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Abstract—This paper presents a statistical methodology for 

detection of inter-turn short circuit fault in asynchronous and 
synchronous machines. This methodology uses a correlation 
coefficient obtained from external magnetic field measured in the 
machine vicinity. It is a noninvasive method which follows up the 
signals of two external flux sensors located symmetrically around 
the machine axis (180° spatially shifted). The principle is based 
on the calculation of the Pearson correlation coefficient between 
two signals delivered by two sensors S1 and S2 when the machine 
operates at different load conditions, which allows us to detect 
incipient faults in electrical induction and synchronous machines 
with a high probability of detection. Experimental tests are 
realized using two specific rewound machines to create inter-turn 
short circuit faults with different severity levels. 
 

Keywords—Correlation Coefficient, Electricals Machines, Inter-
Turn Fault, Fault Diagnosis, Magnetic Flux Sensors 
 

I. INTRODUCTION 

N numerous previous works, it is shown that electrical 
machines incur a wide range of mechanical problems common 
to most machinery, like unbalance, bearing faults, resonance 
[1]-[5]. But electrical machines also incur their own specific 
set of problems, which are the result of mechanical, thermal, 
or electrical stress. In this case, monitoring devices relying the 
information provided by the magnetic fluxes produced by any 
incipient magnetic or electric unbalance may be efficiently 
used in addition to, or as alternatives to the widely used 
current monitoring. Based on numerous evaluation test, the 
stator current and external leakage flux were selected as the 
most practical signals containing the needed information for 
detection of the inter-turn short circuit faults [6]-[8]. In 
practice, there are many factors which can cause the stator 
winding faults as the supply voltage transient generated by 

lightning, opening or closing of circuit breakers and also by 
variable frequency drives. Thermal and environmental stresses 
are another factor created by the overloading or by a hostile 
environment [9]. It is very useful to detect these faults at an 
early stage for safety operations of these machines, because 
the failures can lead to more energy consumption and 
unexpected stop of the system. 

 The history of fault detection and diagnosis of electrical 
motors goes back to almost the date of their invention but, 
over the last few years, there has been an increase in the 
application of many methods of diagnosis. Contemporary 
researchers have also been involved in rigorous researches to 
come up with more efficient and sensitive inter-turn winding 
faults detection schemes [10]-[12]. Recently, several methods 
used for the diagnosis of electrical machines, based on current 
signature analysis and vibration [13]-[15] have been 
developed. Although their effectiveness has been 
demonstrated, the generalization of these methods in the 
industrial environment remains limited because their cost is 
relatively important. A number of time frequency domain 
techniques have been also proposed, which includes Short 
Time Fourier Transform [16], Artificial Neural Networks [17], 
[18] and Improved Artificial Ant Clustering Technique [19]. 
Another technique used for induction motor fault detection 
exploits Artificial Intelligence tools, such as Expert Systems, 
Fuzzy Logic [20]. These techniques can detect faults in 
electrical machines, but their implementation requires 
complex data acquisition equipment, sometime additional 
measurements and takes a relatively long time [21]. 

In industrial applications, it is interesting to use fully non-
invasive measurement methods to detect faults in electrical 
machines without stopping or modifying the operation systems 
as the method presented in [22], where the diagnosis is based 
on the analysis of sensitive harmonics when the reactive 
power varies. The advantage of this method is that it uses only 
the external magnetic field analysis, it is fully noninvasive, 
and it can be implemented for asynchronous (AM) and 
synchronous machines (SM). 

The principle exposed in [22] considering a 11kW AM is 
extended in this paper by introducing the calculation and the 
analysis of the Pearson correlation coefficient between two 
signals delivered by two coil sensors S1 and S2 with a 10kW 
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SM. These sensors are located symmetrically relatively to the 
axis of the machine [23] and a specific harmonic of the 
electromotive forces induced in the coils is used as fault 
indicator to calculate the Pearson correlation coefficient. The 
interest of this extended study is double, firstly it allows the 
validation of the principle for a SM in order to generalize it 
and the second is that the considered machine allows us to 
realize the incipient faults (1, 3 or 5 short-circuited turns) in 
order to test the reliability of the proposed method.  

Compared to works [7], [24] which exploit the difference of 
variation and ratio of the amplitude of two coil sensors by 
fusion process of flux sensors signals using belief functions 
theory, this paper proposes the use of the Pearson correlation 
coefficient to summarize both information. 
This paper is organized as follows: section II presents the 
methodology of the diagnosis procedure and the principle of 
the Pearson correlation coefficient and section III presents the 
experimental results demonstrating the validity of the 
proposed method.  

II. TECHNIQUE OF THE CORRELATION COEFFICIENT 

FOR FAULT  DIAGNOSIS  

The principle of the method is schematized in Fig.1: two 
sensors S1 and S2 are placed at 180° from each other around a 
machine. Those sensors measure the external magnetic field in 
the vicinity of the machine which may present internal faults.  
 

 
The method exploits the magnetic dissymmetry induced by 

an internal stator winding inter-turn fault. In healthy case, the 
distribution of the field lines stays practically symmetrical 
around the machine. So, the signals measured by the sensors 
S1 and S2 are almost identically. In faulty case when a fault 
appears, the distribution of the magnetic field around the 
machine changes and its symmetry is lost as consequence of 
the new stator current distribution.  
Due to the dissymmetry, the sensors S1 and S2 placed at 180° 
from each other will provide signals with different magnitude.  
This phenomenon can be measured for machines with 4, 6, 
8… poles, (only the 2 pole machine requires further analysis 
because the faulty machine remains symmetrical). In order to 
increase the sensitivity of the method, the analysis will not 
focus on the full signal but on a specific spectral line of the 

spectrum, which is known to be sensitive to a fault. In the 
following, the magnitude of this spectral line for the positions 
S1 and S2 will be denoted respectively AS1 and AS2.  
For a stator inter-turn short circuit fault, these sensitive 
harmonics can be determined from an analytical model of the 
faulty machine that considers the slotting effect [8]. This 
model can be applied independently to asynchronous or 
asynchronous machines, by adapting the number of rotor and 
stator slots. It is shown that the corresponding frequency 
depends on the number of rotor slot Nr, the machine speed n 
[rpm] and the p pairs of pols. For a 50Hz supply frequency, 
this sensitive frequency is given by: 

50
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Equation (1) leads to define two frequencies. The method can 
be applied for both frequencies, but one is enough, the highest 
magnitude for example. The principle of the method, detailed 
in [24], is not to exploit AS1 and AS2 as single data, but to 
analyze the variation of these magnitudes when the load of the 
machine changes. It is shown in [24], that feature can be 
extracted from these variations and therefore a diagnostic 
procedure can be defined. In this work, the proposed 
procedure uses the calculation of Pearson correlation 
coefficient r between those specific harmonics in healthy and 
faulty conditions of the machine. 
The population Pearson correlation coefficient, ρX,Y between 
two random variables X and Y is defined as:  
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where 
_

x  and 
_

y  are the sample means of X and Y  

The correlation coefficient r always belongs to the interval 
[-1, 1] [26], [27]. The values of r can vary depending on the 
type of data, which are examined.  

Let consider As1 and As2 the amplitudes of these variables 
in both positions, which are used as inputs to calculate the 
Pearson coefficient. Different values of As1 and As2 
corresponding to various load conditions are considered. 
Considering a load increase, the method can be described as 
follows: 
• If the values of r are close to 1, there is a strong positive and 
linear correlation between As1 and As2, this means that 
variables vary similarly as shown in Fig. 2. This indicates no 
fault in the stator windings of the machine. 

 

Fig. 1. Position 1 of sensors S1 and S2 placed at 180° around the 
electrical machine. 
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Fig. 2. Relationship between signals As1 and As2 for healthy condition of the 

machine and load variation when r is close to 1. 
 

• If the value of r is close to 0, there is no linear correlation or 
a weak linear correlation between As1 and As2. This means 
that the variables do not change similarly, and it indicates a 
fault in the stator windings of the machine as shown in Fig.3. 

 

 
• If the value of r is close to -1, there is a strong negative 

linear correlation between As1 and As2. This means that the 
variables vary in the opposite direction as shown in Fig.4. This 
also indicates a fault in the stator windings. 

 
Fig. 4. Relationship between signals As1 and As2 for faulty condition of the 

machine and load variation when r is close to -1. 
 
As with papers [7] and [24], this paper proposes to use the 
values of two flux sensors to detect stator winding inter-turn 

fault in electrical machines. Nonetheless, these approaches 
differ in the way to interpret these measures. In the papers [7] 
and [24], the same information, called difference of variation, 
is computed with these measurements. In [7], in addition of 
this information, the absolute value of the difference 
measurements is used to improve the detection. However, in 
order to use this last information, it is necessary to define a 
threshold which may differ from one machine to another. 
Another approach without threshold, called ratio of the 
amplitude, is proposed in [24]. This ratio has a natural 
tendency to overestimate the presence of defects. The 
approach being proposed here, based on Pearson correlation 
coefficient, is used to summarize both information difference 
variation and the difference measurements for [7] (or 
difference variation and ratio of the amplitude for [24]) 
without the weaknesses of the initial methods. 

Moreover, in the papers [7] and [24], different positions of 
both sensors have been used to help the detection of defaults 
which cannot be detected in one position. Here only one 
position is used. This aspect could be study in future works. 

III.  EXPERIMENTAL RESULTS  

A. Description of the Experimental Test Bench 

This section presents experimental results obtained on two 
electrical machines which parameters are presented in Table I. 

 
 
The asynchronous machine shown in Fig.5, with 32 rotor 

slots (Nr=32) leads to sensitive spectral lines at 750Hz and 
850 Hz.  

 

 
The line at 850Hz is chosen for the analysis because 

Fig. 3. Relationship between signals As1 and As2 for faulty condition of the 
machine and load variation when r is close to 0. 

TABLE I 
THE CHARACTERISTICS OF TESTED MACHINES 

 AM SM 

Machine type asynchronous synchronous 
Power (KW) 11 10 
Frequency (Hz) 50 50 
Poles 4 4 
Stator slots 48 54 
Rotor slots 32 32 
Balanced line voltage (V) 380/660 220/400 
Synchronous speed (rpm) 1500 1400 
Rated speed (rpm) 1450 1400 
cosφ  0.83 0.7 

 

 

Fig. 5. Test bench for the 11kW AM. 
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experimental tests highlight a higher magnitude of the line at 
850Hz compared to the one at 750Hz. Actually, both 
harmonics have rather low magnitude, and for better 
robustness of the method it is preferable to take the one with 
higher magnitude. For the asynchronous machine, this 
frequency actually depends on the slip, but it will be still 
denoted as “the line at 850Hz”. 

The synchronous machine illustrated in Fig.6 is a machine 
with smooth rotor similar to the rotor of a turbo generator 
(contrarily to a salient pole machine). The rotor is regularly 
slotted similarly to the stator, with a DC current which flow 
through the winding. It has also 32 rotor slots (Nr=32) but 
some slots are not filled by the winding. Equation (1) also 
leads to sensitive spectral lines at 750Hz and 850Hz, but for 
the synchronous machine, the 750Hz spectral line has a higher 
magnitude than the 850Hz one, contrarily to the asynchronous 
machine. Therefore, the 750Hz line will be chosen for the 
analysis. 
In a practical case, without any prior information about 
harmonic magnitudes, it can be advised to extract both 
harmonics from the signal, with an FFT. Then the one with the 
highest magnitude should be considered for the analysis with 
the Pearson coefficient. If the frequencies are rather similar, 
both can be considered and we recommend taking the result 
with the lowest correlation coefficient. 

 

 
 
These two machines allow us to simulate a damaged coil 

(short-circuit coils) and to test the proposed method. For this 
purpose, a number of experiments are carried on in the 
considered machines. Each one is assembled and designed to 
study the behavior of the motor in faulty condition. So, for the 
tests, the stator winding of the machine has been modified to 
offer the possibility to make different levels of short circuits 
between turns as can be seen in electrical winding scheme 
presented in Fig. 7. This configuration allows us to short-
circuit any elementary coil (turns placed in one slot) in the 
stator windings that corresponds to 12.5% of a full phase. A 

rheostat is used to limit the value of short-circuit current 
during the tests. 

 

 
 

The measurements of the amplitudes As1 and As2 are 
achieved using 6 loads for AM and 6 loads for SM. As shown 
in Fig.5 and Fig. 6 the two flux sensors S1 and S2 are placed 
in opposition (at 180°), against the machine in the middle to 
reduce the influence of end winding effects. Each sensor is a 
circular coil composed of 380 turns, which measures the 
external magnetic field around the machine and gives an emf 
proportional to it. The amplitude of this signal (mV) is 
strongly depends on the machine frame attenuation, sensors 
position and number of turns, so the acquisition device must 
be able to measure with accuracy this type of signal. The 
signal spectrum is obtained considering the sampling 
frequency fixed at fe=10Khz, acquisition time Ta=10s and a 
frequency resolution ∆f= ±0.1Hz. As for AM and SM the 
interest harmonics are inferior at 1KHz, the signal is recorded 
by means of a numerical low pass filter with a limited 
frequency of 1500Hz. It has been proved that a simple external 
flux sensor is more efficient than the classical stator current 
signature analysis to detect inter turn short-circuit in three-
phase induction machine [23], [28]. 

B. Calculation Example 

For AM, the amplitude variation of the harmonic at 850 Hz 
is analyzed considering a load increase. The six different load 
levels, corresponding to different output power chosen in the 
tests are: L0=0W, L1= 128W, L2=513W, L3=1260W, 
L4=2500W and L5= 4000W. 

 

 
To calculate the correlation coefficient r with two variables 

As1 and As2, let us consider x the variable As1 of sensor S1, y 
the variable As2 of sensor S2 and nl the number of loads. The 

 

Fig. 6. Test bench for the 10 kW SM. 

 
Fig. 7. Electrical winding scheme of asynchronous machine. 

TABLE II 
 MEASUREMENT OBTAINED FROM SENSORS S1 AND S2 AROUND 

THE HEALTHY  AND FAULTY  AM 

 
 HEALTHY    

MACHINE 
FAULTY   

MACHINE 
 

LOADS 
(W) 

S1(µV) S2(µV) S1(µV) S2(µV) 

L0 13.58 13.98 55 67 
L1 13.94 14.13 10 26 
L2 18.9 18.53 18 34 
L3 32.02 30.41 21 10 
L4 45.33 42.73 14 61 
L5 77.27 72.89 4 119 
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measurements obtained by the sensors are summarized in 
Table II where the values obtained for a load increase, in 
healthy and faulty conditions for AM are reported. 

From (3) and measurement presented in Table II, it comes 
results shown in Fig. 8.  

 

 
 
It can be seen that in healthy AM, there is a strong positive 

correlation coefficient (r = 0.9999) between As1 and As2. This 
means that the variables vary in the same direction and there is 
a linear correlation between As1 and As2. In faulty conditions, 
it is calculated a very weak negative correlation coefficient (r 
=-0.1060) between As1 and As2. It is obtained with 10A short-
circuit current in the circuit position at P (33-34) and its low 
value indicates a fault in the stator windings of the machine. 

C. Analysis Results for AM 

A series of measurements is realized for different positions 
of short circuit obtained in following cases: 

- Without short-circuit.   
- One fault on Phase A (short-circuits on coil 1-2).  
- One fault on Phase B (short-circuits on coil 9-10). 
- One fault on Phase C (short-circuits on coil 17-18). 
- One fault on Phase A (short-circuits on coil 25-26).  
- One fault on Phase B (short-circuits on coil 33-34). 
- One fault on Phase C (short-circuits on coil 42-43). 
For each case, measurements are performed with three 

values of the short circuit current: Icc=5A, Icc=10A, Icc=15A. 
Table III gives the value of the correlation coefficient r 

calculated with 6 load levels for different fault positions and 
different short circuit current values. So, 24 arrangements are 
analyzed: 6 healthy cases and 18 faulty cases. 

 

 
In healthy condition of the machine, it can be observed that 

the correlation coefficient r is very high and close to 1 
(r=0.9999). That represents the highest value obtained for all 

cases used for evaluation. In this case, the relationship 
between the two sensors is linear and indicates a strong 
positive correlation between the two variables. 

In faulty condition, the magnetic dissymmetry generated by 
the fault leads to a difference between the signals delivered by 
sensors S1 and S2, and therefore between the magnitude As1 
and As2 of the 850Hz sensitive harmonic. Then the correlation 
coefficient r will fall down. This can be observed when in 
faulty condition r decreases for all the cases relatively to the 
healthy cases.  

Actually, the value of r depends on the fault severity and 
the position of the short circuit in the machine relatively to the 
sensors locations. Let us analyze the influence of a threshold 
of r value on the efficiency of the fault detection: 

• For rmax = 0.95, the method can detect 17 faulty cases 
among the 18 existing ones. Here, the method can detect 
94.4% of the faults.  

• For rmax = 0.90, the method can detect 14/18 faults. Here, 
even for a fault of high severity (Icc =15A) one faulty case can 
be missed. Here, the method can detect 77.78% of the faults.  

• For rmax = 0.85, the method can detect 50% of the faults 
for the 5A short circuit case. 

Figure 9 presents an illustration, from values in Table III of 
the correlation coefficient. Each corner represents the short –
circuit on specific coil (as example coil 1-2) which have the 
value r = 1 for healthy machine.  

 

This presentation has the advantage of exposing 
simultaneously multiple faults and the distance of r from 1.  
We can remark a decrease of correlation coefficient r for each 
short-circuit position, which generally decreases with the 
increase of the Icc current. For some positions, corresponding 
to a “good” positioning of the sensor related to short-circuit 
winding position this coefficient can turn into negative value. 
A low value for r means that a fault is detected as is the case 
of P (42-43) with a short circuit current Icc=5A and when r=-
0.5642.  

 
Fig. 8. Different values of the correlation coefficient r for healthy and 

faulty asynchronous machine. 
 

TABLE III 
 CORRELATION COEFFICIENT VALUES OBTAINED FOR SENSORS 

S1 AND  S2 PLACED IN  OPPOSITION, 180° AROUND   OF AM. 

SHORT-
CIRCUIT 

NOT  FAULT ICC =5A ICC =10A ICC =15A 

P (1-2) 
P (9-10) 

0.9999 0.9089 0.8562 0.6814 
0.1971 0.9999 0.8686 -0.4097 

P (17-18) 0.9999 0.9865 0.8644 0.8446 
P (25-26) 0.9999 0.7550 0.9423 0.9427 
P (33-34) 0.9999 0.6948 -0.1060 -0.1478 
P (42-43) 0.9999 -0.5642 0.5127 0.8677 

 

 
Fig. 9.  Values of correlation coefficient r for different short-circuit 
currents and short circuit positions in the AM stator. 
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D. Analysis of the Results for SM 

In experimental tests for the synchronous machine operating 
as motor, the elementary sections have been chosen such that 
it is possible to study a short circuit close to the input of the 
phase (phase A), in phase medium (phase B) or near the 
neutral (Phase C) as presented in Fig.10. The global number of 
turns in the phase A is 126 and a short-circuit between 1-2 
corresponds to one short-circuit turn (0.8% of a full phase), 
between 2-3 to three short-circuit turns (2.38%), and between 
1-4 to five short-circuit turns (4%). 

 

 

 
As mentioned earlier, for this machine, the analyzed 

amplitude is realized for the harmonic at 750 Hz. This choice 
is realized in correlation with (1) and with experimental tests 
which take in consideration the solid iron frame of the SM 
which acts as a low pass filter for magnetic field that leads to a 
higher magnitude for the 750Hz harmonic compared to the 
one at 850Hz. The amplitude variation is analyzed considering 
a load increase. The six different output powers chosen for the 
tests are: L0=0W, L1= 830W, L2=2500W, L3=4900W, 
L4=8020W and L5= 9500W. 

For the healthy synchronous machine, the correlation 
coefficient calculated between the magnitude As1 and As2 is 
very high and close to 1 (r = 0.998, Fig. 11). It shown a linear 
correlation compared with the coefficient of the faulty SM (r= 
-0.5297) when a weak correlation between As1 and As2 is 
obtained. This test is realized with a 3A short circuit current 
and the short- circuit position at (1-2). This means that the 
variables do not change similarly, and it can indicate a fault in 
the stator windings of the machine. 

To confirm the hypothesis that a low value of r is an 
indicator of a fault presence in the machine, a series of 
measurements is realized for each load and for different 
positions of short circuit. They are realized as follows: 

 

 
- Without short-circuit,   
- Three fault on Phase A (short-circuits between 1-2, 2-3, 

and 1-4),  
 - Three fault on Phase B (short-circuits between 1-2, 2-3, 

and 1-4),  
 - Three fault on Phase C (short-circuits between 1-2, 2-3, 

and 1-4). 
 The value of the measured current in each case of the 

short circuit fault was as follows:  
 -Icc=3A for short-circuits on coil ‘1- 2’, one shorted turn 
 -Icc=9A for short-circuits on coil ‘2-3’, three shorted turns 
 -Icc=15A for short-circuits on coil ‘1- 4’, five shorted 

turns.   
The results presented in Table IV will therefore be limited 

to the results obtained for motor operation. 
 

 
 
In Table IV the highest value of r is obtained in healthy 

condition of the machine. In this case, the relationship 
between the two sensors is linear and indicates a strong 
positive correlation between the two variables.  

The influence of the fault severity is tested by increasing the 
number of short-circuited turns at 1, 3 or 5, associated with an 
increase of the short-circuit current at 3A, 9A and 15 A 
(because here, the resistance that limits the short circuit 
current does not change). The aim of this test is to determine if 
an incipient fault can be detected and what is the sensitivity of 
the method. From Table IV it can be seen that the correlation 
coefficient always decreases compared to the healthy case. 

Actually, the value of r depends on the fault severity and 
the position of the short circuit in the machine relatively to the 
sensors locations. It is interesting to remark that, sometime a 
low incipient fault (1 turn) can give a fall down of the r value 
(-0.5297) and a more important fault (5 turns) only a low 
variation (0.968). This was also the case for the AM (see Fig.  
11, fault in P (42-43)). As for AM, a good fault detection 
depends on the chosen threshold level: 

 
a)  

 

 
 

b)  
Fig. 10. Stator configuration of synchronous machine:  a) external access at 

different turns positions between the four pols of each phase  b) electrical 
winding schema 

 

 
Fig. 11. Different values of the correlation coefficient r for healthy and 

faulty SM. 
 

TABLE IV 
CORRELATION COEFFICIENT VALUES OBTAINED FOR SENSORS S1 

AND S2 PLACED IN OPPOSITION, 180° AROUND   OF SM. 

SHORT-
CIRCUIT 

NOT  FAULT ICC =3A 
1 TURN 

ICC =9A 
3 TURNS 

ICC =15A 
5 TURNS 

PHASE -A 0.9987 -0.5297 0.7469 0.9681 
PHASE -B 0.9987 0.4935 0.8122 0.8078 
PHASE -C 0.9987 0.5945 0.0173 0.4495 
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• For rmax = 0.97, the method can detect 9 faulty cases 
among the 9 existing 9/9. 

• For rmax = 0.90, the method can detect 8/9 faults.  
• For rmax = 0.85, the method allows us to detect 8/9 case as 

for the last threshold. 
So, the method can detect 89% of the faults in most of the 
cases including also the case when the fault is only on one 
turn. A global analysis of the correlation coefficient value with 
simultaneous three phases is presented in Fig.12 where the 
great dissymmetry of the figure shown the fault detection for 
considered positions. The moving of the triangle corners 
towards the center of the blue triangle means a detection of the 
fault. We can remark a good sensitivity of this method for 
incipient faults (1 turn, r=-0.5297) and a decrease of the 
correlation coefficient for each faulty case. Here the level of 
the short circuit current is not essential for fault detection and 
the threshold value supports slight variations without notable 
changes in the percentage of fault detection. 

 
Fig. 12. Global presentation of correlation coefficient value considering the 

three phases of the SM and three short-circuit currents. 
 

An increase of the fault detection percentage can be 
obtained with additional measurements at other sensor 
position, to increase to chance for the sensors to be close to the 
faulty winding axis. However, this requires more sensors, and 
need to have free space around the machine to place the 
sensors. 

IV. CONCLUSION 

This paper presents a statistical methodology for detection 
of short-circuit faults in the stator windings for asynchronous 
and synchronous three phase machines. It proposes the 
calculation of a correlation coefficient r obtained by analyzing 
the evolution of magnetic flux harmonics measured around of 
the machine frame in no load and load condition to detect the 
incipient faults. This diagnosis technique based on magnetic 
flux measurement is highly likely to meet criteria for this type 
of fault consequence of magnetic field sensitivity at low 
unbalanced created by faults. 

The advantage of the proposed method is that it is reliable, 

inexpensive and simple to implement. This noninvasive 
method uses two flux coil sensors diametrically located to 
measure the external magnetic field in the vicinity of the 
machine. The method only needs the knowledge of the 
number of rotor slots. From this, frequencies of sensitive 
harmonics are deduced. Pearson correlation coefficient is 
proved a useful tool for detecting a fault by one indicator, its 
use in proposed application allow to detect 94% for (AMs) of 
the fault and 89% for (SMs) of the faults including when the 
fault is in one turn. Moreover, the method has a high-level 
accuracy and speed for the faults detections. On the other 
hand, this method does not require any knowledge on the 
presumed healthy state of the machine. A difference of values 
of the Pearson correlation coefficient is a good indicator of 
inter-turn short circuit fault and the increase of the fault 
detection percentage can be obtained with additional 
measurement at other sensor position if the sensors can been 
placed around the machine.  
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