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Abstract. The capacitated vehicle routing problem with stochastic de-
mands can be modelled using either the chance-constrained approach or
the recourse approach. In previous works, we extended the former ap-
proach to address the case where uncertainty on customer demands is
represented by belief functions, that is where customers have so-called
evidential demands. In this paper, we propose an extension of the re-
course approach for this latter case. We also provide a technique that
makes computations tractable for realistic situations. The feasibility of
our approach is then shown by solving instances of this difficult problem
using a metaheuristic algorithm.

Keywords: Vehicle routing problem, Stochastic programming with re-
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1 Introduction

In the Capacitated Vehicle Routing Problem (CVRP), one aims at finding a
set of routes of minimum cost, such that a fleet of vehicles initially located
at a depot, collect goods from a set of customers with deterministic collect de-
mands, while respecting the capacity restrictions of the vehicles. The CVRP with
Stochastic Demands (CVRPSD) [14] is a modified version of this problem, where
customers have stochastic demands such that, in general, the vehicle capacity
limit has a non zero probability of being violated on any route. It is a stochastic
integer linear program, which can be modelled by two main approaches: Chance
Constrained Programming (CCP) and Stochastic Programming with Recourse
(SPR) [1]. Modelling the CVRPSD via CCP consists in having constraints spec-
ifying that vehicle capacity limit on any route must not be violated with a high
probability. While an SPR model for the CVRPSD allows so-called recourse ac-
tions to be performed along a route, such as returning to the depot to unload, in
order to bring to feasibility a violated capacity limit. The cost of these actions is



considered directly in the problem objective [14]. Specifically, the total expected
travel cost is subject to minimisation, this cost covering the classical travel cost,
i.e., the cost of travel if no recourse action is performed, as well as the expected
cost of the recourse actions. SPR models of the CVRPSD have a wider range of
applications than CCP models, but they are generally more involved.

Recently [7], another variant of the CVRP was considered: the CVRP with
Evidential Demands (CVRPED), where evidential means that uncertainty on
customer demands is represented by belief functions [11]. Belief function theory is
an alternative framework to probability theory for modelling uncertainty, and it
can naturally account for uncertainty on customer demands in various situations,
such as when pieces of information on customer demands are partially reliable.
In [7], the CVRPED was modelled using an extension of the CCP approach used
for CVRPSD, and subsequently solved using a metaheuristic, which is a classical
means to tackle the CVRP, because it is NP-hard. In this paper, the CVRPED is
modelled using an extension of the other main approach to modelling stochastic
programs, that is by extending the SPR approach used for the CVRPSD, and
then it is also solved using a metaheuristic algorithm.

Note that, to the best of our knowledge, this is the first time that an integer
linear program involving uncertainty represented by belief functions is tackled
using such a modelling approach. Indeed, besides [7], other works [9,12,8] handled
optimisation problems involving uncertainty represented by belief functions in
the case of continuous linear programs, which are usually much less difficult to
solve than their discrete counterparts. In particular, Masri and Ben Abdelaziz [8]
extended both CCP and SPR to model linear programs involving belief functions
(so-called belief linear programs).

This paper is organised as follows. Necessary background on SPR modelling
of CVRPSD and on belief function theory is recalled in Section 2. An extension
of the recourse approach for the CVRPED is presented in Section 3. Experiments
on CVRPED instances solved using a simulated annealing metaheuristic adapted
from [6], are reported in Section 4. Section 5 concludes the paper.

2 Background

2.1 CVRPSD Modeled by SPR

In the CVRP, a fleet ofm identical vehicles with a given capacity limitQ, initially
located at a depot, must collect1 goods from n customers, with 0 < di ≤ Q the
indivisible deterministic collect demand of client i, i = 1, . . . , n. The objective is
to find a set of m routes with minimum cost to serve all the customers such that
i) total customers demands on any route must not exceed Q; ii) each route starts
and ends at the depot; and iii) each customer is serviced only once; we refer to [2]
for a formal description of these constraints. Let Rk be the route associated to
vehicle k and ci,j be the cost of traveling from customer i to customer j. The

1 The problem can also presented in terms of delivery, rather than collection, of goods.



objective is thus to

min

m∑
k=1

C(Rk),

where

C(Rk) =

n∑
i=0

n∑
j=0

ci,jwi,j,k, (1)

with wi,j,k a binary variable that equals 1 if vehicle k travels from i to j and
serves them, and 0 if it does not.

In the CVRPSD, each client demand di, i = 1, . . . , n, becomes a random
variable, such that P (di ≤ Q) = 1. As a consequence, a vehicle might not
be able to load all of the actual customer demands on any given route having
more than one customer. The SPR approach deals with this issue by permitting
recourse actions, such as allowing vehicles to return to the depot to unload when
they are full. These actions lead to extra costs for routes, which we call penalty
costs, and it is generally possible to compute the expected penalty cost of a
route induced by the stochastic demands. A general expression for SPR models
of CVRPSD is then the following. The objective is to find a set of routes that

min

m∑
k=1

Ce(Rk),

where Ce(Rk) is the expected cost of Rk defined by

Ce(Rk) = C(Rk) + Cp(Rk),

with C(Rk) the cost defined by (1) representing the cost of traveling along Rk if
no recourse action is performed, and Cp(Rk) the expected penalty cost on Rk –
Cp(Rk) may be defined in many different ways depending on the recourse policy
used (see, e.g., [5,4]).

2.2 Belief Function Theory

Let us recall the concepts of belief function theory needed in this study. Let x be
a variable taking its values in a domain X. In this theory, uncertain knowledge
about x may be represented by a Mass Function (MF) defined as a mapping
mX : 2X → [0, 1] such that mX (∅) = 0 and

∑
A⊆X m

X(A) = 1. The quantity

mX(A), for some A ⊆ X, represents the probability of knowing only that x ∈ A.
Subsets A ⊆ X such that mX(A) > 0 are called focal sets. A MF whose focal
sets are singletons, i.e., mX(A) > 0 iff |A| = 1, corresponds to a probability
mass function and is called a Bayesian MF. Furthermore, a variable x whose
true value is known in the form of a MF will be called an evidential variable.

Finally, given a MF mX and a function h : X → R+, it is possible to compute
its upper expected value E∗(h,mX) defined as [3]

E∗(h,mX) =
∑
A⊆X

mX(A) max
x∈A

h(x).



3 Recourse approach for the CVRPED

In this section, a recourse approach is proposed for the case where uncertainty
on customer demands in the CVRP is represented by belief functions.

3.1 Formalisation

Assume customer demands di, i = 1, . . . , n, are no longer deterministic or ran-
dom, but evidential, i.e., the actual demand of customer i is known with some
uncertainty represented by a MF. In such case, one obtains a new problem called
CVRPED. As shown in [7], this problem can be addressed via a constrained pro-
gramming approach. However, similarly to what has been done for the case of
belief linear programs [8], this problem may be also addressed using an exten-
sion of the other main approach to modelling stochastic programs, that is by
extending the recourse approach of CVRPSD to CVRPED.

Specifically, we propose to extend the recourse approach, for the following
policy and assumptions studied for the stochastic case in [5,4]. Each actual cus-
tomer demand cannot exceed the vehicle capacity. In addition, when a vehicle
arrives at a customer on its planned route, it is loaded with the actual customer
demand up to its remaining capacity. If this remaining capacity is sufficient to
pick-up the entire customer demand, then the vehicle continues its planned route.
However, if it is not sufficient, i.e., there is a failure, then the vehicle returns to
the depot, is emptied, goes back to the client to pick-up the remaining customer
demand and continues its originally planned route.

Consider a given route R containing N customers and, without lack of gener-
ality, that the i-th customer on R is customer i. According to the above setting,
a failure cannot occur at the first customer on R. However, it can occur at any
other customer on R, and there may even be failure at multiple customers on R
(at worst, if the actual demand of each customer is equal to the capacity of the
vehicle, failure occurs at each customer except the first one).

Formally, let us introduce a binary variable ri that equals 1 if failure occurs
at the i-th customer on R and 0 otherwise (by problem definition r1 = 0). Then,
the possible failure situations that may occur along R may be represented by
the vectors (r2, r3, . . . , rN ) ∈ {0, 1}N−1. To simplify the exposition, we define
the set Ω = {ω1, . . . ω2N−1} representing the possible failure situations along R,
with failure situation (r2, r3, . . . , rN ) being in one-to-one correspondence with

ωj where j = 1 +
∑N
i=2 ri × 2i−2. For instance, when R contains only N = 3

customers, we have Ω = {ω1, ω2, ω3, ω4}, where ωj , j = 1, . . . , 4, mean that
the vehicle needs to perform a round trip to the depot, respectively, “never”,
“when it reaches the second customer”, “when it reaches the third customer”,
and “when it reaches both the second and third customers”.

Furthermore, let g : Ω → R+ be a function representing the cost of each
failure situation ω ∈ Ω. Since the penalty cost upon failure on customer i is 2c0,i



(a failure implies a return trip to the depot), the cost associated to failure ωj is

g(ωj) =

N∑
i=2

ri2c0,i,

using the one-to-one correspondence ωj ↔ (r2, r3, . . . , rN ).
Let mΩ be a MF representing uncertainty towards the actual failure situation

occurring on R – as will be shown in the next section, evidential demands may
induce such a MF.

Then, adopting a similar pessimistic attitude as in the recourse approach to
belief linear programming [8], the upper expected penalty cost C∗p(R) of route R
may be obtained as C∗p(R) = E∗(g,mΩ). Accordingly, the upper expected cost
C∗e(R) of route R may be defined as

C∗e(R) = C(R) + C∗p(R),

with C(R) the cost (1) of travelling along route R when no failure occurs.
The CVRPED under the above recourse policy, may then be modelled as the

problem of finding a set of m routes optimising the following objective function

min

m∑
k=1

C∗e(Rk). (2)

Since C∗e(R) is the upper, i.e., worst, expected cost of a route, we note that
optimising (2) has some similarities with the protection against the worst case
popular in robust optimisation [13].

The evaluation of the objective function (2) requires the computation for
each route, of the MF mΩ representing uncertainty on the actual failure situation
occurring on the route. This is detailed in the next section.

3.2 Uncertainty on Recourses

We assume customer demands to be positive integers. Hence, evidential demands
are defined on the finite set Θ = {1, . . . , Q}.

Consider again a route R containing N customers. In addition, let us first
assume that MF mΘ

i representing the evidential demand of the i-th client, i =
1, . . . , N , on R is such that ∃θi ∈ Θ, mΘ

i ({θi}) = 1, i.e., client demands are
known without any uncertainty. Then, it is clear that the above recourse policy
amounts to the following definition for the binary failure variables ri:

ri =

{
1, if qi−1 + θi > Q,
0, otherwise,

∀i ∈ {2, . . . , N} (3)

where qj , j = 1, . . . , N , denotes the load in the vehicle after serving the j-th
customer such that qj = θ1 for j = 1 and, for j = 2, . . . , N ,

qj =

{
qj−1 + θj −Q, if qj−1 + θj > Q,
qj−1 + θj , otherwise.



In other words, when it is known that the demand of the i-th customer is θi, i =
1, . . . , N , then it can be deduced that the failure situation ωj ↔ (r2, r3, . . . , rN ),
with ri defined by (3), occurs. This can be encoded by a function f : ΘN → Ω,
s.t. f (θ1, . . . , θN ) = ωj , with ωj the failure situation induced by demands θi. For
example, suppose we have N = 3 customers on route R, with respective demands
θ1 = 3, θ2 = 3 and θ3 = 5, and the vehicle capacity limit is Q = 5. In such case,
failure situation ω4 ↔ (r2 = 1, r3 = 1) occurs, hence f (θ1, θ2, θ3) = ω4.

Assume now that MF mΘ
i , i = 1, . . . , N , on R is such that mΘ

i (Ai) = 1, with
Ai ⊆ Θ, i.e., client demands are known imprecisely. In such case, it can only be
inferred that the failure situation on R belongs to the subset B ⊆ Ω defined as
(using a common abuse of notation for the image of a set)

B = f (A1, . . . , AN ) =
⋃

(θ1,...,θN )∈A1×···×AN

f (θ1, . . . , θN ) . (4)

More generally, assume that MF mΘ
i , i = 1, . . . , N , have arbitrary numbers

of focal sets and that the joint probability of knowing only that demands of
customers i = 1, . . . , N, belong, respectively, to Ai ⊆ Θ, i = 1, . . . , N , is equal
to
∏N
i=1m

Θ
i (Ai) (this latter equality is not necessary in our approach, but it

simplifies the exposition and corresponds to the case considered in our experi-
ments in Section 4). Then, uncertainty on the actual failure situation on R is
represented by a MF mΩ defined as

mΩ(B) =
∑

f(A1,...,AN )=B

N∏
i=1

mΘ
i (Ai). (5)

Computing mΩ defined by (5) involves evaluating f (A1, . . . , AN ) for all pos-
sible combinations of focal sets of MFmΘ

i , i = 1, . . . , N . Evaluating f (A1, . . . , AN )
for some Ai, i = 1, . . . , N , implies |A1|×· · ·×|AN | (and thus at worst QN ) times
the evaluation of function f at some point (θ1, . . . , θN ) ∈ ΘN . Hence, computing
Eq. (5) is generally intractable. Nonetheless, in the particular and realistic case
where the focal sets of MF mΘ

i , i = 1, . . . , N , are all intervals of positive integers
(which will be the case in our experiments in Section 4), it becomes possible
to compute f (A1, . . . , AN ), and thus Eq. (5), with a much more manageable
complexity. This is detailed in the next section.

We remark that if evidential demands of all customers are Bayesian, then we
are actually dealing with a CVRPSD. In addition, mΩ is in this case Bayesian
on any given route R. Hence, the upper expected penalty cost C∗p(R) reduces to
the classical (probabilistic) expected value of cost function g with respect to the
probability mass function mΩ , and thus our recourse modelling of the CVRPED
clearly degenerates into the recourse modelling of the aforementioned CVRPSD.

Finally, we showed in [7] that the constrained programming modelling of
CVRPED can be converted, in a particular case, into an equivalent CVRPSD
modelled via constrained programming, by transforming each evidential demand
represented by MF mi into a stochastic demand represented by probability mass
function pi such that pi(A) = mi(A), ∀A ⊆ Θ, with A the greatest value in A.



It can be shown that under the recourse approach, this latter transformation
cannot be used in general to convert a CVRPED into an equivalent CVRPSD.

3.3 Interval demands

Let us consider a route R with N customers, such that the demand of customer
i, i = 1, . . . , N , is known in the form of an interval of positive integers, which we
denote by JAi;AiK, where Ai ≥ 1 and Ai ≤ Q. In this case, as explained above,

the failure situation on R belongs to f
(
JA1;A1K, . . . , JAN ;AN K

)
⊆ Ω. Hereafter,

we provide a method to efficiently compute f
(
JA1;A1K, . . . , JAN ;AN K

)
.

In a nutshell, this method consists in generating a rooted binary tree, which
represents synthetically yet exhaustively what can possibly happen on R in terms
of failure situations.

More precisely, this tree is based on the following remark. Suppose a vehicle
traveling along R and all that is known about its load when it arrives at the i-th
customer on R is that its load belongs to an interval Jq; qK. Let us denote by qi
its load after visiting the i-th customer. Then, there are three exclusive cases:

1. either q+Ai ≤ Q, hence there will surely be no failure at that customer and
all that is known is that qi ∈ Jq; qK + JAi;AiK;

2. or q + Ai > Q, hence there will surely be a failure at that customer and all

that is known is that qi ∈ Jq; qK + JAi;AiK−Q;

3. or q + Ai ≤ Q < q + Ai, hence it is not sure whether there will be or
not a failure at that customer. However, we can be sure that if there is
no failure at that customer, i.e., the sum of the actual vehicle load and
of the actual customer demand is lower or equal to Q, then it means that
qi ∈ Jq + Ai;QK ; and if there is a failure at that customer, then it means

that qi ∈ J1; q +Ai −QK.

By applying the above reasoning repeatedly, starting from the first customer
and ending at the last customer, whilst accounting for and keeping track of all
possibilities and their associated failures (or absence thereof) along the way, one
obtains a binary tree. The tree levels are associated to the customers according
to their order on R. The nodes at a level i represent the different possibilities in
terms of imprecise knowledge about the vehicle load after the i-th customer, and
they also store whether these imprecise pieces of knowledge about the load were
obtained following a failure or an absence of failure at the i-th customer. The
pseudo code of the complete tree induction procedure is provided in Algorithm 1,
which is illustrated by Example 1.

Example 1. Let us illustrate Algorithm 1 on a route R where Q = 10 and con-
taining 3 customers, with J4; 8K, J5; 7K and J7; 9K the imprecise demands of the
first, second and third customers, respectively. Since the demand of the first
customer is J4; 8K, and there is no failure by definition at the first customer,
and the customer following the first customer is the second customer, the tree
is obtained with RT (J4; 8K, 0, 2) and is shown in Fig. 1.



Algorithm 1 Induction of Recourse Tree (RT)

Input: interval load Jq; qK, Boolean failure variable r, next customer number i
Output: final tree Tree
1: create a root node containing interval load Jq; qK and Boolean failure r

2: if i = N + 1 then
3: return Tree = {root node}
4: else if q + Ai ≤ Q then
5: TreeL = RT (Jq; qK + JAi;AiK, 0, i+ 1)

6: attach TreeL as left branch of Tree
7: else if q + Ai > Q then

8: TreeR = RT (Jq; qK + JAi;AiK−Q, 1, i+ 1)

9: attach TreeR as right branch of Tree
10: else
11: TreeL = RT (Jq + Ai;QK, 0, i+ 1)

12: attach TreeL as left branch of Tree
13: TreeR = RT (J1; q + Ai −QK, 1, i+ 1)
14: attach TreeR as right branch of Tree
15: end if

(J4; 8K, 0)

(J9; 10K, 0)

(J6; 9K, 1)

(J1; 5K, 1)

(J8; 10K, 0) (J1; 4K, 1)

1st level

2nd level

3rd level

Fig. 1. Recourse tree constructed for Example 1

For a given branch of the tree, by concatenating in a vector the Boolean
failure variable ri at level i, i = 2, . . . , N , we obtain the failure situation ωj ↔
(r2, r3, . . . , rN ). Hence, all the branches of the tree yield the subset B ⊆ Ω. For
instance, the rightmost branch of the tree in Fig. 1 yields the failure situation
(r2 = 1, r3 = 1)↔ ω4, the leftmost branch yields (r2 = 0, r3 = 1)↔ ω3 and the
remaining branch yields (r2 = 1, r3 = 0) ↔ ω2. The tree in this example yields
thus the set B = {ω2, ω3, ω4}.

Proposition 1. The set B built using the tree generated by Algorithm 1 verifies
B = f

(
JA1;A1K, . . . , JAN ;AN K

)
.

Worst-case complexity to obtain set B is O(2N−1) on a route R with N
clients, which is the maximum number of leaf nodes in the tree.

4 Experiments

We used the CVRPED instances described in [7] and deriving from those of
Augerat set A for the CVRP [10]. These CVRPED instances are obtained as
follows. A customer deterministic demand ddet in the Augerat instances is trans-
formed into an evidential demand with associated MF mΘ defined by

mΘ({ddet}) = α, mΘ(Jbddet − γ · ddetc; dddet + γ · ddeteK) = 1− α, (6)



where α ∈ (0, 1) and γ ∈ [0, 1]. This transformation corresponds to assuming
that the deterministic demand of each customer has been provided by a source,
which is reliable with probability α and approximately (at ±γ ∗ 100%) reliable
with probability 1 − α. In addition, we assumed that these latter sources have
independent probabilities of reliability.

Proposition 2. For any α, the upper expected cost of an optimal set of routes
for a CVRPED instance generated from a CVRP instance through transforma-
tion (6) and modelled via the recourse approach, is non decreasing in γ.

Proposition 2 basically shows that the more a decision maker is uncertain (cau-
tious) with respect to actual customer demands, i.e., the greater γ is, the greater
will be the (upper expected) cost of the optimal solution to his associated op-
timisation problem. Proposition 2 also yields a lower bound on the cost of the
optimal solution to any CVPRED instance built using (6): it is obtained by
solving to optimality under the recourse approach the corresponding Augerat
set A instance, since such instance corresponds to setting γ = 0 in (6).

In order to solve CVRPED instances under the recourse approach, we adapted
a simulated annealing metaheuristic algorithm originally introduced for CVRP
in [6]. However, we do not describe this adaptation here due to space limitation.

In our experiments, parameters α and γ of the CVRPED instances were set
arbitrarily to 0.8 and 0.1, respectively. Each instance was solved 30 times and
the best, average and standard deviation of costs are reported in Table 1. In
addition, the contribution of the expected penalty costs to the overall costs of
the best solutions is provided as percentages: as can be seen, it varies between
0% to 8%. Finally, the last column of Table 1 provides the best costs obtained
with our metaheuristic when solving CVRPED instances with γ = 0 - these costs
may be seen as an approximation of the lower bounds on the costs of the optimal
solutions of the CVPRED instances generated through transformation (6).

5 Conclusions

Belief function theory was used to represent uncertainty on customer demands
in the capacitated vehicle routing problem. We handled this problem by extend-
ing the recourse modelling approach of stochastic programming. In addition, we
provided a technique that makes computations tractable in realistic cases. In-
stances of such cases were then solved using a simulated annealing algorithm.
Future works include studying more elaborate recourse policies and improving
the solving algorithm.
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