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Highlights 

● A systematic literature review is conducted to explore the main features, research and technical challenges 

in conceiving and building Digital Twins. 

● Topic Modelling Analysis has been implemented to provide an up-to-date picture of the digital twin. 

● Formal Concept Analysis (FCA) has been applied to understand the digital twin trends and strategies. 

 

 

 

 

Abstract:  

Manufacturing enterprises are facing the need to align themselves to the new information 

technologies (IT) and respond to the new challenges of variable market demand. One of the key 

enablers of this IT revolution toward Smart Manufacturing is the digital twin (DT). It embeds a 

“virtual” image of the reality constantly synchronized with the real operating scenario to provide 

sound information (knowledge model) to reality interpretation model to draw sound decisions. The 

paper aims at providing an up-to date picture of the main DT components, their features and 

interaction problems. The paper aims at clearly tracing the ongoing research and technical 

challenges in conceiving and building DTs as well, according to different application domains and 

related technologies. To this purpose, the main questions answered here are: ‘What is a Digital 

Twin?’; ‘Where is appropriate to use a Digital Twin?’; ‘When has a Digital Twin to be developed?’; 

‘Why should a Digital Twin be used?’; ‘How to design and implement a Digital Twin?’; ‘What are 

the main challenges of implementing a Digital Twin?’. This study tries to answer to the previous 

questions funding on a wide systematic literature review of scientific research, tools, and 

technicalities in different application domains. 

 

Keywords: Digital Twin; Industry 4.0; Cyber-Physical Systems; Predictive manufacturing.  

 

Introduction 
 

In the past, due to the lack of information technologies, the physical space played the main role in 

controlling the production in shop floors, leading to low efficiency, accuracy, and transparency.  Until 

the 20th century, technologies such as computers, simulation tools, Internet, and wireless networks 

introduced a parallel virtual space to virtualize physical assets and to enable the cooperation with 

assets remotely. This has provided a possibility to conduct plans and operations more efficiently and 
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effectively (Tao and Zhang, 2017). Nowadays, with the developments of new generation information 

technologies (New IT), the integration and the interaction between the physical and virtual spaces is 

becoming increasingly important. This will create new potentialities for improving the current 

operating situations and technologies in the fields of design, manufacturing, and service (Büchi et al., 

2020). Various countries are converging on this trend as the next industrial revolution (Suh, 1984), 

(Prasad, 1989), and have proposed related national strategies, such as the “Industry 4.0” in Germany 

(Kagermann et al., 2013); the “Advanced Manufacturing” or “Smart Manufacturing” in the United 

States (Yao et al., 2019); the “Society 5.0” in Japan; the “Made in China 2025” in China; the “Industry 

of the Future” in France; the “Intelligent Factory” in Italy (Osterrieder et al., 2019) and more generally 

“The Factory of Future” in Europe (Drath and Horch, 2014). Although the strategies are proposed 

under different environments, their common objective is to capture the opportunity brought by the 

integration of the physical and virtual spaces (Hermann et al., 2016). The fusion of the physical and 

virtual spaces is motivated to ensure a better flexibility and scalability of manufacturing systems 

through information technologies (Dassisti and De Nicolò, 2012), (Pirola et al., 2020). The current 

digital transformation of enterprises requires the design and application of digital models, called 

digital twins, which represent a set of knowledge of the real processes (Panetto et al., 2019), (Dassisti 

et al., 2019a). The digital twin (DT) aims at creating high-fidelity virtual models for each physical 

entity to emulate their states and behaviours with abilities of evaluating, optimizing, and predicting 

(Graessler and Poehler, 2017).  The concept of using “twins” dated back to NASA’s Apollo program, 

where two identical space vehicles were built to allow mirroring the conditions of the space vehicle 

during the mission. Professor Grieves at the University of Michigan firstly put forward the concept 

of ‘Digital Twin’ in Product Life cycle Management (PLM) courses in 2003 (Grieves and Vickers, 

2017). The digital twin refers to a holistic, digital engineering view from the product design and 

development to production planning, production engineering, production, and associated services 

(Product Life cycle Management). The DT can be developed for each phase of the product life cycle 

absolving different functions (Dassisti and Semeraro, 2018). The digital twin in the design stage can 

help designers to configure and validate more quickly the future scenarios (Brettel et al., 2014). The 

DT can help decision maker to accurately interpret the market demands and the customer preferences 

(Semeraro et al., 2019b). At the manufacturing phase, DT may enable the simulation, and thus the 

decision maker, to analyse the interactive behaviours among production factors by collecting data 

from order, design, purchase, production planning, manufacturing, and product usage stage. The DT 

can help optimizing and evaluating in real time the production planning and the behaviour of the 

production process. At the service stage, DT relies on real time state monitoring and virtual operations 

such as maintenance to predict the remaining life of components or products (Lee and Kim, 2018). 

The virtual replication of a physical system is a rather complex task and therefore it requires the 

availability of a large amount of data and models that represent the modelled system, even though 

there are not specific criteria to follow (Park et al., 2019).  

In the scientific literature reviewed in this paper, several studies have been devoted to analysing the 

DT concept, which results different as the context of application changes (aerospace, manufacturing, 

city management). In each context, digital twins have their own specificity within the life cycle phase 

of the product: namely design, manufacturing, and service. As a result, each application of DT varies 

depending on a different perspective and needs accordingly. In this context, the paper aims at 
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providing an advanced and up-to-date picture of the state-of-the-art considering the main features and 

challenges of existing scientific research on DT’s, focussing on the different application domains and 

their related technologies.  The paper funds its scientific basis on information, principles and hints 

derived from a systematic scientific literature review employing text mining techniques to identify 

textual patterns, topic modelling, and new insights. Hereof, seven main research questions are raised 

and discussed: (1) ‘What is a Digital Twin?’; (2) ‘Where is appropriate to use a Digital Twin?’; (3) 

‘Who is doing Digital Twins?’; (4) ‘When has a  Digital Twin to be developed?’; (5) ‘Why should a 

Digital Twin be used?’; (6) ‘How to design and implement a Digital Twin?’; (7) ‘What are the main 

challenges of  implementing a Digital Twin?’. The research questions concern six main aspects 

namely: the Digital Twin definition; the application contexts; the life cycle phases; the functions; the 

architecture and the components, the research challenges. These aspects have been discussed in detail 

to define and explore the main features, research and technical challenges in conceiving and building 

Digital Twins. To serve this purpose, Formal Concept analysis (FCA) was run on to get deep into the 

definition of DT life cycle phases and its functions and into the DT architecture and its components. 

The outcome is then a multi-perspective picture of the Digital Twin, forming a paradigm emerging 

from scientific literature.  

The content is structured as the following: the literature review methodology is described in section 

1, the state of art in section 2, the digital twin paradigm in section 3. The conclusion and the research 

challenges are argued in section 4. 

 

1 Literature Review Methodology  
 

The literature review focuses on works related to DT technology. A systematic literature search was 

conducted in the Scopus, Elsevier and ScienceDirect database, covering most of the peer-reviewed 

interdisciplinary research papers. The methodology applied is composed by three-step approach: 

Paper selection; Extraction of DT features; Knowledge representation. Each step is described below. 

 

Step 1: Paper Selection: Publications identification and screening 

The present study forms a state-of-the-art on digital twin. The focal point of the study was based on 

DT representation in different scientific papers. This review was conducted based on content analysis. 

The Scopus, Elsevier and ScienceDirect scientific databases were used to find the literature for this 

review. In addition to ‘Digital Twin’, search terms such as ‘Factory of Future’, ‘Industry 4.0 

technologies’, ‘Cyber-physical system’, ‘Predictive manufacturing’ were used to search for suitable 

papers within the targets and scopes of this review paper. We found over 300 papers from our search. 

The relevant literature was selected by analysing the title, abstract, keywords, paper contents and 

journal's main topic of interest. Finally, we selected the papers based on impact factor, citation, and 

review process. We identified and analysed 150 papers of which 35 in the fields of ‘Factory of 

Future’, ‘Industry 4.0 technologies’, ‘Cyber-physical system’, ‘Predictive manufacturing’ and 115 in 

the field of ‘Digital Twin’.  The selected papers on the digital twin present the following parameters: 

Time Span: 2002–2020; Language: English; Type = “Article”; “Journal Paper”; “Conference 

Proceeding”; “Book Chapter”, as recapped in Figure 1. 
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Figure 1: Digital Twin Paper Distribution as type of Bibliographical Reference 

 

Step 2 Extraction of DT Features: Text mining analysis  

Following the publications identification and screening, a technical approach has been designed and 

applied to extract all possible features and information from the selected DT items. Text mining 

analysis has been selected for this specific purpose. Text mining is the process of analysing text to 

extract information that can be useful for different purposes (Hearst, 2003). A set of text mining 

techniques have been used employing Orange tool (Ljubljana, 2005). It allows to design and create 

workflows by linking predefined or user-designed components called widgets. Two different models 

were developed in Orange to this aim, as shown in figure 2 and in figure 3, for analysing the selected 

papers to capture key concepts, trends, and hidden relationships in DT studies. 

The first model aims to apply the text mining techniques to DT definitions to clarify what is a digital 

twin and why it matters. The workflow below shows that all DT definitions were collected, listed, 

and pre-processed to perform the hierarchical clustering algorithm (HCA) (Grira et al., 2004). HCA 

is an unsupervised clustering technique that groups similar objects into groups called clusters. The 

distance between two clusters is computed by the cosine distance because it is a good measure of 

semantic relatedness (Mikolov et al., 2013). The endpoint is a hierarchy of nested clusters, called 

dendrogram, where each cluster is distinct from each other cluster, and the objects within each cluster 

are broadly similar to each other. In this model, the HCA groups the DT definitions in a set of clusters 

that can be visualized in a data table or in a word cloud respectively named “Data Table (Clusters 

DT Definitions)” and “Word Cloud of each Cluster”.  The clusters and their respective word clouds 

are discussed in section 2 to initiate and structure a comprehensive review on the state of art of Digital 

Twins comparing the definitions provided in literature. 
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Figure 2: First model designed in Orange to automatically discover clusters in the DT definitions set 

The second model has been designed for identifying which topics are the most debated and discussed 

in the selected DT papers. The statistical model that has been used is the topic modelling as shown in 

Figure 3. Topic modelling concerns using a text-mining tool for discovering hidden semantic 

structures in a text body. In our review, for each DT paper the authors name, title, abstract, keywords 

and content were collected, listed, and pre-processed for discovering the “topics” that occur in our 

selection employing the Latent Dirichlet allocation (LDA). Latent Dirichlet allocation is a statistical 

model that automatically detects a set of topic modelling, classifies papers, and estimate their 

relevance to various topics. The outcome is reported in “Data Table (Topic Modelling)”. A paper 

typically contains multiple topics in different proportions; thus, LDA also reports the topic weight 

per paper and this can be visualized in “Distributions (Topic Modelling)”. The results will be 

discussed in section 3 to design and compose a digital twin paradigm. 

 
Figure 3: Second model designed in Orange for discovering Topic Modelling in DT papers 

Step 3: Knowledge Representation: Formal Concept Analysis 

A more detailed look through the topics discovered in step 2 was felt necessary to highlight the digital 

twin trends and strategies. This further analysis is conducted by Formal Concept Analysis (FCA). 

Formal Concept Analysis (FCA) is a mathematical theory oriented at applications in knowledge 

representation (Agrawal et al., 1993). It provides tools to group the data and to discover formal 

patterns by representing it as a hierarchy of formal concepts organised in a semi-ordered set named 

lattice (Wille, 2002). In formal concept analysis (FCA), a formal context is a triple K = (O, A, R), 

where O and A are non-empty sets, and R is a binary relation between O and A (R ⊆ O × A) (Ganter, 

Stumme, and Wille 2005). The formal context (O, A, I) of an input matrix of n rows and m columns 
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consists of a set of objects defined as  O = {𝑂𝑏𝑗1, 𝑂𝑏𝑗2, 𝑂𝑏𝑗3, 𝑂𝑏𝑗𝑛}, a set of attributes defined as 

A={𝐴𝑡𝑡𝑟1, 𝐴𝑡𝑡𝑟2, 𝐴𝑡𝑡𝑟3 … 𝐴𝑡𝑡𝑟𝑚} and a binary relation R defined as 𝑂𝑏𝑗𝑖, 𝐴𝑡𝑡𝑟𝑗 ∈ 𝑅 if and only if the 

intersection of i-th row and j-th column is not blank (Škopljanac-Mačina and Blašković, 2014). The 

FCA data table is composed by the set of objects (O) in rows and the set of attributes (A) in columns 

as shown in Table 1. In our review, the objects are the papers selected in step 1, while the attributes 

are all the topics identified by the model presented in step 2, Figure 3. The symbol “•” denotes that 

there is a relationship (R) between the object and the attribute. 

 
Table 1: FCA Table 

O 

A 

𝑨𝒕𝒕𝒓𝟏 𝑨𝒕𝒕𝒓𝟐 𝑨𝒕𝒕𝒓𝟑 𝑨𝒕𝒕𝒓𝒎 

𝑶𝒃𝒋𝟏 •  •  

𝑶𝒃𝒋𝟐  •   

𝑶𝒃𝒋𝟑   • • 

𝑶𝒃𝒋𝒏 •  • • 

 

Given a set of objects (O), a set of attributes (A), and defined the relations (R) between objects and 

attributes, a formal concept represents a subset of objects sharing the same subset of attributes, as 

displayed in Figure 4. Each node in the figure represents a concept. A concept is constituted by two 

parts: its extension which consists of all objects belonging to the concept, and its intention which 

comprises all attributes shared by those objects. This understanding allows the formal discovery of 

associations among concepts and consequently recognizing which concepts are closely related based 

on the set of shared attributes (Valtchev, Missaoui, and Godin 2004). The results provided by Formal 

concept analysis will be discussed in section 3 to explore the trends in the combination between the 

identified topics and their regularity of appearance in the literature. 

https://en.wikipedia.org/wiki/Subset
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Figure 4: Example of Concept Lattice (Lezoche and Panetto, 2018) 

 

2  State of Art Digital Twin: Definitions and Sights 

Industry and academia define a digital twin in several different ways (Trauer et al., 2020). For 

example, according to some, a digital twin is a virtual representation/model that interacts with the 

physical system throughout its life cycle (Grieves and Vickers, 2017), (Glaessgen and Stargel, 2012). 

Other widely circulated definitions regard the need to exchange information between the two spaces 

involving sensors, data, and models (Lee et al., 2013), (Negri et al., 2017). Others consider a digital 

twin as the cyber part of a cyber-physical system (CPS) (Alam and El Saddik, 2017), (Graessler and 

Poehler, 2017). The concept of a digital twin has been investigated employing the model presented 

in Figure 2 to analyse the DT definitions listed below for understanding why it matters. The data table 

presents an additional column: “Belonging Cluster” that results from the application of the 

hierarchical cluster algorithm (HCA). This is a way to visualize how the DT definitions are grouped.  

 
Table 2: Digital Twin Definitions 

DIGITAL TWIN DEFINITIONS 

ID Year Authors DT Definition 
Belonging 

Cluster 

1 2002 (Grieves,2014) 

“a set of virtual information constructs that fully describes a potential or 

actual physical manufactured product from the micro atomic level to the 

macro geometrical level. At its optimum, any information that could be 

obtained from inspecting a physical manufactured product can be obtained 

C1 
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from its Digital Twin. The Digital Twin concept model contains three main 

parts: a) physical products in Real Space, b) virtual products in Virtual Space, 

and c) the connections of data and information that ties the virtual and real 

products together.” 

2 2012 
(Glaessgen and 

Stargel, 2012) 

“an integrated multi-physics, multi-scale, probabilistic simulation of a 

complex product and uses the best available physical models, sensor updates, 

etc., to mirror the life of its corresponding twin.” 
C1 

3 2012 (Tuegel, 2012) 

“a cradle-to-grave model of an aircraft structure’s ability to meet mission 

requirements, including sub-models of the electronics, the flight controls, the 

propulsion system, and other subsystems.” 
C5 

4 2013 
(Lee et al., 

2013) 

“a coupled model enables a digital twin of the real machine that operates in 

the cloud platform in parallel with the real process and simulates the health 

condition with an integrated knowledge from both data driven analytical 

algorithms as well as other available physical knowledge. The coupled model 

approach first constructs a digital image of a machine from the early design 

stage.” 

C3 

5 2015 
(Ríos et al., 

2015) 

“a product equivalent digital counterpart that exists along the product life 

cycle from conception and design to usage and servicing, knows the product 

past, current and possible future states, and facilitates the development of 

product related intelligent services.” 

C1 

6 2015 
(Rosen et al., 
2015) 

“a very realistic model of the current state of the process and their own 

behaviour in interaction with their environment in the real world.” 
C4 

7 2016 

(G. N. 
Schroeder et 
al., 2016) 

“a virtual representation of the real product. It has product’s information 

from the beginning of the life until the disposal of the product. The Digital 

Twin is a counter     part of the physical device, machine or product in a CPS. 

It has the information related to the whole life cycle of a product.” 

C1 

8 2017 
(Alam and El 

Saddik, 2017) 

“the cyber layer of CPS, which evolves independently and keeps close 

integration with the physical layer.” 
C2 

9 2017 

(Brenner and 

Hummel, 
2017) 

“a digital copy of a real factory, machine, worker etc., that is created and can 

be independently expanded, automatically updated as well as being globally 

available in real time.” 
C3 

10 2017 
(Ciavotta et al., 

2017) 

“a digital avatar encompassing CPS data and intelligence, representing 

structure, semantics, and behaviour of the associated CPS, and providing 

services to mesh the virtual and physical worlds.” 
C4 

11 2017 
(Graessler and 

Poehler, 2017) 

“a cyber-physical device of its own, which is connected to the CPPS and tries 

to emulate the human employee through dynamically adapted values of a 

database, which represent for example properties, preferences, work 

schedule and skillset.” 

C2 

12 2017 
(H. Zhang et 

al., 2017) 

“a set of realistic product and production process models linking enormous 

amounts of data to fast simulation and allowing the early and efficient 

assessment of the consequences, performance, quality of the design decisions 

on products and production line.” 

C1 

13 2017 
(Negri et al., 

2017) 

“a virtual and computerized counterpart of a physical system that can exploit 

a real-time synchronization of the sensed data coming from the field and is 

deeply linked with Industry 4.0.” 
C5 

14 2017 
(Schleich et al., 

2017) 

“a bi-directional relation between a physical artefact and the set of its virtual 

models, enabling the efficient execution of product design, manufacturing, 

servicing, and various other activities throughout the product life cycle.” 
C1 

15 2017 
(Schluse et al., 

2017) 

“a one-to-one virtual replica of a “technical asset” (e.g., machine, 

component, and part of the environment). A digital twin contains models of 

its data (geometry, structure, . . .), its functionality (data processing, 

behaviour, . . .), and its communication interfaces. It integrates all knowledge 

resulting from modelling activities in engineering (digital model) and from 

working data captured during real-world operation (digital shadow). A 

Digital Twin contains models of its “data” (geometry, structure, …), its 

functionality (data processing, behaviour, …) and its communication 

interfaces.” 

C3 

16 2017 
(Söderberg et 
al., 2017) 

“a digital copy of a product or a production system, going across the design, 

pre-production, and production phases and performing real-time 

optimization.” 
C1 

17 2017 
(Stark et al., 
2017) 

“a unique instance of the universal Digital Master model of an asset, its 

individual Digital Shadow and an intelligent linkage (algorithm, simulation 

model, correlation, etc.) of the two elements above.” 
C3 
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18 2017 
(Weber et al., 

2017) 

“a digital representation that contains all the states and functions of a physical 

asset and has the possibility to collaborate with other digital twins to achieve 

a holistic intelligence that allows for decentralized self-control.” 
C3 

19 2017 
(Yun et al., 

2017) 

“a perfect digital entity of a physical system; it accurately reflects the status 

of the corresponding physical machine. We can tightly control the system 

through a digital twin, that is, a cyber model of the machine.” 
C3 

20 2018 
(Autiosalo, 

2018) 
“the cyber part of a Cyber-Physical System.” C2 

21 2018 
(Asimov et al., 

2018) 

“a virtual replica of real physical installation, which can check the 

consistency for monitoring data, perform data mining to detect existing and 

forecast upcoming problems, and which uses an AI knowledge engine to 

support effective business decisions.” 

C5 

22 2018 
(Bao et al., 

2018) 

“a virtual model in the virtual space, and it is used to simulate the behaviour 

and characteristics of the corresponding physical object in real time.” 
C4 

23 2018 

 

(Lee and Kim, 

2018) 

“a near real-time digital image of a physical object or process that helps 

optimize business performance. Two concepts of IoT (Internet of things) and 

IoS (Internet of Service) are combined to realis     e the smart factory based 

on a digital twin.” 

C3 

24 2018 
(Haag and 
Anderl, 2018) 

“a comprehensive digital representation of an individual product. It includes 

the properties, condition, and behaviour of the real-life object through 

models and data. The digital twin is a set of realistic models that can simulate 

its actual behaviour in the deployed environment. The digital twin is 

developed alongside its physical twin and remains its virtual counterpart 

across the entire product life cycle.” 

C3 

25 2018 
(Luo et al., 

2018) 

“a complete virtual prototype of an entire system and a one-to-one mapping 

relationship. Therefore, a multi-domain digital modelling method is needed; 

a consistent model between the designed and the actual environment of a 

machine tool should be established, which needs the real-time and accurate 

data mapping method; an effective machine learning algorithm to mine the 

data gathered from sensors and the control system is also necessary.” 

C5 

26 2018 
(Nikolakis et 

al., 2018) 

“a digital replica of the physical environment along with the operator. This 

model constrains the behaviour of the twin towards replicating the actions of 

the physical system’s actuators.” 
C4 

27 2018 
(Tao et al., 
2018b) 

“a set of virtual models. These mirror images and mapping of the physical 

products in the virtual space. They could reflect the whole life cycle process, 

as well as simulate, monitor, diagnose, predict, and control the state and 

behaviours of the corresponding physical entities. The virtual models include 

not only the geometric models, but also all rules and behaviours, such as 

material properties, mechanical analysis, health monitoring.” 

C4 

28 2018 
(Z. Liu et al., 

2018) 

“a living model that continually adapts to change in the environment or 

operation using real-time sensory data and can forecast the future of the 

corresponding physical assets for predictive maintenance.” 
C4 

29 2018 
(Zhuang et al., 

2018) 

“a dynamic model in the virtual world that is fully consistent with its 

corresponding physical entity in the real world and can simulate its physical 

counterpart’s characteristics, behaviour, life, and performance in a timely 

fashion.” 

C4 

30 2019 
(Leng et al., 

2019) 

“each physical device will have its cyber part as a digital representation of 

the real device, culminating in the digital twin models. So, the digital twin 

can monitor and control the physical entity, while the physical entity can 

send data to update and synchronize its virtual model.” 

C3 

 

HCA detects five different clusters labelled: C1, C2, C3, C4, C5 as shown in Figure 5. To assist with 

the interpretation and verification of each cluster, word clouds were generated to provide additional 

evaluations identifying the occurrence of words shared by the grouped definitions.  
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Figure 5: Hierarchical Clustering (HCA) Results - Clusters DT definitions 

The cluster C1 involves the definitions provided by: (Grieves, 2014), (Glaessgen and Stargel, 2012), 

(Ríos et al., 2015), (G. N. Schroeder et al., 2016), (H. Zhang et al., 2017), (Schleich et al., 2017), 

(Söderberg et al., 2017). The corresponding word cloud in Figure 6 shows that the consideration of 

the life cycle phases is the core point in the definition of a Digital Twin. The concept of a Digital 

Twin was first mentioned in a presentation of the University of Michigan in 2002 entitled “Conceptual 

Ideal for PLM”. As the concept was emerging out of the field of Product life cycle management 

(PLM), (Grieves and Vickers, 2017) referred to the connection between real space and virtual space 

over all phases of the product life cycle presenting all the elements of the Digital Twin: real space, 

virtual space, the link for data flow from real space to virtual space, the link for information flow 

from virtual space to real space and virtual sub-spaces. (Ríos et al., 2015) and (Schleich et al., 2017) 

specify the product life cycle from conception and design to usage and servicing while (G. N. 

Schroeder et al., 2016) suggest the existence of a Twin from the beginning of a product’s life until its 

disposal. In (H. Zhang et al., 2017) the DT can integrate data in the product life cycle to accurately 

simulate and assess the performance and the quality of the design decisions on products and 

production lines. According to (Söderberg et al., 2017) a Digital Twin exists over the complete life 

cycle, subdivided in the phases design, pre-production, and production for performing real-time 

optimization. The basic idea behind a Digital Twin, in (Glaessgen and Stargel, 2012), is a high-fidelity 

virtual model of the physical entities having the scope of replicating and simulating the states and 

behaviours of these latter along its life.   

The Digital Twin is defined as a new paradigm in simulation (Rosen et al., 2015). It extends the use 

of simulation to all phases of the product life cycle (Garetti et al., 2012), (Rodič, 2017). Simulation 

is the basis for design decisions, validation, and test not only for a generic device but also for 

C1

C

1 

C

1 

 

C2 

2 

C3 

3 

C4 

 

C5 

5 
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monitoring complete systems (Boschert and Rosen, 2016). The digital twin is the evolution of other 

research fields such as Virtual Manufacturing systems, Model-based Predictive control (MPC), and 

Building Information Modelling (BIM).  

• Virtual manufacturing (VM) is defined as a system aimed at generating a virtual representation of 

a physical system without using real facilities/entities (Onosato and Iwata, 1993). In comparison 

with the characteristics of the Digital Twin, the key differences are the lack of connection between 

physical and virtual entities (Jones et al., 2020).  

• The Model-based predictive control uses a model of the system to make predictions about the 

system’s future behaviour (Ma et al., 2011). The digital twin and MPC simulates current state to 

change the future state but the DT aims to create virtual models in sync with their physical part.  

• The Building Information Modelling (BIM) is a process for creating and managing a model 

containing digital information about a specific asset across its whole life cycle. The major 

differences between a building’s BIM and a digital twin are that BIM is designed to improve the 

efficiency of design and construction and it does not work with real-time data. Whereas the Digital 

twin works specifically with real-time data to monitor a physical asset and improve its operational 

efficiency enabling the predictive manufacturing (Khajavi et al. 2019). 
The DT is becoming increasingly relevant to Model-based systems engineering (MBSE) (Bachelor 

et al., 2019). MBSE is defined as: “formalized application of modelling to support system 

requirements, design, analysis, verification, and validation activities beginning in the conceptual 

design phase and continuing throughout development and later life cycle phases” (International 

Council on Systems Engineering (INCOSE), 2007). The simulation in MBSE is mostly considered 

to be a tool for R&D departments (Boschert and Rosen, 2016). The Digital Twin extends the concept 

of MBSE from engineering and manufacturing to the operation and service phases (Estefan, 2007), 

(Boschert et al., 2018). Digital twins could provide an effective implementation for realising the end-

to-end integration of a system across the entire product life cycle (Cheng et al., 2020) because it is 

designed to interconnect and close the gap between product design, product development, production 

planning, production, and associated services (Weyer et al., 2016).  

 

 
Figure 6: Word Cloud DT Definitions of Cluster C1  

The real power of a digital twin is that it can provide a near-real-time comprehensive linkage between 

the physical and cyber systems. It is the core aspect reflected in the Word cloud in Figure 7, that 
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introduces the Cyber-Physical System (CPS) concept in DT definitions (cluster C2) provided by 

(Alam and El Saddik, 2017), (Autiosalo, 2018), (Graessler and Poehler, 2017). A Cyber-physical 

system (CPS) (Monostori et al., 2016) aims at embedding computing, communication and controlling 

capabilities (3C) into physical assets to converge the physical space with the virtual space. (Alam and 

El Saddik, 2017) and (Autiosalo, 2018) agree in defining the DT as the cyber part of a Cyber-Physical 

System to emulate the human employee through dynamically adapted values of a database, which 

represent for example properties, preferences, work schedule and skillset (Graessler and Poehler, 

2017).   

CPS and DTs involve the integration between the physical and the cyber space. However, DTs focus 

more on virtual models, while CPS emphasize 3C capabilities (computing, communication and 

controlling). In this way, the physical space can be integrated, monitored, controlled and coordinated 

by the virtual space in real-time and vice versa (Blume et al., 2014). Sensors and actuators are 

considered as key elements in CPS (Lee et al., 2015), while models and data are the core components 

in a DT (Tao et al., 2019). A digital representation, hence, a digital twin, bridges the gap between the 

physical and cyber system improving and supporting the decision making (Zhang et al., 2019).  

 

 

Figure 7: Word Cloud DT Definitions of Cluster C2  

 

Some authors (Lee et al., 2013), (Brenner and Hummel, 2017), (Schluse et al., 2017), (Stark et al., 

2017), (Weber et al., 2017) (Yun et al., 2017), (Lee and Kim, 2018), (Haag and Anderl, 2018), (Leng 

et al., 2019) involve a comprehensive representation of all data, information, and knowledge of the 

physical twin in the Digital Twin definitions. The word cloud in Figure 8 shows the results of 

definitions clustered in C3. Most definitions aiming at an increased convergence between real and 

virtual space. A closed loop needs to be realized, (Leng et al., 2018) between the physical and virtual 

worlds through real time data connection (Brenner and Hummel, 2017), (Schluse et al., 2017), (Stark 

et al., 2017) by collecting and analysing data (Weber et al., 2017), (Lee et al., 2013), (Haag and 

Anderl, 2018) to respond to the changes over the time and to optimize business performance (Lee and 

Kim, 2018). Even though the definitions agree on the virtual space, they differ regarding the physical 

space. Some refer to machines, or more generally to products (Lee et al., 2013), (Lee and Kim, 2018), 

(Haag and Anderl, 2018), (Leng et al., 2019). Others consider an asset as a physical space (Schluse 

et al., 2017), (Stark et al., 2017), (Weber et al., 2017).  (Yun et al., 2017) and (Lee and Kim, 2018) 

extend the notion of physical space to the whole system or process. In more details the definitions 

converge to the descriptions of which type of data should be transferred from the physical to the 
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virtual space.  (Schluse et al., 2017) consider not only data generated by the physical product, but also 

its functionality (data processing, behaviour) and its communication interfaces. (Haag and Anderl, 

2018) go even further by defining the properties, condition, and behaviour of the real-life object.  A 

Digital Twin is not just defined by the data. It also includes data driven analytical algorithms in (Lee 

et al., 2013) and in (Stark et al., 2017) to reflect the status of the corresponding physical part (Yun et 

al., 2017). A Digital Twin can integrate data from multiple sources. The interaction with the physical 

system should be bidirectional (Leng et al., 2019). Data collected from the physical space updates the 

virtual model. The physical twin improves its performance during real time operation exploiting 

knowledge acquired from the data. 

 

 

Figure 8: Word Cloud Definitions of Cluster C3  

Regardless of the represented physical space, it needs to be defined which aspects of the physical 

space should be transferred to the virtual space. The disunity in literature on how to model the 

behaviour of the physical space is even present in the definitions belonging to cluster C4 (Rosen et 

al., 2015), (Ciavotta et al., 2017), (Bao et al., 2018), (Nikolakis et al., 2018), (Tao et al., 2018b), (Z. 

Liu et al., 2018), (Zhuang et al., 2018), shown in Figure 9. Some try copying the physical behaviour, 

its properties, and characteristics in very realistic (Rosen et al., 2015) virtual models to simulate the 

behaviour of the current status of the physical space (Bao et al., 2018). The need for a set of virtual 

models stems from the fact that the virtual models include not only the geometric models, but also all 

rules and behaviours, such as material properties, mechanical analysis, health monitoring (Tao et al., 

2018b) to monitor, diagnose, predict, and control the state and behaviours of the corresponding 

physical entities (Tao et al., 2018b), (Nikolakis et al., 2018).  Data and information should also 

consider all perspectives of the physical space including, structure, semantics, and behaviour to mesh 

the virtual and physical worlds (Ciavotta et al., 2017). The DT is typically applied in contexts 

characterized by uncertainty and complexity, where the working conditions may vary depending on 

external and internal factors. For this reason, (Z. Liu et al., 2018) propose the concept of ‘living 

model’ while (Zhuang et al., 2018) the concept of ‘dynamic model’ i.e., a model that continually 

adapts and changes in the environment. The Digital Twin should evolve synchronously with the real 

system along its whole life cycle. It should be able to modify its initial configuration and to adapt 

itself to the current situation. This aspect introduces another feature debated in the literature, namely 
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the difference between the simulation capabilities and the emulation capabilities of a DT. On the one 

hand, the simulation capabilities of a DT are provided by a design of its environment allowing to 

approximate the behaviour of the real systems to represent how the system reacts (Law et al., 2000). 

It can be thought of as a “static feature” of the DT. On the other hand, the emulation refers to the 

capability of a DT to be synchronous with the real system, so as it behaves almost similarly to the 

actual behaviour of the physical system (Ayani et al., 2018). Accordingly, this feature of DT can be 

thought of as a “dynamic feature”. An emulation model operates in a hardware-in-the-loop 

configuration to perform the same work of the physical system. It provides a closer replication with 

respect to the simulation model (Lee and Park, 2014). From the simulation point of view, the digital 

twin represents a new wave in modelling and simulation (Rosen et al., 2015). From the emulation 

point of view, the digital twin duplicates and imitates the physical system in the virtual word. It can 

thus help to proactively understand what should be done and to react to modifications in the real 

world. 

 

 

Figure 9: Word Cloud DT Definitions of Cluster C4  

The virtual system concept, in Figure 10, sums up the DT definitions clustered in C5 provided by 

(Tuegel, 2012), (Negri et al., 2017), (Asimov et al., 2018), (Luo et al., 2018). The virtual system 

enables the replication of the physical system into its “digital twin” throughout the entire value chain, 

by merging data into behaviour models (Borangiu et al., 2019).  The physical twin automatically 

transfers data of its behaviour, its status, and information to the virtual space over the entire life cycle. 

The virtual system defined also as virtual replica in (Asimov et al., 2018), virtual prototype in (Luo 

et al., 2018), and virtual counterpart in (Negri et al., 2017), provides different services such as the 

control of the current situation and the prediction of the near future and sends them back to the real 

space so the physical product or process adapt accordingly.  

The virtual system may enable companies and organisation to solve physical issues faster by detecting 

them sooner, predict outcomes, design, and build better products, and ultimately, better serve their 

customers (Trauer et al., 2020). 
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Figure 10: Word Cloud DT Definitions of Cluster C5  

The ability of simulation along product life cycle (C1), the synchronization of the cyber system with 

the physical assets (C2), the integration of real time data (C3), the behavioural modelling of the 

physical space (C4), the services provided by the virtual system (C5) are the main aspects that 

characterize the digital twin definition. In view of above, what it is a digital twin can be summarized 

as follow:  

 “A set of adaptive models that emulate the behaviour of a physical system in a virtual system getting 

real time data to update itself along its life cycle. The digital twin replicates the physical system to 

predict failures and opportunities for changing, to prescribe real time actions for optimizing 

and/or mitigating unexpected events observing and evaluating the operating profile system”. 

 

3 Digital Twin Paradigm 

Existing scientific research on DT’s, are focussed on different application domains and their related 

technologies. A more detailed look is needed to define where, when, why and how develop a digital 

twin. The model presented in Figure 3 and explained in section 1 (step 2), has been applied to 

automatically discover the main topics in the DT collection and classify them into the discovered 

topics. Four different topic modelling have been detected applying the Latent Dirichlet Allocation 

(LDA) algorithm. The results can be visualized in table 3 that presents the set of keywords that make 

up each topic modelling. On the base of the concepts introduced and analysed also in the state of the 

art it is possible to define the semantic of the topics below. The first topic modelling presents the 

keywords: ‘support-production, decision-making, simulation, analysis’ indicating that different 

studies in literature review have been devoted to the analysis of the digital twin functions. The 

analysis of papers classified in the first topic modelling allows to evaluate why the digital twin should 

be used. The second topic modelling introduces and considers the enabling components for designing 

and developing a Digital Twin as: ‘data-driven and physical model’ allowing to evaluate which are 

the key components and technologies employed for implementing digital twins. The words of the 

third topic modelling reveal that the value of the digital twin is its ability to understand and to predict 

how the product will perform in production, and to optimize its services and performance through its 

life cycle. It means that the set of papers belonging to topic 3 treat where the digital twin should be 
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applied and when should be developed. The papers grouped in the fourth topic modelling are focused 

on the exploration of the digital twin configuration/architecture. The architecture is the basic 

principle to investigate for understanding how to design a digital twin.  

 

Table 3: Data Table (Topic Modelling) provided by the model designed in Orange (Figure 3) 

ID TOPIC MODELLING: Set of Words TOPIC LABEL 

TOPIC 1 

(T1) 

Support-production, decision-making, simulation, 

analysis, approach 

FUNCTIONS 

‘Why should a Digital Twin be 

used?’ 

TOPIC 2 

(T2) 

Big data, data-driven, management, physical model, 

shopfloor, system 

COMPONENTS/ 

TECHNOLOGIES 

‘How to implement a Digital 

Twin? 

TOPIC 3 

(T3) 

Life cycle, cps, level, product, process, service, improve, 

application 

CONTEXT and LIFE 

CYCLE 

‘Where is appropriate to use a 

Digital Twin?’ 

‘When has a Digital Twin to 

be developed?’ 

TOPIC 4 

(T4) 
Architecture, virtual framework, smart manufacturing 

ARCHITECTURE 

‘How to design a Digital 

Twin?’ 

 

A paper typically can cover multiple topics in different proportions (%). LDA algorithm 

automatically classifies the DT papers to topics and estimates their relevance to each topic as shown 

in Figure 11. For example, (Abramovici et al., 2017) (Paper 1) covers the topics 1 and 4 at 23% and 

76% respectively. 
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Figure 11: Topic Modelling Distribution of each Paper 

 

The overview distribution of all topics is provided in Figure 12. It illustrates that 46,7% of papers 

covers the DT functions, DT components and DT architectures (T1ΛT2ΛT4) topics while 31,4% of 

papers analyse all topics. All the absent combinations are with percentage of zero.  

 

 
Figure 12: Overview Distribution of Topic Modelling 

The topic modelling analysis distribution allows understanding that several studies have been devoted 

to analysing the Digital Twin concept and its instantiation in different application contexts (T3). At 

the same time, in each context, the digital twins have their own specificity as functions in the life 
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cycle (T3) phases namely design, manufacturing and service. As a result, each application of a DT 

varies depending on a different function (T1) accordingly. However, the design of a digital twin 

requires the definition of an architecture (T4) and the enabling components/technologies (T2) to 

implement it. As a summary of the topic modelling performed above, these can be logically sorted to 

shape the digital twin paradigm as follow: 

1. Application Contexts (Where is appropriate to use a Digital Twin?), TOPIC MODELLING 3  

2. Life cycle (When has a Digital Twin to be developed?), TOPIC MODELLING 3 

3. Functions (Why should a Digital Twin be used?), TOPIC MODELLING 1 

4. Architecture (How to design a Digital Twin?), TOPIC MODELLING 4 

5. Components/Technologies (How to implement a Digital Twin?), TOPIC MODELLING 2 

The papers thus classified by LDA were analysed to identify and define which and how many 

subtopics each topic consists of. By subtopic we mean the identification of the main categories that 

characterise each topic. This allows us to compare and review the existing works to answer the main 

questions posed above. Table 4 shows the results. It reports one paper on each row and the topics and 

their corresponding sub-topics on columns.  The “Context and Application” columns describe the 

application context taken into consideration in each article. Accordingly, to the papers belonging to 

this topic, the application contexts can be grouped in five categories, that are listed as follows:  

Healthcare; Maritime and Shipping; Manufacturing; City Management; Aerospace. The column 

under “life cycle” is split into the main product life cycle phases namely: design, production, and 

service. The “Functions” column defines the DT functions/purposes specifically: Accelerating the 

product development speed; Identifying customers’ needs; Performance optimization and validation; 

Remote commissioning and diagnostics. The columns under “Architecture” reports the main layers 

used to design a DT namely: Physical; Network; Computing. The analysis also considers the 

“Components” i.e., the most discussed and applied technologies for building a Digital Twin. The 

same table was used for the analysis conducted by Formal Concept Analysis (FCA) to explore the 

trends and the combinations in literature on the design and the development of a digital twin. The 

results are discussed in the next sections presenting respectively the DT application contexts in 

section 3.1, the DT life cycle and its functions in 3.2, and the DT architecture and its 

components/technologies in 3.3.  
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Table 4: FCA Table Structure: Objects and Attributes 

 
 

3.1  Digital Twin Application Contexts (‘Where is appropriate to use a Digital 

Twin?’ and ‘Who is doing Digital Twins?’) 

The main papers covering the topic modelling 3 are discussed in this subsection to define and discuss 

the main DT application contexts. The review reveals that the most explored contexts are: Healthcare; 

Maritime and Shipping; Manufacturing; City Management; Aerospace.  Digital Twins in Healthcare 

is used for capturing and visualizing a hospital system to create a safe environment and to test the 

impact of potential changes on system performances. A digital twin can be used to predict the 
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outcome of specific procedures. It can determine the better therapy option for a specific patient. In 

healthcare, a digital twin recording data of a person, combined with AI models, can provide answers 

for clinical problems (Bruynseels et al., 2018).  Digital Twins in Maritime and Shipping are used as 

support for design. The design requires to invest significant amounts of time and money in preparing 

analytical models to perform simulations. The digital twin allows to visualize all key components, to 

perform analyses and calculations, and to improve the control of the effects of operation on the ship’s 

structural and functional components (Arrichiello and Gualeni, 2019).  

A Digital Twin in Manufacturing involves different applications based on the stages across the entire 

lifetime of a product, such as design, production, logistics and maintenance (Dassisti et al., 2017), 

(Greif et al., 2020). The digital twin can support decision makers to predict an upcoming equipment 

failure, to inform an operator when an asset begins to show signs of non-optimal performance, to 

improve customer experience (Tao et al., 2018a).  

Cities are areas of human settlement, with high population density, complete infrastructure, and 

buildings. Digital Twins, in City Management, improve the urban environment and people’s quality 

of life. The digital twin can simulate people movements and emergency evacuations, modelling smart 

buildings, road traffic, air quality, infrastructure, and circular urban economies. The benefits of 

modelling range from preventive maintenance to operational efficiencies and cost savings. The DTs 

improve services for citizens, and increase safety and security (Mohammadi and Taylor, 2017). 

Aerospace companies have begun utilizing digital twins to accomplish the goal of reducing unplanned 

downtime for engines and other systems. Digital Twins in Aerospace may allow receiving advance 

warnings and predictions, but also preparing a plan of actions based on simulated scenarios that 

consider the weather conditions, the performance of the asset, and several other variables (Tuegel et 

al., 2011). With the help of digital twins, it is possible to develop and implement predictive 

maintenance for increasing the platform’s operational availability and efficiency, extending its life 

cycle and reducing its cost. Moreover, DTs are capable of mitigating damage or degradation by 

activating self-healing mechanisms or by recommending changes in the mission profile to decrease 

loadings (Mandolla et al., 2019). 

Digital Twins have attracted strong interests from industries too: GE Predix Platform, SIEMENS 

PLM, Microsoft Azure, IBM Watson, PTC Thing Worx, Aveva, SAP Leonardo Platform, Twin 

Thread, DNV-GL, Dassault 3D Experience, Sight Machine, Oracle Cloud. Patents have been filed by 

(Hershey et al., 2017) for General Electric and by (Song and Canedo, 2016) and (Fischer and Heintel, 

2017) for Siemens.  The Figure 13 shows the main DT platform for each application context. The 

roles of digital twins along life cycle management and its functions are discussed in the next section. 
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Figure 13: Industry DT Platform in each type of DT Application 

 

3.2  Digital Twin Life cycle (‘When has a Digital Twin to be developed?) and 

its Functions (‘Why should a Digital Twin be used?’) 
 

In principle, out of the literature review and the DT definitions analysis presented in section 2, the 

digital twin finds application in the entire product life cycle management (PLM) that can be divided 

into three phases:  Design; Production; Service (Bao et al., 2018), (Tao et al., 2018a). Regardless of 

the context domain, the DT has a series of functions in each phase of life cycle (Barricelli et al., 2019) 

that can be summarized in: Accelerating the product development speed; Identifying customers’ 

needs; Performance optimization and validation; Remote commissioning and diagnostics. The 

existing trends and associations between DT life cycle and its functions was carried out by using 

Formal Concept Analysis (FCA). The lattice, illustrated in Figure 14, represents the hierarchy of 

concepts that group the papers according to their common life cycle phase and/or functions. 
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Figure 14: Lattice of Life Cycle phases and Functions 

From Table 5, we can deduct that the FCA graph detects 16 different concepts.  As explained in 

section 1 (step 3), a concept is constituted by two parts: its extension which consists of all objects 

belonging to the concept, and its intention which comprises all attributes shared by those objects. 

 
Table 5: Formal Concepts of Life Cycle phases and Functions 

FORMAL CONCEPTS 

ID CONCEPT <{CONCEPT EXTENTS},{CONCEPT INTENTS}> 

C1 <{115 Papers}> 

C2 <{34 Papers}, {Digital Twin in the design phase}> 

C3 <{23 Papers}, {Identify customers’ needs}> 

C4 <{41 Papers}, {Performance optimization and validation}> 

C5 <{54 Papers}, {Digital Twin in the production phase}> 

C6 <{22 Papers}, { Digital Twin in the design phase, Identify customers’ needs}> 

C7 <{31 Papers}, {Digital Twin in the service phase}> 

C8 <{40 Papers}, {Digital Twin in the production phase, Performance optimization and 

validation}> 

C9 <{29 Papers}, {Digital Twin in the design phase, Digital Twin in the production 

phase}> 

C10 <{19 Papers}, {Digital Twin in the production phase, Identify customers’ needs}> 

C11 <{21 Papers}, {Digital Twin in the design phase, Identify customer’s needs, Accelerate 

the product development speed}> 

C12 <{20 Papers}, {Digital Twin in the service phase, Remote commissioning and 

diagnostics}> 

C13 <{18 Papers}, {Digital Twin in the service phase, Performance optimization and 

validation}> 
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C14 <{27 Papers}, {Digital Twin in the design phase, Digital Twin in the production phase, 

Digital Twin in the service phase}> 

C15 <{18 Papers}, {Digital Twin in the design phase, Digital Twin in the production phase, 

Digital Twin in the service phase, Identify customer’s needs, Performance optimization 

and validation}> 

C16 <{17 Papers}, {Digital Twin in the design phase, Digital Twin in the production phase, 

Digital Twin in the service phase, Identify customer’s needs, Accelerate the product 

development speed, Performance optimization and validation, Remote commissioning 

and diagnostics}> 

 

The concept C2 shows, through its Extent column, the existence, in our literature review, of {34 

papers} which analyse the application of the <{Digital Twin in the design phase}>. The digital twin 

in the design phase can be applied to the conceptual design, detailed design, and virtual verification 

(Tao et al., 2018a) of a product. The digital twin in design stage is designed to generate the digital 

product design before the real execution (Q. Liu et al., 2018), (H. Zhang et al., 2017).  In the 

conceptual design stage, the digital twin serves to guide designers to formulate functional 

requirements (Tao et al., 2018b). It can make the communication between customers and designers 

more transparent and faster by using the real-time transmission data (Tao et al., 2018a). In the detailed 

design phase, the digital twin enables simulation tests to ensure that the prototype can achieve the 

desired performance (Wärmefjord et al., 2017). In the virtual verification phase, the digital twin 

enables to simulate and predict the performance of the physical products based on virtual models 

(Damiani et al., 2018), (Bohlin et al., 2017). The concept C6 demonstrates that {22 Papers} in our 

selection, analyse the relation between the <{Digital Twin in the design phase} with the function 

{Identify customers’ needs}>. Performances, customer usages and preferences are reflected in the 

twin, and then feed into the product development process to increase the customer satisfaction and 

market share (Tao et al., 2018b), (Macchi et al., 2018). The studies {21 Papers} grouped in C11 

discuss the application of the < {Digital Twin in the design phase} for two different functions 

{Identify customer’s needs, Accelerate the product development speed}>. Digital twins in the design 

phase can guide the designers to iteratively adjust the customers’ expectations and improve the design 

models, achieving personalized design (Tao et al., 2018a). The digital twin can be used for designing 

products, testing them in real time situations, stipulating how the customer or the end user will use 

them and how the design will complement the product’s environment (Söderberg et al., 2017). Data 

from the real machine are loaded into the digital model to enable simulation and testing of ideas even 

before actual manufacturing starts. The digital twin can be used to plan, reconfigure the product in 

response to external changes. 

The concept C5 shows the existence of {54 papers} which analyse the application of the <{Digital 

Twin in the production phase}>. For example, (Leng et al., 2018) presents a Digital Twin for 

manufacturing cyber-physical systems (MCPS). (Ding et al., 2019) introduces a DT-based Cyber-

Physical Production System (DT-CPPS). MCPS is used for controlling the shop floor manufacturing 

while DT-CPPS for improving the flexibility, controllability, and efficiency of shop floor 

manufacturing. A digital twin for production control and optimization can analyse the online data 

collected from the physical line for searching the optimal solution to the physical line (Sun et al., 

2017) or to complex product assembly shopfloors (Zhuang et al., 2018). It can evaluate autonomously 

https://context.reverso.net/traduzione/inglese-italiano/autonomously
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the production real-time (Vachálek et al., 2017) and optimize the resource allocation (H. Zhang et al., 

2018) autonomously (Rosen et al., 2015). A Digital Twin reference model for rotating machinery 

fault diagnosis was developed in (Wang et al., 2018), defining the requirements for constructing the 

Digital Twin model. A digital twin for hydraulic supports (Xie et al., 2019) is built to simulate the 

actual hydraulic and to support diagnosis and degradation analysis. The digital twin finds application 

also in CNC machine tool (Luo et al., 2018) and in smart injection process (Liau et al., 2018) to 

control the behaviours of the physical system in real-time. The papers {40 Papers} in C8 treat the 

application of <{Digital Twin in the production phase} for {Performance optimization and 

validation}>.  Digital twins in the production phase aim at real time monitoring and optimization and 

for predicting the future state of the physical twin, thus preventing downtime and failures (Lee et al., 

2013). The digital twin helps at determining the optimal set of parameters and actions that can help 

maximizing some of the key performance, and providing forecasts for long-term planning (Vachálek 

et al., 2017). The digital twin can analyse performance data collected over time and under different 

conditions (Alcácer and Cruz-Machado, 2019), reducing unplanned machine downtime, the amount 

of ‘scrap’ produced in each production line, and minimizing costly production quality faults. The DT 

can optimize and elevate the production process to a higher level of effectiveness and flexibility 

(Cimino et al., 2019). 

The concept C7 indicates that {31 papers} are oriented towards the <{Digital Twin in the service 

phase}>. The service phase refers to the phases after sale, including the product utilization and the 

maintenance (Tao et al., 2018a). (Abramovici et al., 2017) introduce a cloud-based Smart Product 

platform for the reconfiguration of Smart Products during the use phase using the concept of virtual 

product twins and an Internet of Things. The conceptual approach is prototypically demonstrated by 

considering a model environment for smart cars, which are temporarily reconfigured during their use 

phase. The digital twin has been developed also for the waste electrical and electronic equipment 

recovery to support the manufacturing/remanufacturing operations (Wang and Wang, 2018). The 

<{Digital Twin in the service phase} supports the {Remote commissioning and diagnostics}> of the 

operations of interconnected systems such as manufacturing systems, as presented in the studies {20 

Papers} grouped in concept C12. This allows virtual monitoring systems and validation of the current 

status of production systems (i.e., energy monitoring and fault monitoring) (Qi et al., 2018). In 

addition, {18 Papers} analyse the application of the {Digital Twin in the service phase} for 

<{Performance optimization and validation}>. The digital twin can upgrade personalized product 

functions (Cheng et al., 2020) by obtaining the user's usage. In fact, in the service phase, Digital 

Twins can provide value-added services support for the prognostics and health management (PHM) 

(Qi et al., 2018) (Wang et al., 2018). The PHM is an engineering process of failure prevention and 

predicting reliability and remaining useful lifetime (RUL) (Sutharssan et al., 2015). In this case, the 

digital twin (DT) is developed for improving the accuracy and efficiency in the life cycle monitoring 

of a product (Tao et al., 2018c), (M. Zhang et al., 2018). There are currently relatively few digital 

twin applications {17 papers} for supporting the entire product life cycle (C16).  

 

 

https://context.reverso.net/traduzione/inglese-italiano/autonomously
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3.3  Digital Twin Architecture and Components (‘How to design and 

implement a Digital Twin?’) 
 

A general and standard architecture of a digital twin was first built by (Grieves, 2014) that presents a 

physical space, a virtual space and the connection between them. There are various understandings 

of the DT architectures among researchers (Dassisti et al., 2017).  (Stark et al., 2017) characterizes 

the DT as (1) an unique instance of the universal Digital Master model of an asset, (2) its individual 

Digital Shadow and (3) an intelligent linkage (algorithm, simulation model, correlation, etc.) of the 

two elements above (Kritzinger et al., 2018). An extended five-layer DT is proposed by (Tao et al., 

2018c) and it is composed by: (1) Physical entity (PE); (2) Virtual entity (VE); (3) Services (Ss) for 

PE and VE; (4) Data (DD); (5) Connection (CN) among PE, VE, Ss and DD. Compared to Grieves’s 

architecture, data and services layers were added. The five-layer DT architecture developed by 

(Ponomarev et al., 2017) presents: (1) cyber-physical layer; (2) primary processing/store data layer; 

(3) distributed computing and storage layer; (4) models and algorithms layer; (5) visualisation and 

user interfaces layer. This kind of architecture highlights the data storage, the distributed computing 

and management system as critical parts of the digital twin. An extended six-layer DT is presented 

by (Redelinghuys et al., 2019). The layers are: (1) physical devices; (2) local controllers; (3) local 

data repositories; (4) IoT gateway; (5) cloud-Based information repositories; (6) emulation and 

simulation. This structure is more focused on the transmission of data flow from the physical system 

(Layer 1 e 2) to the cloud (Layer 5). From the computational perspective, the key functionality of a 

digital twin is the combination of physics-based models and data driven models to emulate and 

simulate the physical space accurately (Kaur et al., 2020).   

In view of above, a DT architecture can be thought as consisting of several components and 

technologies organised into three main layers: the physical layer; the network layer; the computing 

layer (Boje et al., 2020). The physical layer consists of physical entities identified based on the stage 

of the product life cycle. The network layer connects the physical domain to the virtual one. It shares 

data and information. The computing layer involves the virtual entities emulating the corresponding 

real entities, including data-driven models and analytics, physic-based models, services, and users. 

Each layer is characterised by some DT components (for example hardware or software technologies, 

models, information structures) with commonalities in their scope of use and interactions, having also 

complementary functionalities. FCA was run on to detect which are the main and the most studied 

components/technologies for each layer. The formal concepts of the physical layer are shown in 

Figure 15 and in Table 6. 
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Figure 15: Lattice of Physical layer and its Components/Technologies 

 
Table 6: Formal Concepts of Physical layer and its Components/Technologies 

FORMAL CONCEPTS 

ID CONCEPT <{CONCEPT EXTENTS},{CONCEPT INTENTS}> 

C1 <{115 Papers}> 

C2 <{38 Papers}, {Physical Layer}> 

C3 <{12 Papers}, {Physical Layer, Unit Level}> 

C4 <{9 Papers}, {Physical Layer, System level}> 

C5 <{6 Papers}, {Physical Layer, System-of-systems level}> 

C6 <{6 Papers}, {Physical Layer, Unit Level, System level }> 

C7 <{6 Papers}, {Physical Layer, RFID sensor networks}> 

C8 <{12 Papers}, {Physical Layer, Wireless sensor networks (WSN), RFID}> 

C9 <{5 Papers}, {Physical Layer, Unit Level, System level, System-of-systems level}> 

C10 <{5 Papers}, {Physical Layer, Unit Level, RFID sensor networks}> 

C11 <{5 Papers}, {Physical Layer, RFID sensor networks, Wireless sensor networks 

(WSN)}> 

C12 <{4 Papers}, { Physical Layer, Unit Level, System level, System-of-systems level,  

RFID sensor networks}> 

C13 <{4 Papers}, {Physical Layer, RFID sensor networks, Unit level, Wireless sensor 

networks (WSN)}> 

C14 <{4 Papers}, {Physical Layer, System level, Wireless sensor networks (WSN)}> 

C15 <{4 Papers}, {Physical Layer, Wireless sensor networks (WSN), RFID}> 
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C16 <{3 Papers}, {Physical Layer, Unit Level, System level, System-of-systems level, 

Wireless sensor networks (WSN), RFID sensor networks}> 

C17 <{3 Papers}, {Physical Layer, Unit Level, Wireless sensor networks (WSN), RFID}> 

C18 <{3 Papers}, {Physical Layer, System Level, Wireless sensor networks (WSN), RFID 

}> 

C19 <{2 Papers}, {Physical Layer, Unit Level, System level, System-of-systems level,  

RFID sensor networks, RFID, Wireless sensor networks (WSN)}> 

 

The concepts C2, C3, C4, C5 show that the literature differs regarding the definition of the physical 

space, as highlighted also by the DT analysis definitions. In literature review, the digital twin has 

been applied at different physical levels (Tao et al., 2019) that can be summarized in: unit level (C3), 

system level (C4), system-of-systems level (C5). The unit level is a minimum but independent 

individual, which cannot be further divided such as a single piece of equipment (e.g., a product, a 

machine tool or robot arm). It contains a basic closed loop of data between the physical and virtual 

spaces with the abilities of sensing and computing. The system level can be a production system such 

as a production line, a shop floor, or a factory. It is characterized by self-organization, self-

configuration, and self-optimization. While the system-of-systems level is characterized by 

enterprises’ collaborations. The application of the digital twin at the system-of systems level can 

achieve the horizontal integration. It refers to the exchange of information across the supply chain 

such as resources management system, logistics, marketing, or intercompany value chains (Posada et 

al., 2015). For each type of level, Digital Twins can get and share data between all production factors 

and information systems achieving the vertical integration i.e., the integration of various Information 

Technology systems at different hierarchical levels. In manufacturing contexts, the literature concurs 

that the data type and consequently the data sources depend on the selected physical levels. Typically, 

a system-of-systems digital twin involve and exploit different data sources such as Internet/Users 

Data from CRM, E-commerce platforms (e.g., Amazon) and social networking platforms (e.g., 

Twitter, Facebook, LinkedIn, and YouTube), to understand user preference, and behaviours (Qi and 

Tao, 2018). It also involves Product data from computer-aided systems like CAD/CAM, CAE; 

Management data from manufacturing information systems such as MES, PDM, SCM, ERP, etc (Luo 

et al., 2018); Operational data from manufacturing equipment such as product data, quality data, 

maintenance data (Dassisti et al., 2019b); Environmental data which affects the physical equipment 

operations, such as environmental pressure, ambient temperature, and moisture level (Cai et al., 

2017).  The papers grouped in C6-C19 treat the equipping of a physical system with sensors, 

actuators, and embedded communication for recording real-time states (e.g., vibration, force, torque, 

and speed) and working conditions (e.g., environment parameters, loads, and control orders) (Ruppert 

et al., 2018) of the physical space. The most discussed technologies for the physical layer are RFID, 

RFID Sensor networks and Wireless sensor networks (WSN). RFID allows automatic identification 

and data capture using radio waves, a tag, and a reader (Lee and Lee, 2015). RFID Sensor networks, 

consisting of a very large number of nodes for monitoring and recording the physical conditions of 

the environment (Atzori et al., 2010). Wireless sensor networks (WSN) which consist of spatially 

distributed autonomous sensor-equipped devices to monitor physical or environmental conditions 

(Gubbi et al., 2013), (Tan and Wang, 2010). The components belonging to physical layer carry out 
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real-time data for the synchronization of the virtual twin with its corresponding physical twin with 

the capabilities of anomaly detection, prediction, prescription, and optimization.  

The network layer involves connections and interactions amongst physical elements and virtual space. 

This layer connects all components together for sharing data and information with other connected 

components (Da Xu et al., 2014). The key technologies discussed in the literature review are 

middleware, communication protocol analysis, communication protocol/interface conversion, 

wireless communication, and Application Programming Interfaces (API). FCA detects 11 possible 

concepts, as illustrated in Figure 16 and in Table 7. 

 
Figure 16: Lattice of Networking Layer and its Components/Technologies 

Table 7: Formal Concepts of Networking Layer and its Components/Technologies 

FORMAL CONCEPTS 

ID CONCEPT <{CONCEPT EXTENTS},{CONCEPT INTENTS}> 

C1 <{115 Papers}> 

C2 <{41 Papers}, {Network Layer}> 

C3 <{13 Papers}, {Network Layer, Communication protocol/interface: Automation 

ML}> 

C4 <{25 Papers}, {Network Layer, Communication protocols}> 

C5 <{8 Papers}, {Network Layer, Communication protocol/interface: Automation ML, 

Programming interface (API)}> 

C6 <{8 Papers}, {Network Layer, Communication protocol/interface: Automation ML, 

Middleware}> 

C7 <{11 Papers}, {Network Layer, Communication protocol/interface: Automation ML 

Communication protocol}> 

C8 <{7 Papers}, {Network Layer, Communication protocol/interface: Automation ML, 

Programming interface (API), Middleware}> 

C9 <{7 Papers}, {Network Layer, Communication protocol/interface: Automation ML, 

Programming interface (API), Communication protocol, Wireless Communication}> 
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C10 <{7 Papers}, {Network Layer, Communication protocol/interface: Automation ML, 

Middleware}> 

C11 <{6 Papers}, {Network Layer, Communication protocol/interface: Automation ML, 

Middleware, Programming interface (API), Communication protocol, Wireless 

Communication}> 

 

C4 concept shows, through its Extent column, the existence, in our literature review, of {25 papers} 

which analyse the <{Communication protocols} for the {Network Layer}>. The communication 

protocol allows two or more entities in the DT to transmit information to each other. OPC Unified 

Architecture (OPC UA) and MT-Connect protocols are the protocols more employed in digital twin 

applications to access to data and to transmit them in real-time (Redelinghuys et al., 2019). The 

studies {13 papers} in concept C3 discuss the <{Communication protocol/interface: Automation 

ML} in the {Network Layer}>. The communication protocol/interface conversion transforms various 

communication protocols/ interfaces into a unit form. AutomationML is an open standard for a data 

format based on XML allowing the exchange of plant engineering information (Bao et al., 2018), 

(Drath et al., 2008). The AutomationML is used in digital twin to model attributes related to the digital 

twin. The goal is to interconnect the heterogeneous toolchain of digital manufacturing (Um et al., 

2017). It is used to exchange data between the Digital Twin and other systems and a methodology for 

communication and exchange of data (G. N. Schroeder et al., 2016), (Talkhestani et al., 2018). The 

studies belonging to concepts C5-C11 help to deepen the following technologies <{Middleware, 

Wireless communication, Application Programming Interfaces (API)} in  the {Network Layer}>. The 

middleware is a software layer interposed between the technological and the application levels. The 

middleware architecture more used in the digital twin is the Service Oriented Architecture (SOA) 

approach. The adoption of the SOA principles allows for decomposing complex and monolithic 

systems into applications consisting of an ecosystem of simpler and well-defined components (Gubbi 

et al. 2013b). The wireless communication can connect entities in the DT wirelessly, thus improving 

flexibility in data transmission. The application Programming Interfaces (API) realize the 

communication between different software systems and models in the virtual space that represents 

the computing layer. 

The computing layer is fundamental for computing and decisional support of digital twins. FCA 

detects 90 possible concepts as shown in Figure 16. A set of concepts are reported in Table 8. C2 

concept demonstrates that the <{Computing Layer}> is the most addressed in our literature review 

{83 papers} either for the potential innovation or for the strong impact on decision support. 
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Figure 17: Lattice of Computing Layer and its Components/Technologies  

Table 8: Formal Concepts of Computing Layer and its Components/Technologies 

FORMAL CONCEPTS 

ID CONCEPT <{CONCEPT EXTENTS},{CONCEPT INTENTS}> 

C1 <{115 Papers}> 

C2 <{83 Papers}, {Computing Layer}> 

C3 <{31 Papers}, {Computing Layer, Data-driven Methods}> 

C4 <{23 Papers}, {Computing Layer, Decision-making/Rule model}> 

C5 <{24 Papers}, {Computing Layer, Physical model}> 

C6 <{27 Papers}, {Computing Layer, Geometric model}> 

C7 <{19 Papers}, {Computing Layer,  Collaborative information model}> 

C8 <{28 Papers}, {Computing Layer,  Behaviour model}> 

C9 <{10 Papers}, {Computing Layer,  Decision-making/Rule model, Physical model, 

Geometric model, Collaborative information model, Behaviour model}> 

C10 <{10 Papers}, {Computing Layer,  Modularity}> 

C11 <{11 Papers}, {Computing Layer, Interoperability}> 

C12 <{3 Paper}, {Computing Layer, Dynamicity}> 

C13 <{5 Paper}, {Computing Layer, Fidelity}> 

C14 <{4 Paper}, {Computing Layer, Scalability}> 

 

The computing layer can be perceived as a set of “layers” interconnected, which includes the 

following components: data (C3), models (C4-C9), and modelling features (C10-C14).  

The data layer includes all different types of data previously defined in the physical layer (Uhlemann 

et al., 2017). This sub-layer has characteristics of heterogeneity of data and data sources, volume, and 

speediness. Data preparation and data analysis are the key aspects discussed in literature. The data 
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preparation process includes data selection, data cleaning, data modelling, data integration, and data 

transformation. The data analysis includes all data-driven models such as machine learning data 

mining, pattern evaluation, and knowledge representation involved in DT building. The studies {31 

papers} grouped in C3 examine the <{Data-driven Methods} in {Computing Layer}>.  Data-driven 

models are designed to extract knowledge from data (Y. Zhang et al., 2017), (Lee et al., 2014b). The 

digital twin aims to integrate data across different domains into virtual models (Kusiak, 2018). The 

main data-driven models used in digital twins are machine learning, neural networks, and deep 

learning. The machine learning refers to the ability to give computers the possibility to learn without 

being explicitly programmed (Clarke et al., 2009). It is classified in supervised, unsupervised 

(Sutharssan et al., 2015) and reinforcement learning (van Otterlo and Wiering, 2012) (Jain et al., 

2017). Machine learning techniques used in digital twins are supervised and unsupervised learning 

(Jain et al., 2017). The supervised learning develops models based on input and output data (Tidriri 

et al., 2016).  The supervised learning, across the digital twin, is applied for the system’s failures 

prediction (Asimov et al., 2018), or for prediction of the remaining useful life (RUL) of the physical 

twin (Z. Liu et al., 2018). The unsupervised learning, instead, discovers an internal representation 

from input data only (Sutharssan et al., 2015), (Fahad et al., 2014). It enables      discovering similar 

groups within data, based on clustering techniques (Xu and Wunsch, 2005), (Grira et al., 2004). In 

digital twins, these techniques are used for creating autonomous clusters for different working 

regimes to analyse machine conditions (Lee et al., 2014a), (Banerjee et al., 2017) (Ding et al., 2019). 

Artificial Neural Networks (ANN) and Deep Learning (DL) are computing systems that are inspired 

by the human brain (Zhang, 2000). The main scopes in using neural networks and deep learning in 

digital twin (Lee et al., 2013) are health assessment, performance prediction (Jain and Bhatnagar, 

2020), fault diagnosis (Xu et al., 2019).   

The digital twin requires the building and the applying digital models representing the set of resources 

and processes knowledge. Different tools and technologies are available for developing high-fidelity 

virtual models (Schleich et al., 2017). The most discussed components regard the model types 

(concepts C4-C9) and the modelling features (concepts C10-C14). The model types define the 

physics-based models and the functions of each model necessary to emulate the physical system. 

Physics-based models compare simulated results with known information, represented by 

mathematical models (Tidriri et al., 2016). A model represents a system in terms of logical and 

quantitative relationships that are then manipulated and changed to see how the model reacts, and 

thus how the system would react-if the mathematical model is a valid one (Law et al., 2000). The 

physics-based models are based on a set of different models to represent the structure, the behaviour, 

and the interactions of a physical system (Tidriri et al., 2016), (Tao et al., 2018c). The most studied 

models for developing a digital twin (Semeraro et al., 2019a) are summarised as follow: Geometric 

model {27 Papers} in concept C6; Physical model in {24 Papers}in concept C5; Behaviour model 

{28 Papers} in C8; Collaborative information model {19 Papers} in C7; Decision-making model {23 

Papers} in C4. A geometric model reflects the geometry, the kinematics, the logic, and the interfaces 

of the real system (Ayani et al., 2018), (Xie et al., 2019). A geometric model defining shapes, sizes, 

positions and assembling machine components is presented in (Tao et al., 2018c). A physical model 

enables to simulate the physical properties and loads (Post et al., 2009) analysing the phenomena, 

such as deformation, cracking and corrosion (Tao et al., 2018c). A behaviour model describes the 

https://en.wikipedia.org/wiki/Brain
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way the physical system is governed by driving factors (e.g., control orders) or disturbing factors 

(e.g., human interferences) (Tao et al., 2018c), (Bao et al., 2018). A collaborative information model 

(Bao et al., 2018) defines how different components interact and simulates the collaborative 

behaviour among several assets. A decision-making model makes the model capable of evaluating, 

reasoning, and validating. It consists of variable input, algorithms and a collection of constraints and 

rules (Bao et al., 2018). It includes rules of constraints, associations, and deductions (Tao et al., 

2018c) and it stores and analyses the running status data, then it makes decisions using machine 

learning algorithms.  

The common features studied for modelling a digital twin concern: scalability, interoperability, 

fidelity, dynamicity, and modularity. According to the studies {4 Papers} grouped in C14, the 

scalability is the ability to provide an insight at different scales (from fine details to large systems) 

(Schleich et al., 2017) (Putnik et al., 2013). The studies {11 Papers} in C11 define the interoperability 

as the ability to convert, to combine, and to establish equivalence between different model 

representations (H. Zhang et al., 2017). The model interoperability is a critical aspect for the exchange 

of dynamic models and for Co-Simulation. Functional Mock-Up Interface (FMU) standard is 

commonly used in digital twins to solve this problem (Negri et al., 2019) (Schluse et al., 2018). FMU 

is an open standard for exchanging dynamical simulation models between different tools in a 

standardized format and for co-simulation (Blochwitz et al., 2011). FMI standard specifies two 

different kinds of FMUs: (1) Model Exchange (ME) – ME FMUs; (2) Co-Simulation (CS) – CS 

FMUs. The model fidelity (concept C13) describes the closeness to the physical product (Schleich et 

al., 2017) while the model dynamicity (concept C12) is the ability to reflect real time the physical 

process and modify autonomously itself if the physical system changes. This crucial issue concerns 

the convergence of the physical world with its digital counterpart (Weyer et al., 2016). According to 

the {10 Papers} clustered in C10, the modularity is the ability to integrate, to add, or to replace models 

(Guo et al., 2018). Two modular approaches have been developed in (Guo et al., 2018), (Semeraro et 

al., 2019a). The idea behind this approach is to use and especially re-use predefined functional units 

(Semeraro et al., 2019a), that are systematically developed and logically interlinked for the 

configuration of a holistic manufacturing system (Stark et al., 2017), (Negri et al., 2019).  Virtual 

(VR) or augmented (AR) reality technologies can be integrated in digital twins to create interactive 

and immersive environments (G. Schroeder et al., 2016) enabling direct interactions between the 

digital twin and final users. 

As a summary of the analysis discussed above, the digital twin paradigm is summarised in Figure 18 

to depict the contexts, the phases of the life cycle (design, production, and service), the functions of 

the Digital Twin for each life cycle phase, the architecture layers, and the main components of each 

architecture layer. 
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Figure 18: The Digital Twin Paradigm  (Semeraro, 2020) 

 

4 Conclusion and Research Challenges  

 

The present study forms a literature review that led to a digital twin paradigm aiming at assessing 

which are the application contexts, the life cycle phases, the functionalities, the architectures, and the 

components of existing digital twins. The paper aims at providing a detailed picture of the main 

features of existing scientific research on DT’s, stressing on the different application domains and the 

related technologies. The idea of Digital Twin as a “virtual” image of the reality constantly 

synchronized with the real operating scenario is accurately presented and described in section 1 in all 

its physical and logical aspects. This literature review tries to answer different research questions at 

different level namely: DT definition, application contexts, life cycle phases, functions, architectures, 

and components. Section 2 investigates on different DT definition provided in literature to address 

the research question: ‘What is a Digital Twin?’. The application contexts in section 3.1 and life cycle 

phases in section 3.2 focus on establishing the baseline of the Digital Twin paradigm by trying to 

reply to the research questions: ‘Where is appropriate to use a Digital Twin?’, ‘Who is doing Digital 

Twins?’, ‘When has a Digital Twin to be developed?’. A digital twin may enable companies and 

organisation to predict outcomes, design, and build better products, and better serve their customers 

(Madni et al., 2019). To that point, the third research question (‘Why should a Digital Twin be used?’), 

in section 3.2, analyses the main functions of a digital twin for each life cycle phase. The fourth 
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research question investigated in section 3.3 (‘How to design and implement a Digital Twin?’) tries 

to define the DT architecture and analyse the employed components/technologies for implementing 

digital twins. The review results are summarised in the summary table below. 

 
Table 9: Summary table of the review results (5W1H) 
 

Research Question Results 

‘What is a Digital Twin?’ 

DIGITAL TWIN DEFINITION  

“A set of adaptive models that emulate the behaviour of a physical 

system in a virtual system getting real time data to update itself along 

its life cycle. The digital twin replicates the physical system to predict 

failures and opportunities for changing, to prescribe real time 

actions for optimizing and/or mitigating unexpected events 

observing and evaluating the operating profile system”. 

‘Where is appropriate to use a 

Digital Twin?’ 

DIGITAL TWIN CONTEXTS and 

USE CASES 

1. Healthcare 

• Improving operational efficiency of healthcare operations  

2. Maritime and Shipping 

• Design customization 

3. Manufacturing 

• Product development and predictive manufacturing 

4. City Management 

• Modelling and simulation of smart cities 

5. Aerospace 

• Predictive analytics to foresee future aircraft problems  

‘Who is doing Digital Twins?’ 

DIGITAL TWIN PLATFORMS 

GE Predix; SIEMENS PLM; Microsoft Azure; IBM Watson; PTC 

Thing Worx; Aveva; Twin Thread; DNV-GL; Dassault 3D 

Experience; Sight Machine; Oracle Cloud. 

‘When has a Digital Twin to be 

developed?’ 

DIGITAL TWIN LIFE CYCLE 

1. In design phase  

• The digital twin is used to help designers to configure and 

validate more quickly the product development accurately 

interpreting the market demands and the customer 

preferences. 

2. In production phase 

• The digital twin shows a great potential in real-time process 

control and optimization, as well as accurate prediction.  

3. In service phase 

• The digital twin can monitor the health of a product, perform 

diagnosis and prognosis. 

‘Why should a Digital Twin be 

used?’ 

DIGITAL TWIN FUNCTIONS 

‘How to design and implement a 

Digital Twin?’  

DIGITAL TWIN 

ARCHITECTURE AND 

COMPONENTS 

1. The Physical layer involves various subsystems and sensory 

devices that collect data and working parameters. 

2. The Network layer connects the physical to the virtual, sharing 

of data and information. 

3. The Computing layer consists of virtual models emulating the 

corresponding physical entities. 
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The analysis of the digital twin definitions, features, tools, and methodologies was done based on the 

text mining techniques and Formal Concept Analysis (FCA). The application contexts, life cycle 

phases, functionalities, architectures, and components are discussed and organised in a unique 

paradigm summarised in Figure 18. Balanced against the many advantages that the digital twin can 

bring, there are several challenges to be overcome. For the grace of the results summarised in table 

9, we try to define what are the main research challenges of implementing a Digital Twin. 

 

Research Challenge #1.  

DT APPLICATION CONTEXTS 

According to section 3.1, the existing digital twin applications refer to specific and traditional 

contexts: Healthcare; Maritime and Shipping; Manufacturing; City Management; Aerospace. 

Humans play an important role in the Digital Twin applications especially in manufacturing contexts. 

Human interaction is the one key challenge in the development and implementation of DT in the 

manufacturing application. While some low-level operations can be autonomously achieved without 

human intervention, many decision-making activities are still sustained by many manual operations 

based upon human interactions. The research challenge is to form and design cognitive digital twin 

able to interoperate with other digital twins and humans in a seamless way whatever happens during 

their interactions. Furthermore, the digital twins could virtually help look beyond the current 

industrial model of extracting, producing, consuming, and disposing. The digital twin can support 

companies to move from a linear system to a 'circular economy' system that considers almost zero 

waste production and pollution, keeps products and materials in the recycling loop longer and helps 

regenerate natural systems. While scientific literature has analysed the adoption of DT in the 

optimization of products life cycle, few contributions have yet focused on the exploitation of DT to 

assess and improve the sustainability performances of whole value chains (Barni et al. 2018). 

Significant research efforts need to be made on the application of a digital twin for improving the 

sustainability performances in each application context.   

 

Research Challenge #2.   

DT LIFE CYCLE AND FUNCTIONS 

The DT presents an exciting possibility of real-time simulation for product life cycle that can be 

divided into three phases: design, production, and service. The digital twin can be developed in each 

life cycle phase fulfilling different functions. The digital twin can potentially help to integrate even 

the entire supply chain, throughout all phases of product life cycle. FCA results in section 3.2 

demonstrates that most digital twin applications refer to a single phase of a product life cycle. There 

are currently relatively few applications of digital twin for supporting the entire supply chain and the 

network enterprises. Digital Twin applications are mainly developed for prediction purposes and used 

for decision-making support. The digital twin could connect products, persons, machines, and 

enterprises within the virtual space. However, this aspect holds its own challenges at the present state. 

The ability to collect, aggregate and exchange data and information between different suppliers, 

manufacturers and customers could present interoperability issues. As the DT can potentially 

integrate data from the lifetime of a product seamlessly, several key research challenges concern the 

definition of standards and communication protocols to ensure interoperability of multiple digital 
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twins with each other (Platenius-Mohr et al. 2020). The development of standards-based 

interoperability is important and challenging at the same time for the evolution of digital twin 

applications along the entire life cycle. 

 

Research Challenge #3.  

DT ARCHITECTURE AND COMPONENTS/TECHNOLOGIES 

The DT consists of a set of models with complex structures and behaviour, that reflect the real-time 

operations of the physical system. Modelling a digital copy of a physical system to perform real-time 

validation and optimization is quite complex and thus needs a big amount of data.  A digital twin can 

be a model of a component, a system of components or a system of systems. The digital twin requires 

the construction and application of accurate models of reality. Modelling the reality in a digital twin 

is a complex task, as it involves sensors, multifunctional models, multisource data, services, etc. At 

present, it is difficult to build an accurate model for a DT using traditional approaches due to the 

complexity of real systems. The lack of an univocal reference architecture leads at developing Digital 

Twin solutions using different technologies, interfaces, and communication protocols, models and 

data as assessed in section 3.3. Standard Digital Twin solutions should be developed to provide design 

criteria and design constraints where reference architectural aspects, reference information model and 

communication protocols are clearly defined (Lu et al. 2020). The modularization design principle 

needs to be explored to improve the modelling efficiency. This would enable to improve the flexibility 

and reusability of standard DT-solutions towards different applications. Modular approaches need to 

be explored for the construction of flexible DT solutions, facilitating new DT applications. 

 

Next steps of the present research will be related to the definition of a new approach for building a 

digital twin by exploring the modularity feature, which is still one of the most challenging research 

issues. The idea that we will explore is the definition of a modelling approach that allows to derive a 

criterion to self-detect modelling constructs that can be used (and re-used) to create digital models of 

different systems or processes. 
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