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ON ABSOLUTELY CONTINUOUS CURVES IN THE

WASSERSTEIN SPACE OVER R AND THEIR

REPRESENTATION BY AN OPTIMAL MARKOV PROCESS

CHARLES BOUBEL† AND NICOLAS JUILLET†

Abstract. Let µ = (µt)t∈R be a 1-parameter family of probability measures
on R. In [13] we introduced its “Markov-quantile” process: a process X =
(Xt)t∈R that resembles at most the quantile process attached to µ, among the
Markov processes attached to µ, i.e. whose family of marginal laws is µ.

In this article we look at the case where µ is absolutely continuous in the
Wasserstein space P2(R). Then, X is solution of a Benamou–Brenier transport
problem with intermediate marginals µt. It provides a Markov Lagrangian
probabilistic representation of the continuity equation, moreover the unique
Markov process:

– obtained as a limit for the finite dimensional topology of quantile processes
where the past is made independent of the future at finitely many times.

– or, alternatively, obtained as a limit of processes linearly interpolating µ.
This raises new questions about ways to obtain Markov Lagrangian represen-
tations of the continuity equation, and to seek uniqueness properties in this
framework.

1. Introduction

In [13] we introduced the “Markov-quantile” process attached to a 1-parameter
family µ = (µt)t∈R of probability measures on R. It is a process in the broad sense,
i.e. a 1-parameter family (Xt)t∈R of random variables defined on the same probabil-
ity space. For the distribution of (Xt)t∈R we adopted the notation MQ((µt)t∈R), or
generally simply MQ, that is a measure on R

R equipped with the product σ-field.
It can be called Markov-quantile measure but, by abuse of notation, we occasion-
ally identified it with the Markov-quantile process. As usual Xt may namely be
chosen to be the projection on the coordinate of label t for the canonical probabil-
ity space Ω = R

R equipped with MQ itself. The Markov-quantile measure MQ is
characterized by the following properties:

(a) µ is the family of its marginal laws, i.e. for each t, µt is the law of Xt,
(b) it is Markov,
(c) it resembles “as much as possible” the quantile process Q attached to µ.

The meaning of (b) is recalled in Definition 1.2 and we give in Remark 3.9 a
practical criterion for Markov measures. The meaning of (c) is made precise in §3.
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The definition of quantile process Q((µt)t∈R) appears in Reminder 3.6. Note that
it is Markov if and only if MQ = Q, which for instance happens when µt is diffuse
for every t ∈ R. For all the details, we refer the reader to our initial article [13],
in particular its introduction where we give an intuition of what a Markov process
that is as similar as possible to the quantile process looks like.

In this article, we consider MQ in a more analytical context than in [13], that of
the continuity equation in connection with the dynamical optimal transport theory,
notably in continuation with Lisini’s work [16]. We prove that MQ is a Lagrangian
representation of the continuity equation associated with µ = (µt)t∈R together
with its minimal vector fields (vt)t∈R (in the sense of the tangential structure over
Wasserstein space [18, 2], loosely recalled in Theorem 7.1 (a)). The novel aspect
of this result is of course the Markov property. It comes with several promising
questions for which we give an account later.

We give now a few elements that are necessary to understand our Main Theorem,
and state it. Then we give the outline of the article.

In [13], we dealt with any 1-parameter family of probability measures on R.
In this article we consider only the —nevertheless still rich— set of continuous
curves (µt)t∈[0,1] : [0, 1] → P2(R) to the Wasserstein space over R. It provides
the advantage that Q and MQ will be identified with measures on C([0, 1],R) (see
Notation 1.1 just below). The reader may already have noticed another (secondary)
difference: in this article the time set is [0, 1].

Notation 1.1. (a) For every Polish (i.e. complete and separable) metric space
(X , d) we denote by C([0, 1],X ) the space of continuous curves from [0, 1] to X —or
simply by C specially when X = R—, with the σ-algebra induced by the topology of
‖ · ‖∞. We are interested on P(C) that is the space of probability measures on it and
we denote by MargC(µ) the subset {Γ ∈ P(C) : Γt = µt for every t ∈ [0, 1]} where
Γt is Γ pushed forward by the map γ ∈ C → γ(t). The convergence we consider on
P(C) is the convergence in distribution of Probability Theory, i.e. Γn → Γ ∈ P(C)
if and only if

∫
fdΓn →

∫
fdΓ for any bounded and continuous function f defined

on C. Be cautious that the same definition, applied to the case where the Γn and
Γ are considered in X [0,1] endowed with the product topology, leads to the “finite
dimensional convergence” (that of all the finite marginals) that was considered in
[13, Reminder 1.1], and also called “weak convergence” in that article. This last
one is weaker. In the present article we will specifiy “finite dimensional” for the
convergence in X [0,1]; otherwise we mean the weak convergence in P(C).

(b) For every Polish X we denote by P2(X ) the 2-Wasserstein space {µ ∈ P(X ) :
∫
d(x, x0)

2 dµ(x) < ∞} over X (here x0 is some and in fact any point of X .) The
so-called 2-Wasserstein distance W2 defined on P2(X ) is recalled in Reminder 4.5.

The Markov property is a classical notion; though as it plays a central role in
this article we recall its definition.

Definition 1.2 (Markov measure and Markov process). Let I be an interval and
(Xt)t∈I be a process of law Γ. The measure Γ is Markov if X is a Markov process
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in the usual sense, for which one of the formulation is:

(1) ∀s ∈ I, ∀t > s,Law(Xt| (Xu)u6s) = Law(Xt|Xs),

where Law(Xt| (Xu)u6s) is the law of Xt conditionally to the σ-algebra generated
by the Xu for u 6 s. (In this case (1) is satisfied by any process X ′ of law Γ).

In our Main Theorem we use also the following notion, precisely built in Def-
inition 3.8. We associate, with any process measure Γ, the distribution “Γ made
Markov at a finite set R ⊂ R of times”, denoted by Γ[R]. For any interval I disjoint
of R, the restrictions to I of (the canonical processes associated with) Γ and Γ[R]

coincide. But for any two times s < t separated by an element of R, the marginals
at times s and t are independent. More generally the future of any r ∈ R is made
independent of its past. With this operation Remark 3.9 also provides a tractable
characterization of the Markov measures that is fundamental in this paper.

The (kinetic) energy E(γ) of a curve γ : [0, 1] 7→ X in a metric space (X , d) may
be introduced as follows:

(2) E : γ ∈ C([0, 1],X ) 7→ sup
R

m∑

k=0

d(γ(rk), γ(rk+1))
2

rk+1 − rk
∈ [0,+∞],

where R = {r1, . . . , rm} ⊂ ]0, 1[ and (r0, rm+1) = (0, 1), as well as the 2-Wasserstein
distance W2 on P2(X ), based on the distance on X itself. Then an inequality
involving energies for curves in X and P(X ) is proved in Remark 5.3 (for X = R

d):
for all Γ ∈ P(C([0, 1],Rd)), if (projt)#Γ ∈ P2(R

d) for all t ∈ [0, 1]:

(3)

∫

E(γ) dΓ(γ) > E((Γt)t∈[0,1]), where Γt :=(projt)#Γ,

and where, on the left, d is the Euclidean distance on R
d and, on the right, d is the

induced W2 on P2(R
d). We defined E for continuous curves; actually, finite energy

implies continuity: if Expression (2) is finite for some γ, then γ is continuous, see
Proposition 4.4(a).

We prove two convergence results, of close types, Theorem 7.1 and 7.4. The
second one involves a geodesic interpolation of a curve, that we introduce in Def-
inition 7.2, and is therefore too technical to be stated in this introduction. The
first one, our Main Theorem, may be stated immediately —in fact, in a slighlty
simplified version. In its statement, the existence of Γ such that (3) is an equality
was established by Lisini (even for metric spaces X 6= R). However, the existence
and uniqueness of a Markov measure is completely new.

Main Theorem. Let µ = (µt)t∈[0,1] be a curve of finite energy E(µ) in P2(R).

(a) (Existence of a Markov representation) There exists a Markov probability
measure Γ in MargC(µ) such that (3) is an equality, i.e.:

∫

E(γ) dΓ(γ) = E(µ),

and such that there exists a nested sequence (Rn)n∈N of finite subsets of ]0, 1[ such
that Q[Rn] (see Definition 3.8 for this measure) converges to Γ in P(C).



4 CHARLES BOUBEL AND NICOLAS JUILLET

(b) (Uniqueness) If Γ is as in (a) then it is MQ.

Note that this theorem relies on Theorems A and B and Lemma 2.19 of [13].

We stress that the Markov property was up to now not involved in the a priori
rather analytic context of the dynamical Optimal Transport (OT). As explained in
§1.3 of [13], we came to involve it while we were considering Kellerer’s Theorem, that
is nowadays mostly represented in Martingale Optimal Transport (and Peacocks) a
young subfield of Optimal Transport that takes advantage of the older tradition of
“classical” OT. We found it particularly interesting to bring the other way around
with the Markov property a new ingredient back to the parent theory.

Outline of the article. In §2 we give a brief historical overview of the set of prob-
lems in which our results take place; this introduces the main concepts at stake and
motivates our work. In §3 we gather the few elements of [13] on which the present
work relies, and that are necessary to its understanding. In §4–6 we introduce the
precise definitions of the notions we need, which are mostly classical, and prove
the propositions leading to our two results, Theorem 7.1, a stlightly more precise
version of our Main Theorem above, and Theorem 7.4. In §7 we state and prove
them. Finally §8 presents some open questions raised by our 1-dimensional result:
may the Markov-quantile process be generalized in any dimension and moreover
provide a Markov minimizer in the Lagrangian form of the continuity equation?

Convention 1.3. When we introduce finite sets {r1, . . . , rm} or m-tuples (rk)
m
k=1

of real numbers, we mean implicitly that r1 < . . . < rm, if not otherwise indicated.

2. Framework; motivation of our work in this context

As we briefly mentioned in the introduction and explain below in Reminder 4.5,
quantile couplings are optimal transport plans for the quadratic cost function. This
suggests that the quantile process Q or even the Markov-quantile process MQ could
be minimizers of dynamical optimal transport problems. This is true and rather
well-known for Q; one approach is in [19] (see also [8]). In this section we show
that this also makes sense for MQ, and in which terms it can be formulated.

Here is the minimization problem at stake. We consider a now classical action
introduced by Benamou and Brenier in the context of the incompressible Euler
equations, see Definition 5.2. If X = (Xt)t∈R is a process, its action is:

A(X) = E

∫ 1

0

|Ẋt|2 dt =
∫ 1

0

E|Ẋt|2 dt.

Note however that the original definition by Benamou and Brenier involves the ve-
locity vector fields (one usually calls it “Eulerian”) while we present its “Lagrangian”
dual action involving the trajectories t 7→ Xt. As it will become clear in this sec-
tion, this action for infinitely many marginals is simply related to the quadratic
transport problem with two marginals.

The origin of this research goes back to the interpretation by Arnold in [6] of the
solutions of the incompressible Euler equations on a compact Riemannian manifold
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as geodesic curves in the space of diffeomorphisms preserving the volume. In [9],
Benamou and Brenier relaxed the minimisation problem attached to those geodesics
and introduced generalized geodesics that are, in probabilistic terms, continuous
processes X = (Xt)t∈[0,1] with Law(Xt) = Vol at every time, where Vol denotes the
Riemannian volume. Their minimisation property is encoded in the fact that they
minimize A under the constraint that the marginals Law(Xt) and Law(X0, X1) are
prescribed.

Later, see [15, 18], Otto and his coauthors discovered that the solutions of
some PDEs, in particular the Fokker–Planck and porous medium equations can
be thought of as curves of maximal (negative) slope for some functionals F in
the space of probability measures P2(R

d) endowed with the 2-transport distance
(alias Wasserstein distance). It catches a comprehensive picture of the infinite di-
mensional manifold of measures used in optimal transport, building a differential
calculus on it, called “Otto calculus”. In this context, the derivative of the curve
(µt)t at time t shall be seen as a vector field vt of gradient type, square integrable
with respect to µt, such that the transport (or continuity) equation:

(4)
d

dt
µt + div(µtvt) = 0

is satisfied. The speed of the curves of maximal slope of F is
√
∫
|vt|2 dµt, which

corresponds to
√

E(|Ẋt|2) in Benamou–Brenier’s action; it has to coincide with the

opposite of the slope of F at µt, hence the derivative of t 7→ F (µt) is −
∫
|vt|2 dµt.

A thorough study of those questions has been conducted in the monograph [2]
by Ambrosio, Gigli and Savaré (see also [11, 17, 3]) under very loose assumptions
on the curve (µt)t or the vector field (vt)t. They proved, in particular, that the
vector field (vt)t is uniquely determined if (µt)t is absolutely continuous of order
2 (see “AC2” in §4). They showed also that a process minimizing the action, for
prescribed marginals µt, exists, by using limits of solutions of mollified versions of
(4). Almost every trajectory of the process is in fact solution of the Cauchy problem

Ẋt = vt(Xt). In a further work [16], Lisini studied, in fact in a broader framework,
the AC2 curves of probability measures on a metric space. In this context where the
continuity equation is not defined, he also proved that the action can be minimized
in a Lagrangian approach, i.e. in terms of trajectories in place of vector fields.

Now here is the link with our work: In both the results by Ambrosio–Gigli–
Savaré and Lisini, no statement is given on the uniqueness of the minimizing process
(Xt)t. But on R, the Markov-quantile process turns out to be a minimizing process,
which yields a canonical minimizer. That notion depends of course on the chosen
criterion that makes it canonical: for instance, the quantile process is a minimizer
and can also be considered canonical (see the end of (b) below for a discussion).
Our criterion is as follows. In this context where (µt)t ∈ AC2([0, 1],R

d), i.e. has
finite energy, using Theorems A and B of [13] gives rise to the two following results
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when d = 1. The first one is a slightly enhanced version of the Main Theorem given
in the introduction.

(a) Theorem 7.1 makes explicit under which assumptions and in which sense
MQ is a canonical minimizer of the action. The existence of such a minimizer, in
any dimension d, is classical, and our work adds a uniqueness result when d = 1,
under the assumption that it is Markov, and obtained as a limit of products of
couplings.

(b) Theorem 7.4 obtains the process MQ, which is a minimizer of A, as a limit
of geodesically —meaning in this case linearly— interpolating processes belonging
to DispRn

(see Definition 7.2) instead of the limit of (Q[Rn])n as in Theorem B of
[13]. Using limits of interpolating processes is the classical way to obtain minimizers
(see [22, Chapter 7], [16]) in any dimension d, so this places our work within this
context. The interest of doing it is that then, our process (that exists for d = 1)
satisfies a uniqueness property that makes sense for any d. This is different from
Theorem 7.1, or from any uniqueness statement on Q, that both only makes sense
for d = 1. In Section 8 we formalize open problems related to extensions of Theorem
7.4 in dimension d or in metric spaces.

We can hardly conclude this paragraph without mentioning the later develop-
ments around the so-called Brenier–Schrödinger problem (see for instance the works
by Arnaudon et al. [5], Benamou, Carlier and Nenna [10], Baradat and Léonard
[7], and the references therein) that is basically an entropic minimization problem.
There the trajectories get a Brownian perturbations leading to another way to com-
pute the action. Since the Brownian motion is Markov it is tempting to imagine
that a connection with the Markov-quantile process could exist. However, until now
we failed to create this connection, one major obstruction being that the measures
µt in the family µ = (µt)t∈[0,1] basically have to be diffuse.

3. Quick reminder on the Markov-quantile process and a few

related notions

We gather below the few main notions of [13] the present article relies on.

Notation 3.1. For all measurable space E, M(E) and P(E) are the spaces of

measures and probability measures on E. If T ′ ⊂ T , projT
′

is the projection
∏

τ∈T Eτ → ∏

τ∈T ′ Eτ ; in case T = {τ1, . . . , τm} is finite, projτ1,...,τm means

proj{τ1,...,τm}. When P ∈ P
(∏

τ∈T Eτ

)
and s < t, P s stands for (projs)#P

and P s,t for (projs,t)#P , and Marg((µτ )τ∈T ) denotes {P ∈ P
(∏

τ∈T Eτ

)
: ∀τ ∈

T , (projτ )#P = µτ}. When not otherwise specified, what we call the marginals of
P are its marginals P s on a single factor.

Remark 3.2. To any Γ ∈ MargC((µt)t) corresponds Γ′ ∈ Marg((µt)t) defined by
Γ′(B) = Γ(B ∩ C([0, 1],Rd)) for any B in the cylindrical σ-algebra of (Rd)[0,1].
Notice that for any dense countable set D of [0, 1], Γ′((projD)−1(C(D,Rd))) = 1.
Conversely, suppose that some Q ∈ Marg((µt)t) satisfies this property. Then we
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say that Q is “concentrated on C((µt)t)” and there is a unique ΓQ ∈ MargC((µt)t)
such that Γ′

Q = Q. So by a slight abuse, we will not distinguish Γ and Γ′ or Q and

ΓQ. For Γ ∈ MargC((µt)t) and R a finite subset of R, this gives sense, e.g., to Γ[R]

after Definition 3.8.

Definition 3.3. If ♯T = 2, i.e. if µ ∈ P(E) and ν ∈ P(E′), a measure P ∈
Marg(µ, ν) is called a transport (plan) from µ to ν, or a coupling between µ and ν.

Now E stands for some Polish space and B(E) for the set of its Borel subsets.

Definition/Notation 3.4. A probability kernel, or kernel k from E to E′ is a
map k : E × B(E′) → [0, 1] such that k(x, ·) is a probability measure on E′ for
every x in E and k(·, B) is a measurable map for every B ∈ B(E′).

Every transport plan P ∈ P(E × E′) can be disintegrated with respect to its
first marginal P 1 := (proj1)#P and a kernel that we denote by kP , defined from E
to E′, so that:

∫∫

f(x, y) dP (x, y) =

∫ (∫

f(x, y) kP (x, dy)

)

dP 1(x)

for every bounded continuous function f .

Definition 3.5. The stochastic order �sto on P(R) is defined by: µ �sto ν if for any
x ∈ R, µ(]−∞, x]) > ν(]−∞, x]). In Notation 3.1 we say that P s,t ∈ P(R{s}×R

{t})
has increasing kernel if x 6 y implies kP s,t(x, ·) �sto kP s,t(y, ·) and say that P ∈
P(

∏

t∈R
R

{t}) has increasing kernels if P s,t has increasing kernel for every s < t.

Reminder 3.6. The quantile of level α of a measure µ ∈ M(R) is the smallest real
number xµ(α) such that µ(]−∞, xµ(α)]) > α and µ([xµ(α),+∞[) > 1 − α. The
quantile process (Qτ )τ∈T , defined on Ω = [0, 1] with the Lebesgue measure, is given
by Qt(α) = xµt

(α), and we denote Law(Q) by Q ∈ Marg((µt)t∈T ). In particular
Law(Qt) = µt for every t ∈ T . See Definition 3.23 of [13] for full details. We call
also Q the quantile process or the quantile coupling when T has cardinal 2. It is
again a slight abuse since Q is a measure.

Here are the parts of Theorems A and B of [13] that are used in this article;
we give just below the definitions necessary to their understandig. In particular
Definition 3.8 plays a key role in this work.

Theorems A+B of [13]. Let (µt)t∈R be a family of probability measures on R.

(a) There exists a unique measure MQ = (Xt)t ∈ Marg((µt)t∈R) such that:

(i) MQ is Markov,
(ii) MQ has increasing kernels,
(iii) MQ has minimal couplings (alias transports) among the measures satisfying

(i) and (ii), in the sense that it satisfies:

Law(Xt|Xs 6 x) = min
sto

{Law(Yt|Ys 6 x) : Law(Y ) ∈ Marg((µt)t∈R)},

where the minimum is taken among processes (Yt)t satisfying (i) and (ii).
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(b) There is an increasing sequence (Rn)n∈N of finite subsets of R such that
Q[Rn] ∈ Marg((µt)t∈R) converges, in the finite dimensional sense, to MQ.

In point (a)(iii), the minimum is for the stochastic order, defined as follows.
The two following important concepts may appear unusual. We invite the inter-

ested reader to consult the corresponding parts of [13] for more details.

Definition 3.7 (See Definition 2.8 of [13]). If µi ∈ P(Ei) for i ∈ {1, 2, 3}, if
P1,2 ∈ Marg(µ1, µ2) and P2,3 ∈ Marg(µ2, µ3), their concatenation P1,2 ◦ P2,3 is the
unique R ∈ P(R3) such that for every (B1, B2, B3) ∈ B(E1)× B(E2)× B(E3):

R(B1 ×B2 ×B3) =

∫

x∈B1

∫

y∈B2

∫

z∈B3

dµ1(x)k1,2(x, dy)k2,3(y, dz).(5)

In particular, R ∈ Marg((µ1, µ2, µ3), (proj
1,2)#R = P1,2, and (proj2,3)#R = P2,3.

Definition 3.8 (See Definition 4.18 of [13]). If M ∈ Marg((µt)t) and if R =
{r1, . . . , rm} ⊂ R we denote by M[R] ∈ Marg((µt)∈R) the measure M made Markov

at the points of R defined by the data of its finite marginals (projS)#M[R], for all
finite S containing R, as follows.

(projS)#M[R] = M s01,...,s
0
n0

,r1 ◦M r1,s
1
1,...,s

1
n1

,r2 ◦ . . . ◦M rm,sm1 ,...,smnm
︸ ︷︷ ︸

(denoted immediately below by MS)

,

where S = {s01, . . . , s0n0
, r1, s

1
1, . . . , s

1
n1
, r2, . . . , rm, sm1 , . . . , smnm

} and where the first
or last term disappears if n0 or nm is null, respectively. These marginals are
consistent in the sense that for all finite subsets S and S′ of R, containing R,

S′ ⊂ S ⇒ (projS
′

)#MS = MS′ . So by the Kolomogorov-Daniell theorem (see
Proposition 2.12 of [13]), this defines M[R]. We also commit an abuse of language:
M[R] is rather the “ law of a process X of law M , made Markov at the points of R”.

Remark 3.9. Let I be some interval. A process X = (Xt)t∈I and Γ ∈ P(RI) its
measure; X is therefore Markov (see Definition 1.2) if and only if, for any finite
subset R of I, Γ[R] = Γ.

We finally define the composition of kernels and of couplings.

Definition 3.10 (See also §2.1 of [13]). Kernels k from E to E′ and k′ from E′ to
E′′ can be composed as follows:

(k.k′)(x,A) =

∫

E′

k′(y,A)k(x, dy).

If P ∈ Marg(µ, µ′) and Q ∈ Marg(µ′, µ′′) are transport plans, we can compose
them in a similar way, getting what we call their product:

P.Q := (projE×E′′

)#(P ◦Q), so that: kP.Q = kP .kQ.
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4. Absolutely continuous curves of order 2 and the Wasserstein

distance

Recall Convention 1.3: “R = {r1, . . . , rm}” implies r1 < . . . < rm.

Definition 4.1. A partition of an interval [a, b] is a finite subset R = {r0, . . . , rm+1}
of [a, b] with (r0, rm+1) = (a, b). We denote the set of partitions of [a, b] by
Part([a, b]). The mesh |R| of R is maxmk=0 |rk+1 − rk|.
Reminder/Notation 4.2. Let γ be a curve in C([0, 1],X ). (a) For 0 6 a < b 6 1
the (possibly infinite) length of γ on [a, b] is defined as Lb

a(γ) = supR∈Part([a,b])∑m

k=0 d(γ(rk), γ(rk+1)), where R = {r0, r1, . . . , rm, rm+1}.
(b) The curve γ is said to be absolutely continuous if for every δ > 0 there exists

ε such that for any family of intervals ]ak, bk[ satisfying
∑

(bk − ak) 6 ε it holds
∑

d(γ(ak), γ(bk)) 6 δ. We denote by AC([0, 1],X ) the space of such curves. As
explained for instance in [2], where the definition is slightly different but equivalent,
these curves admit for almost every t a metric derivative which we denote by |γ̇|(t):

|γ̇|(t) = lim
h→0

d(γ(t+ h)− γ(t))

h

(if X = R
n and γ is differentiable at t, this is |γ̇(t)|, so the notation is consistent).

Then Lb
a(γ) equals

∫ b

a
|γ̇|(t) and Lb

a(γ) coincides with the total variation of γ on

[a, b]. Equivalent definitions of absolutely continuous curves are that t 7→ Lt
0(γ) is

absolutely continuous, or that there exists an integrable function m : [0, 1] → R
+

such that d(γ(a), γ(b)) 6
∫ b

a
m dλ for every a < b.

(c)We also introduce the space AC2([0, 1],X ) ⊂ AC([0, 1],X ) of absolutely con-

tinuous curves γ of order two, i.e. such that
∫ 1

0
|γ̇|2 < +∞. Notice that Lipschitzian

curves are absolutely continuous of order two.

Now we introduce the notion of energy and the subsequent Proposition 4.4,
which seems classical but for which we could not find any reference in the literature.
Similar results concerning the length, in particular for geodesic curves, can be found
in [4, 2]. We will consider them as known.

Definition 4.3. Let γ be a mapping from [0, 1] to a metric space (X , d). For
0 6 a < b 6 1 the energy Eb

a(γ) of γ on [a, b] is defined as:

Eb
a(γ) = sup

R∈Part([a,b])

Eb
a(γ,R), where:(6)

Eb
a(γ, {r0, . . . , rm+1}) =

m∑

k=0

d(γ(rk), γ(rk+1))
2/(rk+1 − rk).

Note. For [a, b] = [0, 1] we may denote E1
0 and L1

0 by E and L.

Proposition 4.4. Let γ be a mapping from [0, 1] to X . Then:

(a) If E(γ) < ∞ then γ is continuous.
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(b) (i) If a partition R′ ∈ Part([a, b]) is finer than R, Eb
a(γ,R) 6 Eb

a(γ,R
′). (ii)

If γ is continuous, the limit lim|R|→0 E(γ,R) is well-defined and equals E(γ). (iii)

E(γ) is finite if and only if γ ∈ AC2([0, 1],X ); in this case Eb
a(γ) =

∫ b

a
|γ̇|2(t)dt for

all a < b.

(c) E(γ) is lower semi-continuous for the uniform convergence.

Proof. (a) If E(γ) < ∞, there is a bound M such that for any s and t > s,
d(γ(s),γ(t))2

|s−t| 6 M , i.e. d(γ(s), γ(t)) 6 M
√

|s− t|, which gives the result.

(b)(i) This follows from the fact that, for α, β > 0 and a+ b > c:

1

α
a2 +

1

β
b2 >

1

α+ β
c2,

itself given by the inequality
(
a
√

β/α− b
√

α/β
)2

> 0.

(ii) We treat (ii) in the case E(γ) < ∞, letting the reader adapt the details in
the case E(γ) = ∞. Take ε > 0 and R = {r0, . . . , rm+1} ∈ Part([0, 1]) such that

E(γ,R) > E(γ)− ε. Set α = |R|
3 , so that if R′ = {r′0, . . . , r′m′+1} ∈ Part([0, 1]) and

|R′| 6 α then for all k ∈ {0, . . . ,m}, ♯{i ∈ N : r′i ∈ [rk, rk+1]} > 2. For any R′ ∈
Part([0, 1]) such that |R′| 6 α, we denote (min(R′∩ [rk, rk+1]),max(R′∩ [rk, rk+1]))

by (r+k , r
−
k+1). Since lim(s,t)→(rk,rk+1)

d(γ(s),γ(t))2

t−s
=

d(γ(rk),γ(rk+1))
2

rk+1−rk
for all k, there

is an α1 > 0 such that |R′| 6 min(α, α1) ensures the second inequality below, hence
(ii):

E(γ,R′) >

m∑

k=0

d(γ(r+k )− γ(r−k+1))
2/(r+k − r−k+1) > E(γ,R)− ε > E(γ)− 2ε.

(iii) Notice that a similar argument as above gives the Chasles relation Ec
a(γ) =

Eb
a(γ) + Ec

b (γ) for a < b < c. Then we proceed in three steps.

– First, E1
0 (γ) < ∞ implies that t 7→ Lt

0(γ) is absolutely continuous, i.e. γ is. By
contradiction, assume that E1

0 (γ) < ∞ and that for some ε > 0 and every δ > 0,
there exists disjoint intervals [ak, bk] with

∑
(bk − ak) 6 δ and

∑Lbk
ak
(γ) > ε.

Take now δ < ε2/2E(γ). The convexity of the scalar square gives that Lb
a(γ)

2 6

(b − a)Eb
a(γ), hence, together with the Chasles relation, the last inequality in (7)

below. The second inequality of (7) is the Cauchy-Schwarz inequality. Since (7) is
a contradiction, we are done.

ε <
∑

Lbn
an
(γ) 6

√∑

Lbn
an(γ)

2/(bn − an)
∑

(bn − an) < ε/
√
2.(7)

– Now γ ∈ AC2 ⇒ E(γ) < ∞. Indeed, |γ(b)−γ(a)|2/(b−a) 6 (
∫ b

a
|γ̇|)2/(b−a) 6

∫ b

a
|γ̇|2, so if γ ∈ AC2,

∫ 1

0
|γ̇|2 < ∞ so that E(γ) 6

∫ 1

0
|γ̇|2 < ∞.

– Finally suppose that E(γ) < ∞. Then γ ∈ AC2([0, 1],X ). Indeed, we showed
above that γ ∈ AC. Now take ε > 0 and h ∈ ]0, ε]. For all h let n be an integer
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such that (n+ 1)h > 1− ε. Then:
∫ 1−ε

0

(
d(γ(t+ h)− γ(t))

h
︸ ︷︷ ︸

ah

)2

dt 6
1

h

∫ h

0

n∑

i=0

d(γ(ih+ t), γ((i+ 1)h+ t)2

h
dt

6 E(γ).
Now, since γ ∈ AC, |γ̇| is almost surely defined, hence lim infh→0 ah = |γ̇|. By the
Fatou lemma we get:

∫ 1−ε

0

|γ̇|2(t) 6 E(γ).

This holds for every ε, so that γ ∈ AC2([0, 1],X ) and that the announced formula
∫ 1

0 |γ̇|2(t) = E(γ) is satisfied.

(c) This holds since E is a supremum of functions continuous on C for the uniform
topology on C([0, 1],X ). �

Reminder 4.5. On P(Rd)2 the following infimum (minimum by the Prokhorov The-
orem) has all the properties of a distance except that it may be infinite; it is called
the 2-Wasserstein distance:

(8) W2(µ, ν) = min
P∈Marg(µ,ν)

√
∫

‖y − x‖2dP (x, y).

On the Wasserstein space P2(R
d) = {µ ∈ P(Rd)|

∫
‖x‖2 dµ(x) < ∞}, W2 is finite,

thus is a true distance. Consequently, if (µt)t ∈ C([0, 1],P2(R
d)), then Lb

a((µt)t, R)
and Eb

a((µt)t, R) are finite for every R ∈ Part([a, b]).
A minimizer P of (8) is called an optimal transport plan between µ and ν. If

d = 1 and W2(µ, ν) < ∞ the quantile coupling Q(µ, ν) introduced in Reminder
3.6 is the unique optimal transport plan, see for instance [20]. Therefore, for the
quantile process Q((µt)t) ∈ Marg((µt)t):

W2(µs, µt) =

√
∫

|y − x|2 dQs,t(x, y).

5. Action – expected energy of a random curve

Notation 5.1. Now µ denotes a family (µt)t∈[0,1] of probability measures on R
d.

Definition 5.2. If Γ ∈ P((Rd)[0,1]) is concentrated (see Remark 3.2) on C([0, 1],
R

d) its action A(Γ) is defined as:

A(Γ) =

∫

C

E(γ)dΓ(γ).

Before we state Proposition 5.4 about the action of MQ a long remark is in order
concerning the action of the elements of the approximating sequence (Q[Rn])n (given
by Theorem A of [13]).
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Remark 5.3. (a) If A(Γ) < +∞, Γ is in fact concentrated on AC2.
(b) If Γ is a measure on C, e.g., an element of MargC(µ), then:

A(Γ) :=

∫

C

lim
|R|→0

E(γ,R) dΓ(γ) = lim
|R|→0

∫

C

E(γ,R) dΓ(γ)(9)

because of the monotone convergence theorem: use a monotone sequence of parti-
tions and Proposition 4.4(b).

(c) If Γ ∈ MargC(µ), then:

(10) A(Γ) > E(µ).
In case d = 1, this is an equality if (but in general not only if) Γ = Q(µ). Indeed:

∫

C

E(γ,R) dΓ(γ) =

∫

C

m∑

k=1

‖γ(rk)− γ(rk+1)‖2/(rk+1 − rk) dΓ(γ)

=

m∑

k=1

(∫

C

‖γ(rk)− γ(rk+1)‖2/(rk+1 − rk) dΓ(γ)

)

(11)

>

m∑

k=1

W2(µrk , µrk+1
)2/(rk+1 − rk) = E(µ,R).

The inequality comes from the fact that (projrk,rk+1)#Γ is in Marg(µrk , µrk+1
), so

that
∫

C
‖γ(rk) − γ(rk+1)‖2 dΓ(γ) > W2(µrk , µrk+1

)2 with equality, when d = 1, if
(projrk,rk+1)#Γ = Q(µrk , µrk+1

). Now, thanks to (9), when |R| tends to 0 this
provides A(Γ) > E(µ), with the announced equality case.

(d) If equality occurs in (c) for some measure Γ, it holds also for any Γ[R]

introduced in Definition 3.8 —hence, if d = 1, for the measures Q[R](µ). Indeed,
consider (11) only for partitions finer than R (by Proposition 4.4(b)(i), the minimum
in (6) remains the same): you get that A(Γ) = A(Γ[R]).

Remark 5.3 (d) “passes to the (finite dimensional) limit” when (Rn)n is such
that Q[Rn](µ) −→

n→∞
P , where P ∈ MargC(µ) coincides with the Markov-quantile

measure MQ (in the sense of Remark 3.2). Recall that, for simplicity, depending
on the context we see MQ (or Q) as an element of MargC(µ) ⊂ P(C) or Marg(µ) ⊂
P(R[0,1]).

Proposition 5.4. The Markov-quantile process MQ ∈ Marg(µ) satisfies A(MQ) =
E(µ). Moreover for every (Rn)n as in Theorem B of [13], (Q[Rn])n tends to MQ

in MargC(µ) ⊂ P(C).
Proof. We need the following classical claim.

Claim. If f : (C, ‖ · ‖∞) → R
+ is lower semi-continuous, then F : P(C) → R defined

by F (Γ) =
∫

C
fdΓ is also lower semi-continuous.

To check it, take (Γn)n∈N∗ ∈ P(C)N∗

tending to some Γ0. Then lim infn F (Γn) >
F (Γ0) by Lemma 4.3 of [22], the desired claim.

The claim and Proposition 4.4 (c) give that the action A : P(C) → R is lower
semi-continuous. Now take (Rn)n∈N∗ a sequence of finite subsets of R as given by
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Theorem B of [13] and set Γn := Q[Rn](µ). If we show that Γn converges/////////weakly
to MQ in P(C), we will get that A(MQ) 6 lim infn A(Γn), hence the result since
E(µ) 6 A(MQ) by Remark 5.3 (c) and A(Γn) = E(µ) for all n by Remark 5.3 (d).
So let us show this. By the Chebyshev inequality, for every ε there exists α > 0
such that, for all n ∈ N

∗:

Γn({γ ∈ C : E(γ) > α}) < ε and Γn({γ ∈ C : |γ(0)| > α}) < ε.

Therefore N := {γ ∈ C : E(γ) 6 α} ∩ {γ ∈ C : |γ(0)| 6 α} has Γn-mass greater

than 1− 2ε for all n. It follows from its definition that on N ,
∫ 1

0
|γ̇|2 and thus also

∫ 1

0 |γ|2 are bounded, hence N is included in a ball of the Sobolev space W1,2([0, 1]).
This Banach space is compactly embedded in C, see [14, Theorem 8.8], so that
N is relatively compact in C, and that thus the family (Γn)n is tight. So by the
Prokhorov theorem any subsequence of (Γn)n has a (weak) limit point. But by
Theorem B of [13], each finite marginal of (Γn)n tends weakly to the corresponding
finite marginal of MQ, hence all such limit point must be MQ, hence (Γn)n tends
weakly to MQ. �

6. The continuity equation

Notation 6.1. For all t ∈ [0, 1], projt is the projection (Rd)[0,1] → (Rd){t} = R
d,

i.e. projt(γ) = γ(t). On AC([0, 1],Rd) we also define projt2 by projt2(γ) = γ̇(t) on
the set where γ̇ is defined and projt2(γ) = 0 on its (null) complement.

As defined in [2, Definition 5.4.2] we introduce the barycentric projection.

Definition 6.2. Take Γ ∈ P(AC([0, 1],Rd)) and for all t ∈ [0, 1] denote (projt)#Γ
by µt, (proj

t × projt2)#Γ by Mt and by κt a kernel such that Mt = µt.(id, κt), which
can also be written ∀B,B′ ∈ B(E)×B(E′),Mt(B×B′) =

∫

B
κt(x,B

′)dµt(x). The

barycentric projection of Mt is the µt-almost surely defined vector field uΓ
t on R

d

such that uΓ
t (x) is the barycentre of κt(x, . ). Alternatively, it is defined by the

equation:
∫

〈v, uΓ
t 〉(x)dµt(x) =

∫

〈v(x), u〉dMt(x, u) =

∫

〈v(γt), γ̇t〉dΓ(γ),(12)

for every continuous bounded vector field v.

Reminder 6.3. If (µt)t = (ftλRd)t is a family of measures on R
d with density

(x, t) 7→ ft(x) smooth with compact support, a smooth vector field vt transports
the measure µt, in the sense that its flow Φt makes µt(Φ

t(B)) constant for any
Borel set B, if and only if vt satisfies the continuity equation:

(13) ∂tµt + divµt
(vt) = 0 (or ∂tµt + div(vtµt) = 0, see below),

divµt
(vt) standing for the signed measure Lvtµt, where L is the Lie derivative. Now

(13) keeps a weak meaning in R
d × [0, 1] in our framework, namely:

∫ 1

0

∫

Rd

(∂tϕ(x, t) + 〈vt(x),∇xϕ(x, t)〉) dµt(x) dt = 0(14)
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for every smooth function ϕ : Rd × [0, 1] → R with compact support in R
d × ]0, 1[.

In (13), divν v depends only on the product vν, so may be written div(vν). Indeed,
for g, h ∈ C∞(Rd), divgν(hv) = (d(gh).v)ν + gh divν(v).

Reminder 6.4. An important result proved in [2] (see Theorem 8.2.1) is that for

every solution (µt, vt) of (13) with
∫ 1

0

∫
|vt|2 dµt dt < ∞ there exists Γ with:

γ̇(t) = vt

Γ⊗ λ-almost surely. In particular
∫ 1

0

∫
|vt|2 dµt dt = A(Γ) and therefore:

(15)

∫ 1

0

∫

|vt|2 dµt dt > E(µ).

Notice that, unlike for Lipschitz ODE, Γ is not unique in general.

Proposition 6.5. (a) Let Γ be a probability measure on AC([0, 1],Rd) such that
A(Γ) < ∞ and denote (projt)#Γ by µt. Then (µt, u

Γ
t )t∈[0,1] (see Definition 6.2)

satisfies the continuity equation (14).
(b) If moreover Γ minimizes A(Γ) on Marg((µt)t∈[0,1]), then:

γ̇(t) = uΓ
t ,

Γ⊗ λ-almost surely. In particular Γ is concentrated on integral curves of the time-
dependent vector field uΓ

t .

Proof. (a) We have to show that:
∫ 1

0

∫
∂tϕ(x, t) + ∇xϕ(x, t).u

Γ
t dµtdt = 0, with ϕ

as in (14). Let M be an upper bound for ‖∇xϕ‖. We first consider F : (γ, t) 7→
∂t
(
ϕ(γ(t), t)

)
= ∂tϕ(γ, t)+∇xϕ(γ, t).γ̇, then ‖F‖2 is bounded by 2M2(1+‖γ̇(t)‖2)

and has integral on C× [0, 1] bounded by 2M2(1+A(Γ)) < ∞. Thus F ∈ L2(Γ⊗λ).
Integrating firstly with respect to t and secondly with respect to Γ, we see that
∫∫

F (γ, t) = 0. If we now use the Fubini theorem, with (12) we obtain the desired
equality.

(b) Take κt the kernel given in Definition 6.2, then for almost all (x, t),
∫
‖v‖2dκt(x, v) >

‖uΓ
t (x)‖2. But by (a), (µt, u

Γ
t ) satisfies (13) hence by Reminder 6.4,

∫ 1

0

∫
‖uΓ

t ‖2 dµt dt >
E(µ). This gives the inequality below:

A(Γ) =

∫ 1

0

∫

‖γ̇‖2(t) dΓ(γ) dt =
∫ 1

0

∫ ∫

‖v‖2κt(x, dv) dµt(x) dt > E(µ).

Now if A(Γ) is minimal, i.e. A(Γ) = E(µ), all the inequalities above are equalities,
which ensures that γ̇ = uΓ

t almost surely. �

7. Our resulting theorems on MQ as a minimizer in this context

In this section we state and prove our two principal results, Theorems 7.1 and
7.4. The first result, Theorem 7.1 gathers:

– well-known facts, actually true on any P2(R
d) for d > 1, namely (a) and (b)(i),

i.e. the existence of measures Γ for which (10) is an equality,
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– enhancements of them following from Theorems A and B of [13] and Proposition
5.4, notably the uniqueness in the Lagrangian statement for d = 1 —the uniqueness
of the field vt in (a) is classical, but recall that it does not imply that of the
minimizing process Γ tangent to it.

Notice that it is not known whether the process can be chosen Markov for d > 2
(see Open questions in 8). Moreover Q[Rn] is only defined for d = 1.

Theorem 7.1 (Existence and uniqueness of representations). Take a curve µ =
(µt)t∈[0,1] in Wasserstein space P2(R) with finite energy E(µ). Then:

(a) (Eulerian statement.) There exists a vector field vt satisfying the continuity
equation (13) and such that Inequality (15):

∫ 1

0

∫

|vt|2 dµt dt > E(µ)

is an equality. This vector field is unique.

(b) (Lagrangian statement.) There exists Γ ∈ MargC(µ) such that:

(i) Inequality (10): A(Γ) > E(µ) is an equality,
(ii) the measure Γ is Markov,
(iii) it is the limit in P(C) of a sequence (Q[Rn])n.

Such a Γ is unique in MargC(µ); it is the Markov-quantile process MQ.

(c) (Link between them.) For any Γ minimizing the action, i.e. making (10) an
equality, the curve γ ∈ C is Γ-almost surely a solution of the ODE:

γ̇(t) = vt(γt),

for almost every time.

Proof. (a) With uΓ
t given by Definition 6.2, note that A(Γ) =

∫ 1

0

∫
|uΓ

t |2dµt dt for
every Γ, so that Proposition 6.5 gives the existence of the field. Its uniqueness comes
from a standard argument: if ut and vt satisfy (13), so does wt := (ut+vt)/2, but if

they both make (15) an equality and differ on a non-null subset,
∫ 1

0

∫
|wt|2 dµt dt <

E(µ), which contradicts (15).
(b) Proposition 5.4 shows that Γ = MQ suits. By Theorem B of [13], the con-

ditions of Theorem 7.1(b) characterize the Markov-quantile process, which ensures
the uniqueness.

(c) Use Proposition 6.5(a) and the uniqueness in (a). �

To state our second result, Theorem 7.4, we need to introduce the following defini-
tion. In it, remember that an optimal transport is defined in Reminder 4.5.

Definition 7.2. Let R = {r0, r1, . . . , rm, rm+1} be a partition in Part([0, 1]). We
denote by DispR the set of measures M ∈ P(C) that are dynamical transports
made Markov at the points of R, and linearly (hence in fact optimally) interpolating
(µt)t∈[0,1] between them, defined as follows.

(a) For each i ∈ {0, . . . ,m}, the coupling M ri,ri+1 ∈ Marg(µri , µri+1
) is an

optimal transport plan between µri and µri+1
,
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(b) for {λ1, . . . , λn} ⊂ [0, 1] and iλ : (x, y) ∈ (Rd)2 7→ λy + (1 − λ)x, we have:

(iλ1 , . . . , iλn)#M
ri,ri+1 = Mλ1ri+(1−λ1)ri+1,...,λnri+(1−λn)ri+1 ,

(c) for all finite S containing {r1, . . . , rm},
(projS)#M = M s01,...,s

0
n0

,r1 ◦M r1,s
1
1,...,s

1
n1

,r2 ◦ . . . ◦M rm,sm1 ,...,smnm ,

where S = {s01, . . . , s0n0
, r1, s

1
1, . . . , s

1
n1
, r2, . . . , rm, sm1 , . . . , smnm

} and where the first
and/or last terms disappear if n0 and/or nm is null.

Remark 7.3. Note that #DispR = 1 if and only if each set Marg(µri , µri+1
), ap-

pearing in (a), contains a unique optimal transport. It is the case when d = 1,
where Marg(µri , µri+1

) = {Q(µri , µri+1
)}, see Reminder 4.5.

Theorem 7.4. Let d be a positive integer and µ = (µt)t∈[0,1] a curve of finite

energy in P2(R
d). For every nested sequence (Rn)n of finite subsets Rn of [0, 1],

with R∞ := ∪nRn dense in [0, 1], and Γn ∈ DispRn
for all n ∈ N, there exists Γ ∈

MargC(µ) that is the limit in P(C([0, 1],Rd)) of a subsequence of (Γn)n. Moreover
for every Γ obtained in this way the action A(Γ) is minimal, i.e. such that Inequality
(10) is an equality.

Moreover, in dimension d = 1, a Markov limit Γ exists and if a limit Γ is Markov,
it is the Markov-quantile measure in MargC((µt)t∈[0,1]).

In the proof we use the following partial order on the measures on R
d with a

given total mass. It is a generalization of �sto (Definition 3.5) for any dimension d.

Definition 7.5. If d ∈ N
∗ and m ∈ ]0,+∞[, following [21, Section 6.G], we define

the lower orthant order on {µ ∈ M(Rd) : µ(Rd) = m} by: µ �lo ν if, for all point
(x1, . . . , xd) of Rd, µ(]−∞, x1]× · · · × ]−∞, xd]) > ν(]−∞, x1]× · · · × ]−∞, xd]).

Proof. Adapting [22, Chapter 7] (written in the spirit of [12]), [16] or Proposition
5.4 to our context we obtain the first part of the theorem for every d > 1. This
requires slight modifications that we do not detail: Villani’s chapter is in fact
written for geodesic curves (µt)t between prescribed µ0 and µ1 whereas Lisini’s
processes are attached to curves (µt)t∈[0,1] of finite energy but the processes of
the sequence are constant on each interval between two consecutive points of the
partition, whereas ours is linear. Note, as an indication, that our measures Γn

minimize A in {Γ ∈ P(C([0, 1],Rd)) : ∀r ∈ Rn, Γ
r = µr}, the minimum being

A(Γn) = E(µ,Rn).
In case d = 1, take as before a nested sequence (Rn)n given by Theorem A

of [13], then Q[Rn] converges to MQ in P(C) by Proposition 5.4. Up to taking a
subsequence, the same sequence of partitions permits Γn ∈ DispRn

to converge to

some Γ. By Definitions 3.8 and 7.2, for every S ⊂ Rn the measure (projS)#Γn

coincides with (projS)#Q[Rn] and:

(projS)#Γ = (projS)#MQ.

As R∞ is dense in [0, 1] and the measures are concentrated on C it follows that
Γ = MQ. This proves the existence part in case d = 1
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For the uniqueness statement, take as before a nested sequence (Rn)n and let Γn

be the single element of DispRn
(see Remark 7.3). Assume that (Γn)n has a Markov

limit Γ. By Definitions 3.8 and 7.2, for every S ⊂ Rn the measure (projS)#Γn

coincides with (projS)#Q[Rn]. Using the same argument as for Proposition 5.4, up
to taking a subsequence, (Q[Rn])n converges to an element of MargC(µ) that we
denote by Γ′. Hence for every S ⊂ R∞,

(projS)#Γ = (projS)#Γ
′.

As R∞ is dense in [0, 1] and the measures are concentrated on C it follows Γ′ = Γ.
Note now that for every n ∈ N, the measure Q[Rn] has increasing kernels, which
is by Lemma 2.24 of [13] a closed condition for the weak topology, so that it also
holds for Γ′. Finally Γ′ is a process satisfying (a)(i) and (ii) of Theorem A+B p. 7.
For s < t, on the one hand we have Γs,t �lo MQs,t because the Markov-quantile
measure is minimal (Theorem A+B, point (a)(iii)). On the other hand, for every
s < t in R∞ we have MQs,t �lo Γs,t because (Γ′)s,t is a limit of products of quantile
couplings, and MQs,t is defined in Proposition 4.16 of [13] as a supremum in this
class for �lo. Hence, the Markov processes Γ = Γ′ and MQ have the same law on
R∞, thus coincide as measures on C. �

8. Open questions: a Markov minimizer for the action in metric

spaces

(a) Theorem 7.4 states the existence of a process Γ minimizing the Lagrangian
action A(Γ) as well as a uniqueness part concerning MQ. This second statement
is proved for d = 1. It also makes sense in R

d for d > 2 and even for geodesic
Polish spaces (see the next point) but it is unknown whether it holds true. For
R

d, combined with Proposition 6.5 (b), a positive answer would in particular imply
that there exists a Markov Lagrangian representation of the continuity equation.

(b) The action A and energy E are defined on metric spaces. Definition 7.2 can
also be extended to geodesic Polish metric spaces X in a natural way based on
processes representing the geodesics of P2(X ) as in [22, Corollary 7.22] or [1, §2.2].
The first part of Theorem 7.4 is also true in this setting; we did not prove it to
avoid technicalities. However, the question of the existence of an analogue of the
Markov-quantile process on such a metric space seems us very interesting from an
Optimal Transport perspective.

(c) Other questions are listed in §5 of our first paper [13]. It is for instance
unknown whether MQ is strongly Markov. One may wonder if in R

d or X there
always exists a strongly Markov process minimizing the Lagrangian action of µ ∈
AC2 and if it would be uniquely determined by this property. A similar statement
for the simple Markov property is already false for d = 1 as attests [13, Example
5.4].
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