they have the same material system of the ones 
fabricated on the 1T1R planar structures. The top transistor is a 
FDSOI integrated in 65 nm design rule. A high-k/metal gate 
stack with raised source and drain integrated at low temperature 
is adopted in order to preserve the bottom level. Two ebeam 
lithographic levels were developed and integrated in order to 
process the top RRAM above the first level of contacts and the 
second level of contacts aligned on the first one. 

Fig. 14 shows the top and bottom layout schematic of the 3D 
monolithically integrated multiple 1T1R bitcell for a 28 nm 
technology node. Bit per surface ratio is increased by 1.5x with 
respect to a planar 1T1R structure at the same technology node. 
Fig.15 shows the endurance capability up to 105 cycles for the 
bottom and top level of a single 3D monolithically integrated 
multiple 1T1R: the distributions refers to multiple cycles of the 
top and bottom levels. The conductance modulation as a 
function of the programming current is showed in Fig. 16. The 
bottom and top levels have same electrical behavior. 

We combined the MLC programming strategy (Section III) 
with our novel 3D-monolithically integrated multiple 1T1R 
structures to increase bit density. Fig. 17 shows the distributions 
of the 20 RRAM cells cycled 10 times in nine conductance 
levels (eight programmed levels plus reset state) for the top 
(red) and bottom (black) level. Conductance levels are the same 
as presented on Table I. Planar and 3D monolithically 
integrated 1T1R structures show the same behavior (Fig. 18). 

V. NEUROMORPHIC APPLICATIONS 

To study the impact of MLC and conductance relaxation on 
inference in hardware NN we used a Fully Connected (FC) NN 
trained on the MNIST and ECG [11] dataset (Fig 19). For the 
ECG database, the heartbeats are sliced in 700 ms time-series 
and a fast Fourier transform is used to extract 64 features, 
which are used as the NN input. Fig. 20 illustrates the training 
flowchart. First, a FCNN model is trained ex-situ using Tensor 
Flow and the outputs are the desired weights (wt). Then the 
determined weights are transferred to two conductance values 
(G+ and -G). Since the conductance levels are programmed to 
specific levels as described in the previous sections, a weight 
transfer error occurs between wt and the obtained weight (Fig. 
20 bottom left shows an example of measured colormap of the 
weight transfer error). Therefore, the conductance allocation 
strategy affects the weight transfer error and consequently the 
NN accuracy. Fig.21 shows the impact of LA and SBA levels 
on the weight distributions taking into account the conductance 
relaxation effect. Conductance levels programmed with LA 
causes the weights distribution to be approximately uniform 
[1, 10] while SBA conductance results in overlapped weights. 
Fig.22 shows the accuracy for MNIST and ECG datasets as a 
function of the number of conductance levels per RRAM 
programmed with LA and SBA. SBA allows an improvement 
in accuracy for both MNIST and ECG data sets. MLC 
programming improves the NN accuracy despite the increase 
of the BER (Fig. 10). Moreover, MLC reduces the accuracy 
drop on small NN (Figs. 23 and 24).  

Fig.25 shows the impact of conductance relaxation on 
accuracy for the MNIST and ECG dataset. To perform this 
task, the same data presented on Fig.10 is used. Despite the 
strong effect on BER, the conductance relaxation has a 
negligible effect on the system accuracy over time, especially 
for the MNIST application. 

VI. CONCLUSIONS 

In this work, we demonstrate that the combination of novel 
3D monolithically integrated multiple 1T1R cells with MLC 
programming allows up to 4.75x higher density with respect to 
binary planar 1T1R cells. By means of extensive 
characterization at array level, we demonstrated that 
conductance relaxation after MLC programming is the limiting  
factor for storage applications rather than device-to-device or 
cycle-to-cycle variations limiting storage to 2-bit per RRAM. 
NN inference is resilient to relaxation and therefore it is 
advantageous to program nine conductance levels per RRAM 
(equivalent to 3.17 bits). 
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II – Multi level programming strategies 

 

 

 

III – Conductance relaxation 

  

Table 1: Lower and upper limits for MLC levels allocation for a given 
compliance current for SBA and LA strategies.  

Fig. 4: Measured average number of 
programming iterations for the eight 
conductance levels. 

 
Fig.7: Conductance relaxation for the 
LA levels (black) and distributions 
without iterative write operation (grey). 
 

 
Fig.8: Comparison of the relaxation effect 
with data obtained on two test vehicles [6] 
and [7]. 

Fig.12: Soft and hard fail positions for SBA strategy 
after 103, 104 and 105 endurance cycles (a, b, c 
respectively). 

(a) 

(b) 

(c) 

Fig.6: Retention on time for different programmed 
levels with SBA. 

 Fig. 5: Cumulative probability distributions for the nine conductance levels just after programming (black, 
t = 0 s) and after relaxation (t = 60 s, blue) for (a) SBA and (b) LA. 
 

(a) (b) 

 

Fig. 1: (a) MLC operation. (b) Conductance range and conductance gap for Sigma-
Based Allocation (SBA) and Linear Allocation (LA). 
 

 
Fig. 3: Measured number of bit fail for 
the eight programmed conductance 
levels. 
 

(b) (a) 

(b) (a) 

Fig. 2: Cumulative distribution of 4,096 RRAM cells for nine distinct conductance 
levels per RRAM programmed with (a) SBA  and (b) LA strategies (on (a), different 
colors represents different dies). 

 
Fig.9: BER on time for the eight levels 
programmed with SBA (Table 1 level 
indexes on the figure). 
 

Fig.11: (a) Conductance distribution (level 1) before relaxation separated in three areas: lower tail (red), upper 
tail (blue) and central zone (black). (b) Effect of the conductance relaxation for the three areas. Conductance 
relaxation is independent of the initial conductance value. The cells are separated in three zones according to the 
conductance value at after relaxation: stable cells (44 µS <G< 50 µS, at t=60 s) and cells drifting toward lower 
(G< 44 µS, at t=60s) and higher (G> 50 µS, at t=60s) conductance values. (c) Position of three areas on the 4 kb 
array. Conductance relaxation is independent of cell location on the array. 

Q 

(b) (a) (c) 

Fig.10: Maximum BER on time for 
different number of bit-per-cell for 
different relaxation times. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV – 3D monolithically integrated multiple 1T1R 

 

V – Neuromorphic Applications 

Fig.15 Conductance distribution after different 
number of endurance cycles for both top and 
bottom layers. 

Fig.14: Top and bottom level layout schematic of 3D 
monolithically integrated multiple 1T1R structure for a 28 nm 
technology. Bit per surface ratio increases by 1.5x with respect 
to a planar 1T1R structure in the same technology node. 

 

  

 

 

 
 

 

Fig.25: Accuracy versus time. The 
network is resilient to RRAM relaxation. 

 

Fig.19: Fully Connected (FC) network architecture 
trained on MNIST and ECG dataset. Hidden layer 1 
(H1) and 2 (H2) size: 150 and 75 for the MNIST data 
set and 32 and 16 for the ECG data set. 

Fig.20: Flowchart of the training method: i) A model is trained ex-situ using TensorFlow; ii) The output are 
the desired weights (wt); iii) Weights are transfered to 2 conductances (wt=G+-G-); iv) The transfered weights 
are stored into an array. Measured colormap of the weight-transfer error compared with the target values. 

 

Fig.21: Conductance distribution (G+ and G-) and corresponding weights (wt = G+-G-) allocation using the LA (a) and SBA (b) strategies. Weights and conductance 
distribution are showed before (t=0 s, black) and after (t = 60 s, blue) conductance relaxation. 

 

 Fig.18: Conductance distribution of 20 cells cycled 
10 times with 3D integration (red is top, blue is 
bottom) and of 4,096 planar 1T1R cell (black). 

 

Fig.17: Cumulative distribution of 20 RRAM cells cycled 10 times measured 
on the Top (red) and Bottom (black) ties. (a) SBA and (b) LA strategies. 

 
Fig.16: Conductance modulation as a 
function of the programming current 
Top (red) and Bottom (black) tiers (b). 

Fig.22: Accuracy versus number of 
levels per RRAM programmed with 
SBA and LA strategies. Multi level 
programming improves accuracy. 

Fig.23: Accuracy versus number of 
levels per RRAM for two network size 
(number of neurons). MLC reduces the 
accuracy drop on small networks. 

Fig.24: Accuracy dependence on the 
number of RRAM, number of neurons 
(sum of H1 and H2) for the ECG dataset. 

 

(a) (b) 

 
Fig.13: TEM cross-section of the 3D-monolithic 
integration with two CMOS layers and two 
TiN/HfO2/Ti/TiN-RRAM cells. 
 

(a) (b) 


