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A B S T R A C T

The aim of this paper is to provide spatially resolved distributions of residual stresses. X-ray diffraction
measurements provide an intrinsic average of the residual stress due to the diffracted volume analyzed during
the measurement. When the irradiated area is higher than the characteristic length of stress gradients, strong
averaging effects are observed. A spatial deconvolution technique is developed to reconstruct the local residual
stress field, based on the inversion of a linear system constructed from the average datasets. The method is
first applied to the reconstruction of residual stresses in two reference cases inducing heterogeneous plastic
strains (laser shot peening and repetitive corrugation and straightening processing), in which the average
datasets are constructed from the local stress profiles determined numerically by the finite element method. In
both processes, a very good agreement is observed between the reference stress profiles and the reconstructed
ones. Finally, the method is applied to experimental X-ray diffraction measurements on a specimen processed
by repetitive corrugation and straightening in similar conditions than the numerical simulations. A strong
averaging effect is observed on the collected data and a good agreement is observed between the local stress
profile reconstructed from the experimental measurements and that predicted numerically.

1. Introduction

Residual stresses have a significant influence on the engineering
properties of materials and structural components such as fatigue life,
corrosion resistance and resistance to brittle fracture. They constitute
one of the major factors determining the structural integrity of engi-
neering components and the control of its underlying mechanisms is of
great interest during the design and manufacturing of products (Web-
ster and Ezeilo, 2001; Vaara et al., 2020). Residual stresses are due to
spatial gradients of irreversible strains which typically originate from
heterogeneous plastic deformation or phase transition. Thus, residual
stresses can be generated unintentionally during most manufacturing
processes involving irreversible deformation and heat treatment such
as in machining (Jacobus et al., 2000; Zhang et al., 2016; Ben Rhouma
et al., 2019), welding (Dong and Brust, 2000; Leggatt, 2008), laser
marking (Lu et al., 2020), severe plastic deformation (Reyes-Ruiz et al.,
2016; Ezequiel et al., 2020) and additive manufacturing (Fang et al.,
2020); the presence of undesirable tensile residual stresses can decrease
fatigue life and corrosion resistance. On the other hand, compressive
residual stresses can be induced on purpose in order to improve dura-
bility, by means of several processes such as shot peening (Hammond

and Meguid, 1990; Mahmoudi et al., 2016), laser shock peening (Peyre
and Fabbro, 1995; Montross et al., 2002) and wire brushing (Ben Fredj
et al., 2004). The assessment and prediction of residual stress distribu-
tions in engineering components is thus a major challenge for durability
and reliability.

In terms of experimental measurement techniques, significant ad-
vances have been made to provide accurate distributions of residual
stresses (Rossini et al., 2012), based on several experimental methods
including X-ray diffraction, neutron diffraction, deep hole drilling and
magnetic methods, among others. X-ray diffraction (XRD) constitutes a
high accuracy and non-destructive way to determine residual stresses
in crystalline materials, where crystalline planes are used as strain
gauges (Lu, 1996). Based on the knowledge of the wavelength and the
measured shift of the Bragg angle, the change in interatomic lattice
spacing can be calculated, which permits to evaluate the strain in a
small volume under the specimen surface. Residual stresses can then
be deduced from the elastic theory provided that the X-ray elastic
constants are known. Due to the important absorption of X-ray in
metallic alloys, the method allows measurements in outer layers. Thus,
in conjunction with successive polishing, the XRD method permits
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to determine (destructively) stress gradients in depth with a very 
good precision and resolution. Advanced techniques based on multi-
reflection grazing-incidence allow to provide depth-dependent stress 
profiles non-destructively (Baczmanski et al., 2004; Marciszko et al., 
2017).

Despite its important success and its high precision in-depth, the 
X-ray diffraction method remains inaccurate in the presence of high 
surface stress gradients (Kahloun et al., 1994; Hennion et al., 2000; 
Kahloun et al., 2014). Indeed, when the surface gradient of residual 
stresses is smaller than the irradiated zone, the stresses obtained from 
XRD correspond to some average of the local stresses because X-ray 
diffraction only yields the mean lattice strains over the irradiated area 
(whose size will depend on the collimator geometry). A decrease of 
the irradiated zone permits to improve the homogeneity of the surface 
stress, but, since the diffracting volume has to contain a sufficient 
number of crystallites to be statistically representative, the irradiated 
area cannot be reduced below some critical value in typical engineering 
materials containing micron-sized crystallites. Thus in the presence of 
high lateral stress gradients, inherent averaging effects are expected to 
occur on the stresses measured by X-ray diffraction.

The quality of the local residual stress profiles obtained experi-
mentally by X-ray diffraction can thus be very questionable in the 
zones having high lateral stress gradients, which raises important issues 
notably in processing validation or for the determination of threshold 
criteria in stress corrosion cracking (Ben Rhouma et al., 2019). In 
particular, in the context of process simulation, the averaging effects 
on residual stresses measured by X-ray diffraction prevent a proper 
comparison with the local residual stresses determined numerically by 
the finite element method. For instance, this effect may explain the 
discrepancies observed notably in the comparison between experiments 
and numerical stress profiles in heterogeneous processing such as laser 
shock peening (Peyre et al., 2003, 2012), in contrast with (more) 
homogeneous processes like classical shot peening (Xie et al., 2016; 
Zhou et al., 2018). It is worth noting that this important drawback of 
the X-ray diffraction method has only been studied by a few authors:

• A first way to circumvent the averaging issue is to post-treat
the finite element results by making an average of the resid-
ual stress field over the XRD irradiated area. This was investi-
gated in the case of a multi-impact laser shock peening process-
ing (Brockman et al., 2012). Although this method is interesting
because it accounts for the X-ray averaging effects in the finite
element simulations, it does not permit to capture the experimen-
tal heterogeneities as it only gives information on the averaged
stresses.

• A second way was proposed through the deconvolution of the
measured peak parameter, allowing a correction of the residual
stress field accounting for the irradiated area and penumbra
effect (Hennion et al., 2000). However, since the method is
based on the peak parameter deconvolution, it can provide a
reconstructed stress profile only for a given irradiated area. Thus,
when applied to the reconstruction of the stress profile in a melted
specimen in two experimental conditions with two irradiated
areas, the method proposed by Hennion et al. (2000) has given
two reconstructed stress profiles (for each irradiated areas) which
were very different, emphasizing that their method does not
permit to reconstruct a unique and precise local stress profile.

• Mention has to be made to the work of Kahloun et al. (2014),
who investigated the problem of stress deconvolution in XRD
measurement. However, since this method makes use of Fourier
transforms of the convoluted stress, it restricts the residual stress
distributions to periodic functions. Furthermore, their inverse
procedure is ill-posed due to the experimental noise and the lack
of redundant data, so the method does not appear suitable to
reconstruct accurate local stress distributions.

An alternative and new approach is considered in this work. It consists
in the spatial reconstruction of the local residual stress field from
several X-ray diffraction measurements performed on a regular grid
(e.g. using an automatic robot) and with the use of several collimator
sizes inducing various irradiated areas. Indeed, since the average stress
profile obtained by XRD consists in the convolution of the stress field
over the irradiated area (Kahloun et al., 2014), it is possible to establish
a linear relationship between the point-wise values of the local stress
field and that of the average stress determined experimentally. The
combination of a fine measurement grid and several collimator sizes
allows the construction of an overdetermined linear system. Provided
that the average stresses are smoothed to decrease experimental noise,
the approximate inversion of the overdetermined system (using ordi-
nary least squares method) should then lead to a deconvolution and
reconstruction of a unique and precise local stress field.

The paper is organized as follows. In Section 2, a deconvolution
method, based on the inversion of a linear system depending on the
average datasets, is developed to reconstruct spatially the local stress.
The method is applied in Section 3 to the reconstruction of local
residual stresses in two reference cases inducing heterogeneous strains
(laser shock peening and repetitive corrugation and straightening pro-
cessing) which are computed numerically. Finally, the spatial stress
deconvolution method is applied to experimental data collected on a
specimen processed by severe plastic deformation.

2. A deconvolution method of spatial residual-stresses using X-ray
diffraction measurements

2.1. Averaging effects in X-ray diffraction measurements

The stresses obtained from XRD measurements result from a convo-
lution of the local stress over the irradiated area, which is generally of
circular or rectangle shape in practical laboratory facilities (see Fig. 1a).
Throughout this paper we will assume the following hypotheses, which
will allow the derivation of a stress deconvolution method that can be
used in practical applications:

(1) The irradiated area is square-shaped;
(2) The lateral stress-gradient occurs in one direction;
(3) The averaging over the irradiated area is uniform (no penumbra

effects).

Thus under these hypotheses, the problem considered is one-
dimensional so the XRD experiments can be performed on a line. We
assume that the local residual-stress field is a continuous function 𝜎(𝑥),
where 𝑥 is the spatial coordinates defined in the domain [0, 𝐿]. X-ray
diffraction measurements permit to obtain some average value of the
stress field 𝜎(𝑥) over a moving interval of width 2𝑎, corresponding to
the irradiated diameter (see Fig. 1b).

The moving average of the stress field 𝜎(𝑥), which is denoted by
𝛴𝑎(𝑥), is given by the formula

𝛴𝑎(𝑥) = 1
2𝑎 ∫

𝑥+𝑎

𝑥−𝑎
𝜎(𝑢)d𝑢. (1)

In practice, the moving average 𝛴𝑎 is restricted to a finite number
of experimental points. The interval of definition of the residual-stress
field 𝜎, [0, 𝐿], is discretized into uniform grid with spatial scale 𝛥𝑥 =
𝐿∕𝑁 , where the total number of points is 𝑁 + 1. We use the following
notation: 𝑥𝑖 = 𝑖𝛥𝑥, 𝜎𝑖 = 𝜎(𝑥𝑖), with 𝑖 = 0,… , 𝑁 . For simplicity, we
assume that the diameter of the irradiated zone is supposed to coincide
with the grid, which implies that 𝑎 is of the form

𝑎 = 𝑘𝑎𝛥𝑥, (2)

where 𝑘𝑎 is a positive integer. Since the moving average is defined
in the interval [𝑎, 𝐿 − 𝑎], its discrete values 𝛴𝑎

𝑖 = 𝛴𝑎(𝑥𝑖) are defined
with 𝑖 = 𝑘𝑎,… , 𝑁 − 𝑘𝑎 and may thus be written as a vector Σ𝑎 of size
𝑁 + 1 − 2𝑘𝑎. We are thus looking for the discrete values 𝜎𝑖 of the local
stress field at the points 𝑥𝑖, which consists in finding the vector 𝝈 of
size 𝑁 + 1.



Fig. 1. Averaging effects in XRD experiments. (a) Description of the experimental set-up, (b) Definition of the measured residual stress profile 𝛴𝑎(𝑥) from the heterogeneous
residual stress profile 𝜎(𝑥).

2.2. Deconvolution by integration approximation

The most natural approach for computing the vector 𝝈 from its
moving average Σ𝑎 is to approximate the integral in Eq. (1), using a
trapezoidal rule. At the grid point 𝑥𝑖, it reads:

𝛴𝑘𝑎
𝑖 = 1

2𝑘𝑎

(

𝜎𝑖−𝑘𝑎 + 𝜎𝑖+𝑘𝑎
2

+
𝑗=2𝑘𝑎−1
∑

𝑗=1
𝜎𝑖−𝑘𝑎+𝑗

)

, 𝑖 = 𝑘𝑎,… , 𝑁 − 𝑘𝑎. (3)

The (𝑁 + 1 − 2𝑘𝑎) equations defined by (3) lead to the linear system

Σ𝑎 = 𝐑𝑎𝝈, (4)

where 𝐑𝑎 is a (𝑁 + 1 − 2𝑘𝑎) × (𝑁 + 1) matrix given by

𝐑𝑎 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑟𝑎0 𝑟𝑎1 … 𝑟𝑎2𝑘𝑎−1 𝑟𝑎2𝑘𝑎 0 0 … 0
0 𝑟𝑎0 𝑟𝑎1 … 𝑟𝑎2𝑘𝑎−1 𝑟𝑎2𝑘𝑎 0 … 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 𝑟𝑎0 𝑟𝑎1 … 𝑟𝑎2𝑘𝑎−1 𝑟𝑎2𝑘𝑎 0
0 … 0 0 𝑟𝑎0 𝑟𝑎1 … 𝑟𝑎2𝑘𝑎−1 𝑟𝑎2𝑘𝑎

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(5)

The non-zero components of the matrix 𝐑𝑎 are given by

𝑟𝑎𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2𝑘𝑎

if 1 ≤ 𝑖 ≤ 2𝑘𝑎 − 1,

1
4𝑘𝑎

if 𝑖 = 0,

1
4𝑘𝑎

if 𝑖 = 2𝑘𝑎.

(6)

The linear system (4) is underdetermined since there are fewer equa-
tions (𝑁 + 1 − 2𝑘𝑎) than unknowns (𝑁 + 1). In that case, the classical
method of ordinary least squares can be used to find an approxi-
mate solution of the system, which consists in minimizing the residual
sum-of-squares defined as

‖𝐑𝑎𝝈 −Σ𝑎
‖ , (7)

where ‖⋅‖ denotes the (classical) Euclidean norm. The solution of this
minimization problem leads to

𝝈 = (𝐑𝑎)+Σ𝑎, (8)

where (𝐑𝑎)+ is the Moore–Penrose right pseudoinverse given by

(𝐑𝑎)+ = (𝐑𝑎)𝑇
(

𝐑𝑎(𝐑𝑎)𝑇
)−1 . (9)

The quality of the approximate solution field 𝝈 given by Eq. (8) is
expected to be poor because (i) the system is undetermined and (ii)
experimental noise is expected on Σ𝑎 (Engl et al., 1996). Remedies are
thus needed to provide a satisfactory reconstruction.

2.3. Automatic spline smoothing of noisy data

In practice, the moving average vector is determined up to measure-
ment errors. This has important consequences upon the inverse problem
considered since it may generate important spurious oscillations (Engl
et al., 1996). In this context, an efficient way to remove the experimen-
tal noise, by separating it from the dataset, consists in using advanced
smoothing techniques.

In the case of non-periodic data, smoothing splines are a very
effective method to construct of a smooth estimate Σ̃𝑎 of Σ𝑎 by
minimization of a functional  that balances the fidelity to the data,
through the residual sum-of-squares (RSS), and the smoothness of the
estimate Σ̃𝑎, through some penalty term  (Garcia, 2010):


(

Σ̃𝑎
)

= ‖

‖

‖

Σ𝑎 − Σ̃𝑎‖
‖

‖

2
+ 𝑠

(

Σ̃𝑎
)

, (10)

where ‖⋅‖ denotes the Euclidean norm and 𝑠 is a real positive scalar
that controls the degree of smoothing. The penalty term is expressed in
terms of the point-values of the 𝑝th derivative of Σ̃𝑎 at the grid points.
In the case of the second-order derivative, it reads


(

Σ̃𝑎
)

= ‖

‖

‖

𝐃Σ̃𝑎‖
‖

‖

2
, (11)



where 𝐃 is the second-order differentiation matrix given by

𝐃 = 1
𝛥𝑥2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−1 1 … 0
1 −2 1 ⋮
0 ⋱ ⋱ ⋱ 0
⋮ 1 −2 1
0 … 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

The minimization of  leads to the expression of the smooth estimate
Σ̃𝑎 (Garcia, 2010)

Σ̃𝑎 = IDCT (Γ(𝑠)◦DCT (Σ𝑎)) , (13)

where DCT and IDCT respectively refer to the discrete cosine transform
and the inverse cosine transform, and ◦ denotes Hadamard product
(pointwise product). Γ(𝑠) is a vector of size 𝑁 +1−2𝑘𝑎 (which controls
the smoothness through the value of parameter 𝑠), whose components
are given by

𝛤𝑖 =
1

1 + 𝑠𝜆2𝑖
, (14)

where the parameter 𝜆𝑖 is given by

𝜆𝑖 = 2 − 2 cos
(

(𝑖 − 1)𝜋
𝑁 + 1 − 2𝑘𝑎

)

. (15)

The last step is to estimate the best smoothing parameter 𝑠 that avoids
over- or under-smoothing as much as possible. Such estimation can be
done using the classical method of generalized cross-validation (GCV)
introduced by Craven and Wahba (1978), which consists in minimizing
the so-called GCV-score. In the case of the smoother given by Eq. (13),
the GCV score is given by

GCV(𝑠) =

(𝑁 + 1 − 2𝑘𝑎)
𝑁+1−2𝑘𝑎
∑

𝑖=1

(

1
1 + 𝑠𝜆2𝑖

− 1

)2

DCT2
𝑖 (Σ

𝑎)

(

(𝑁 + 1 − 2𝑘𝑎) −
𝑁+1−2𝑘𝑎
∑

𝑖=1

1
1 + 𝑠𝜆2𝑖

)2
. (16)

In practice, the minimization in Eq. (16) can be easily performed using
efficient routines based on the simplex method.

The smooth of the experimental data is thus fully automatic and
the smoothing parameter estimate provided by the GCV method is
unique (Garcia, 2010, 2011).

2.4. Improved accuracy using several sets of measurements

The method of deconvolution by integration approximation ex-
pounded in Section 2.2 is based on the approximate inversion of an
undetermined system. There are fewer equations than unknowns which
is not suitable to make a precise reconstruction. In order to improve the
accuracy of the reconstruction, it is proposed to increase the number
of experimental data by considering several sets of moving average. In
practice, this can be easily achieved by using different collimators (and
thus different irradiated areas) which would provide different moving
average functions. Thus, we consider 𝑛 sets of measures associated with
width denoted by 2𝑎𝑗 (𝑗 = 1,… , 𝑛) and the moving average functions
are defined such as

𝛴𝑎𝑗 (𝑥) = 1
2𝑎𝑗 ∫

𝑥+𝑎𝑗

𝑥−𝑎𝑗
𝜎(𝑢)d𝑢. (17)

This allows the definition of a linear system involving

𝑝 =
𝑛
∑

𝑖=1
(𝑁 + 1 − 2𝑘𝑎𝑖 ) (18)

equations arising from the definition of the moving average functions
Σ𝑎𝑗 for each set of irradiated width 2𝑎𝑗 (𝑗 = 1,… , 𝑛). This linear system
can be formally written as

Σ = 𝐑𝝈, (19)

Σ
where 𝝈 is the vector of unknowns (of size 𝑁 + 1). In Eq. (19), Σ is 
a vector of size 𝑝 which concatenates the vectors ̃ 𝑎𝑗 (obtained after 
the smoothing of Σ𝑎𝑗 ), and 𝐑 is a matrix of size 𝑝 × (𝑁 + 1) which 
concatenates the matrices 𝐑𝑎𝑗 :

Σ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛴𝑎1
𝑘𝑎1

𝛴𝑎1
𝑘𝑎1+1

⋮

𝛴𝑎1
𝑁−𝑘𝑎1−1

𝛴𝑎1
𝑁−𝑘𝑎1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛴𝑎2
𝑘𝑎2

𝛴𝑎2
𝑘𝑎2+1

⋮

𝛴𝑎2
𝑁−𝑘𝑎2−1

𝛴𝑎2
𝑁−𝑘𝑎2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋮
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛴𝑎𝑛
𝑘𝑎𝑛

𝛴𝑎𝑛
𝑘𝑎𝑛+1

⋮

𝛴𝑎𝑛
𝑁−𝑘𝑎𝑛−1

𝛴𝑎𝑛
𝑁−𝑘𝑎𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

;

𝐑 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑎10 𝑟𝑎11 … 𝑟𝑎12𝑘𝑎1−1
𝑟𝑎12𝑘𝑎1

0 0 … 0
0 𝑟𝑎10 𝑟𝑎11 … 𝑟𝑎12𝑘𝑎1−1

𝑟𝑎12𝑘𝑎1
0 … 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 𝑟𝑎10 𝑟𝑎11 … 𝑟𝑎12𝑘𝑎1−1

𝑟𝑎12𝑘𝑎1
0

0 … 0 0 𝑟𝑎10 𝑟𝑎11 … 𝑟𝑎12𝑘𝑎1−1
𝑟𝑎12𝑘𝑎1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑎20 𝑟𝑎21 … 𝑟𝑎22𝑘𝑎2−1
𝑟𝑎22𝑘𝑎2

0 0 … 0
0 𝑟𝑎20 𝑟𝑎21 … 𝑟𝑎22𝑘𝑎2−1

𝑟𝑎22𝑘𝑎2
0 … 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 𝑟𝑎20 𝑟𝑎21 … 𝑟𝑎22𝑘𝑎2−1

𝑟𝑎22𝑘𝑎2
0

0 … 0 0 𝑟𝑎20 𝑟𝑎21 … 𝑟𝑎22𝑘𝑎2−1
𝑟𝑎22𝑘𝑎2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⋮
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑎𝑛0 𝑟𝑎𝑛1 … 𝑟𝑎𝑛2𝑘𝑎𝑛−1
𝑟𝑎𝑛2𝑘𝑎𝑛

0 0 … 0
0 𝑟𝑎𝑛0 𝑟𝑎𝑛1 … 𝑟𝑎𝑛2𝑘𝑎𝑛−1

𝑟𝑎𝑛2𝑘𝑎𝑛
0 … 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 … 0 𝑟𝑎𝑛0 𝑟𝑎𝑛1 … 𝑟𝑎𝑛2𝑘𝑎𝑛−1

𝑟𝑎𝑛2𝑘𝑎𝑛
0

0 … 0 0 𝑟𝑎𝑛0 𝑟𝑎𝑛1 … 𝑟𝑎𝑛2𝑘𝑎𝑛−1
𝑟𝑎𝑛2𝑘𝑎𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(20)

This system becomes overdetermined when 𝑝 ≥ 𝑁 + 1. Like in the
previous case of an underdetermined system, the classical method
of ordinary least squares can be used to find an approximate and
unique solution of the system, which consists in minimizing the residual
sum-of-squares defined as

‖𝐑𝝈 −Σ‖ , (21)

The approximate solution of the minimization problem reads

𝝈 = 𝐑+Σ, (22)

where 𝐑+ is the Moore–Penrose left pseudoinverse given by

𝐑+ =
(

𝐑𝑇𝐑
)−1 𝐑𝑇 . (23)

The deconvolution method given by Eq. (22) thus provides a unique
reconstructed local residual stresses from several average datasets col-
lected from X-ray diffraction data.



2.5. Practical implementation of the method

The deconvolution method has the advantage of reconstructing a 
unique local residual stress at the grid points where the X-ray diffrac-
tion measurements of the stress averages are performed. Despite its 
simplicity, several precautions, related to the practical implementa-
tion of the method, are needed in order to ensure the precision of 
the reconstructed residual stress. The following steps should then be 
followed:

(1) Select several collimators with different sizes. The use of several
collimators will highlight the (possible) averaging effects of the
measure.

(2) Adjust the spatial step. When the collimator sizes are selected,
it is then necessary to adjust the spatial step 𝛥𝑥. Indeed, since
in the deconvolution method, the moving average is calculated
from the local stress by a trapezoidal rule, it is necessary to
have a minimum number of points to calculate accurately the
approximate integral.

(3) Perform XRD measurements at each point of the grid. Once the
spatial step is known, the use of an automatic robot is required to
perform automatically the XRD measurements at the grid points
with a sufficient precision.

(4) Reconstruct the local stress. The acquired stress averages are
smoothed using the automatic spline smoother and the local
stress 𝝈 is deduced using Eq. (22). The solution stress should be
carefully checked because important (and non-physical) oscilla-
tions can result from the inversion. In such case, the automatic
spline smoother should also be used on the reconstructed stress
to remove these oscillations.

3. Application of the method to simulation results

The aim of this section is to assess the deconvolution method in
reference cases where the local residual stress field is known. The
deconvolution method will thus be applied to the reconstruction of
residual stresses determined numerically by the finite element method;
the moving average will be calculated from the local (known) residual
stress profiles. Several datasets of moving averages, including addi-
tional noise mimicking measurement uncertainties, will be generated
to assess the efficiency of the method. In order to assess solely the
reconstruction method, the average stress field will be computed by
considering (i) only the gradient in the direction of the mapping and
(ii) no penumbra effects.

The method will be investigated in two very different processes that
concern engineering materials, which are known to be both intrinsically
heterogeneous: (i) laser shock peening (LSP) which induces intentional
residual stresses and (ii) repetitive corrugation and straightening (RCS),
belonging to severe plastic deformation processing, which also induces
residual stresses. Even though the heterogeneity of the mechanical
fields can be decreased by considering overlapping in LSP and a repe-
tition of passes in RCS, the homogeneity of residual stresses in surface
cannot be completely reached in both processes so it is of high interest
to assess the fluctuation of residual stresses in high-gradient zones.

3.1. Reconstruction of residual stresses in laser shock peening processing

We begin with the numerical simulation of residual stresses in laser
shock peening (LSP) processing. This technique is based on the blow-
off of a very high-pressure plasma due to the laser-matter interaction,
resulting in the propagation of mechanical waves in the specimen
treated, inducing compressive residual stresses which permits to en-
hance fatigue properties (Peyre and Fabbro, 1995; Montross et al.,
2002).

Table 1
Material properties and Johnson–Cook parameters for aluminum alloy AL000645 used
for laser shock peening simulation.

Material 𝐸 (GPa) 𝜈 𝜎0 (MPa) ℎ (MPa) 𝑛 𝐶 𝜖0
AA AL000645 69 0.33 129 200 0.45 0.03 0.01

Description of the simulations The laser shock peening simulation has
been carried out using the finite element commercial code ABAQUS
6.14. A single impact is considered so an axisymmetric analysis has
been performed: the geometrical model used to simulate the laser shock
peening consists of a cylindrical cell as shown in Fig. 2a. In order to
avoid edge effects, the mesh is divided into two regions. The first one
with dimensions 5 × 5 mm is meshed with 1 × 1 μm CAX4R elements
and the second region is meshed with infinite CINAX4 elements as non-
reflecting conditions to avoid shock wave reflections on the free back
surface. In terms of boundary conditions, the bottom surface of the sam-
ple has been fixed. To obtain stable results, two distinct computation
steps were considered: (i) a dynamic explicit analysis is first performed
to track the shock wave propagation until the stabilization of the plastic
deformation and (ii) an implicit analysis which consists in computing
the equilibrium residual stress field due to the induced plastic strains.

The temporal evolution of the applied pressure 𝑃 (𝑡) is typical of
the profiles observed experimentally (Le Bras et al., 2019) and is
represented in Fig. 2b. The spatial profile follows a Gaussian shape
(see Le Bras et al. (2019)) and the laser spot diameter used in the
simulations is 5 mm.

We consider the case of an aluminum alloy (AL000645) investigated
by Le Bras et al. (2019) and subjected to a single shock. Laser shock
peening involves mechanical wave propagation with very high strain
rates, up to 106 s−1. Thus, in addition to an isotropic elastic behavior
characterized by the Young’s modulus 𝐸 and the Poisson ratio 𝜈, an
appropriate Johnson–Cook constitutive model accounting for strain rate
effects has been considered to describe viscoplasticity (Peyre et al.,
2003). The effective yield stress 𝜎𝑌 is then given by

𝜎𝑌 =
(

𝜎0 + ℎ𝑝𝑛
)

(

1 + 𝐶 log
(

𝜖̇p

𝜖0

))

, (24)

where 𝜎0 is the initial yield stress, ℎ the hardening modulus, 𝑛 the
hardening exponent and 𝑝 the cumulated plastic strain (which are
calibrated in quasi-static tensile tests). The strain rate sensitivity is
accounted for through the parameters 𝐶 and 𝜖0, which are respectively
the strain rate sensitivity parameter and the reference strain rate, 𝜖̇p

being the plastic strain rate during propagation. The material constants
used in the numerical simulations have been calibrated in Le Bras et al.
(2019) and are given in Table 1.

After convergence of the calculation, we extract the stress profile
𝜎11 on the top surface of the specimen (𝑥3 = 0) which will serve as a
reference stress profile for the reconstruction method (see Fig. 2c).

X-ray diffraction data treatment Several average datasets 𝛴11 are gen-
erated from the reference spatial distribution of the residual stress 𝜎11
computed numerically, in order to simulate X-ray diffraction experi-
ments (based on the psi tilt method) in various situations. The local
stress is studied in the interval [−5, 5] mm discretized with 𝑁 = 101
points, so the spatial scale is 𝛥𝑥 = 0.1 mm. Two different collimator
sizes representative of laboratory X-ray beams have been considered,
a small one corresponding to an irradiated area of width 2𝑎 = 2.5 mm
generating 75 ‘‘measurement points’’ and a large one corresponding to
an irradiated area of width 2𝑎 = 4.5 mm generating 55 ‘‘measurement
points’’. Each dataset is defined in the interval [−5+𝑎, 5−𝑎] because the
collimator cannot scan the entire interval due to the irradiated width.

The influence of noise is also studied. Uniformly distributed num-
bers 𝜀𝜎 (with zero mean) are randomly generated in the interval
[−𝜀𝜎 , 𝜀𝜎 ] and added to the average stress distribution in order to mimic



Fig. 2. Laser shock peening simulation. (a) Geometrical model, (b) Temporal pressure profile 𝑃 (𝑡), (c) Spatial distribution of the residual stress 𝜎11.

experimental noise:

𝛴noisy
11 = 𝛴11 + 𝜀𝜎 , 𝜀𝜎 ∈ [−𝜀𝜎 , 𝜀𝜎 ]. (25)

In the following, the value 𝜀𝜎 = 10 MPa will be considered, which is
typical of the experimental uncertainties observed in XRD laboratory
conditions when aluminum alloys are investigated.

The average datasets for the two collimator sizes are shown in Fig. 3.
Without noise, the two average datasets are very different in terms
of stress level and inflections points and they both are very far from
the exact local field. In particular, both average datasets fail to predict
high stress gradients, notably around 𝑥 ≈ 0 mm and 𝑥 ≈ 2 mm. It is
worth noting that the addition of noise slightly decreases the difference
between the two average datasets, which in that case are quite close.

Reconstruction of the residual stress field Since the two average datasets
consist in a total of 130 points, the system given by Eq. (19) can
be approximately solved using Eq. (22) in order to reconstruct the
local stress (consisting in 101 points). The reconstructed stress profiles

are given in Fig. 3 for the two cases considered (with and without
noise). In absence of noise in the average datasets, the reconstructed
data coincide perfectly with the reference local stress used to gen-
erate the average. Very small oscillations are observed close to the
interval boundaries which is expected since the datasets contains less
information at the boundaries due to the irradiated area. In presence
of noise, the reconstructed data are very close to the reference data,
except at the boundaries where moderate oscillations are observed.
The zones with high stress gradients (𝑥 ≈ 0 mm and 𝑥 ≈ 2 mm) are
quantitatively well reproduced in that case. Moderate discrepancies are
observed near the boundaries, but overall the reconstructed data are
in very good agreement with the original data, which emphasizes that
the deconvolution method can reconstruct a good approximation of the
local stress field.



Fig. 3. Average datasets and reconstruction of the residual stress profile 𝜎11 is laser shock peening simulation. (a) Without noise and (b) With noise (𝜀𝜎 = 10 MPa).

3.2 Reconstruction of residual stresses in severe plastic deformation process-
ing

We consider now the numerical simulation of residual stresses
in heterogeneous severe plastic deformation processing. We focus on
repetitive corrugation and straightening (RCS) processing which is
repetitive process that allows to achieve grain refinement in sheets
(Huang et al., 2004). This process consists of two steps (see Fig. 4a):

(1) An initial flat sheet is corrugated using two corrugation dies,
which induces important shear deformation within the sheet. At
the end of this step, the specimen is no longer a sheet as its shape
is corrugated.

(2) The corrugated specimen is then straightened using two flat
straightening dies. At the end of this step, the specimen is again
a flat sheet.

These two steps correspond to a pass. Since at the end of a pass
the specimen is flat, it is possible to repeat these passes in order to
increase the shear deformation, which ultimately leads to some grain
refinement (Huang et al., 2004). The presence of highly heterogeneous
residual stresses, due to the heterogeneous plastic deformation paths,
is an important feature of the process (Elizalde et al., 2020; Ezequiel
et al., 2020).

Description of the simulations We consider here the two steps of the
first pass of the process, consisting of one corrugation followed by a
straightening following the conditions given in Ezequiel et al. (2020).
The die profile is based on two perpendicular sinusoidal functions of
period 16 mm (see Elizalde et al. (2020)) which is suitable for a sheet
thickness of about 1 mm. Thus, the size of an elementary RCS pattern
is 16 × 16 × 1 mm. Due to the repetition of corrugation patterns
(see Fig. 4a), we can restrict our analysis to the study of one-quarter
of a single RCS pattern with symmetric boundary conditions, so the
simulation is performed for a specimen of size 8 × 8 × 1 mm.

The corrugation dies and straightening plates are supposed to be
rigid and the sheet is deformable. The mesh is composed of 5121 linear
R3D3 and R3D4 elements for each straightening plate, 7958 R3D4
elements for each corrugation die and 79060 C3D8R elements for the
sheet (see Fig. 4b). The average size of an element in the sheet is thus
of about 10 × 10 × 10 μm.

Table 2
Material parameters for the 6061 aluminum alloy used for RCS simulation.

Material 𝐸 (GPa) 𝜈 𝜎0 (MPa) ℎ (MPa) 𝑛

AA 6061 69 0.33 160 170 0.3

We consider the case of a precipitation-hardened aluminum alloy
6061. The behavior is supposed to be rate-independent and follows
a classical power-law isotropic hardening. The material constants are
given in Table 2. The contact between the dies and the test sample was
supposed to follow a Coulomb model. Since in practice the dies are
made in steel, a friction coefficient of 𝜇 = 0.3 was considered, which is
typical of the aluminum–steel pair with grease (Ezequiel et al., 2020).

The residual stress 𝜎22 is extracted on the profile along the line
𝑥2 = 0 on the lower surface of the test specimen, which will serve as a
reference stress profile for the reconstruction (see Fig. 4c).

X-ray diffraction data treatment and reconstruction Several average
datasets 𝛴22 are generated from the local stress profile 𝜎22 computed
numerically. The local stress is studied in the interval [−8, 8] mm
discretized with 𝑁 = 101 points, so the spatial scale is 𝛥𝑥 = 0.16
mm. For the average calculations, we consider again two collimator
sizes, a small one corresponding to an irradiated width of 2𝑎 = 2.5 mm
generating 85 ‘‘measurement points’’ and a large one corresponding to
2𝑎 = 4.5 mm generating 73 ‘‘measurement points’’.

Again, additional noise, defined by Eq. (25), was considered in one
case with the value 𝜀𝜎 = 10 MPa. The average datasets for the two
collimator sizes are shown in Fig. 5. Without noise, the two average
datasets are different, as the averaging effect is more pronounced with
the large collimator. In comparison with the exact stress profile, both
average datasets fail to reproduce local patterns, notably around 𝑥1 ≈ 0
mm and 𝑥1 ≈ ±5 mm.

Since the two average datasets consist in a total of 158 points, the
system given by Eq. (19) can be approximately solved using Eq. (22)
in order to reconstruct the local stress (consisting in 101 points). The
reconstructed stresses are given in Fig. 5 with and without additional
noise. In absence of noise in the average datasets, the reconstructed
profile coincides perfectly with the reference local stress used to gener-
ate the average. In presence of noise, the reconstructed profile is also
very close to the reference profile. The original features of the initial
profile that were erased by the average (around 𝑥1 ≈ 0 mm and 𝑥1 ≈ ±5



Fig. 4. Repetitive corrugation and straightening simulation. (a) Geometrical model considered. (b) Mesh considered on the lower face of the test specimen. (c) Spatial distribution
of the residual stress 𝜎22 on the line 𝑥2 = 0.

mm) are perfectly reproduced by the reconstruction method. Again, it
should be noted that some discrepancies are observed near boundaries
which is expected since there is less information for the reconstruction
due to the irradiated area which cannot exceed the specimen domain.

4 Application of the method to experimental data

The deconvolution method is now applied to experimental data col-
lected on a specimen processed by repetitive corrugation and straight-
ening processing.

4.1 Description of the X-ray diffraction experiments

A precipitation-hardened aluminum alloy 6061 was considered. A
solid solution heat treatment at 803 K for two hours was applied, then
the sample was water-quenched, followed by an aging treatment at
453 K for 18 h (Elizalde et al., 2020). The chemical composition of
the Al-6061 alloy is given in Table 3.

The AA-6061 sheets were processed by heterogeneous RCS at room
temperature with a geometrical 2D corrugation die based on two



Fig. 5. Average datasets and reconstruction of the residual stress 𝜎22 is RCS simulation. (a) Without noise and (b) With noise (𝜀𝜎 = 10 MPa).

Fig. 6. Description of the specimen processed by a one pass RCS.

Table 3
Composition of the Al-6061 alloy.

Element Si Fe Cu Mn Mg Cr Zn Ti Al

wt% 0.77 0.24 0.16 0.03 1.03 0.07 0.03 0.02 Balance

Table 4
Experimental conditions of X-ray diffraction.

Cr-K𝛼
radiation

Voltage Current XRD
planes

Angle
2𝜃

𝛹 angles

0.2290 nm 20 kV 1 mA (3 1 1) 139◦ 13 angles in [−37.27◦ , 39.23◦]

orthogonal sinusoidal profiles1 as presented in Section 3.2. The die is
composed of 7 × 7 elementary patterns of size 16 × 16 mm and the size
of the processed sheet was about 120 × 120 × 1 mm (see Fig. 6). The
RCS process was carried out using a hydraulic press Mecamaq DE-80
at a maximum pressure of 10 tons. As in Section 3.2, only one pass is

1 The comprehensive details related to the design and machining of the
sinusoidal RCS dies can be found in Elizalde et al. (2020).

considered, that is a corrugation of an initial flat sheet followed by a
straightening (see Fig. 6).

The residual stress distribution 𝜎22 was evaluated at the bottom
surface of a one pass corrugated and straightened specimen by X-
ray diffraction measurements using the psi tilt method and an in-situ
diffractometer type X-RAYBOT (manufactured by MRX France). The
XRD measurements were performed along the line 𝑥2 = 0 (see Fig. 6)
with a spatial step of 0.32 mm. Two collimators were considered, a
small one with a circular irradiated area with a diameter of 2.5 mm, and
a large one with a circular irradiated area with a diameter of 4.5 mm,
which permits to provide two average datasets. The X-ray diffraction
conditions are given in Table 4. In the conditions of this study, the
measurement uncertainties are of about ±10 MPa.

4.2 Results

The two experimental average datasets are shown in Fig. 7. They
consist in 43 measurement points for the small collimator and 37
measurements points for the large collimator. Since the die geometry is
symmetric with respect to the 𝑥2-axis, the experimental data have been
post-treated in order to enforce symmetry of the datasets with respect
to the 𝑥2-axis, which allows to reduce the experimental uncertainties.



The automatic smoothing of the experimental data are represented 
in Fig. 7 by continuous lines. The effect of collimator size is very 
important in terms of inflection points and stress levels. A maximum 
difference of about 100 MPa is notably observed near the center of the 
specimen. The stress gradients associated with the large collimator are 
smaller than that associated with the small collimator, which confirms 
that a strong averaging effect is induced by the measure.

The local stress to be reconstructed is looked for in the interval
[−8, 8] mm discretized with the same spatial scale than the experimen-
tal results, that is 𝛥𝑥 = 0.32 mm. Thus the number of points for the local 
reconstructed stress is 𝑁 = 51, which is lower than the 80 experimental 
measurements points, so the system (19) can thus be approximately 
solved using Eq. (22). The reconstructed stress profile is represented in 
Fig. 7.

The stress profile reconstructed is considerably different from the 
average datasets collected experimentally. High stress gradients and
inflection points are predicted near 𝑥1 ≈ 0 mm and 𝑥1 ≈ 4 mm, in con-
trast with the average datasets. It is worth noting that the reconstructed 
stress profile as well as the average datasets are very similar to the local 
stress simulated numerically in Section 3.2 in similar conditions. In 
particular, the shape profile of the local stress corresponds qualitatively 
to that simulated numerically, with the same exact location of inflection 
points.

5 Discussion

The experimental results collected on a specimen processed by a 
single pass RCS have highlighted the strong averaging effect observed 
on residual stresses which is related to the irradiated area in X-ray 
diffraction measurements. This confirms that X-ray diffraction results 
must be carefully interpreted (Hennion et al., 2000), in particular in 
cases where heterogeneous strains are involved such as in severe plastic 
deformation processing. This suggests that a systematic analysis of the 
influence of the irradiated area size is needed to assess the possible 
averaging effect of the measure.

The deconvolution method developed in Section 2 has permitted 
to reconstruct a unique, supposedly local, residual stress field from 
two average datasets. This reconstruction requires a large number of 
measurements which can be easily performed by an automated or 
robotized spectrometer, allowing a precise mapping of the specimen 
surface. The method is based on experimental data which have neces-
sarily some uncertainty. The presence of noise will thus deteriorate the 
reconstructed profile as shown in Section 3, since it is based on some 
approximate smoothed stress averages. Indeed, although an automatic 
smoother used, the smoothed averages will necessarily differ from the 
exact ones, inducing errors in the reconstruction. It must be noted 
that with a reasonable value for the experimental noise, this effect 
is quite small and a very good agreement was observed between the 
reconstructed and the reference stress profiles. Thus the quality of the 
reconstructed is not guaranteed but it contains more information than 
the average datasets and appears to be a more relevant quantity for the 
comparison with the local results of full-field finite element simulations.

In the case of RCS, the corrected stress field has the same exact 
profile than that calculated numerically in the same processing con-
ditions, which suggests that the deconvolution method has captured 
the essential features of the stress profile. Some slight differences 
are observed between the numerical and reconstructed stress profiles, 
which can be due to several factors:

(1) The numerical simulation of RCS has been performed with sev-
eral arbitrary (but reasonable) values of parameters (as the
friction coefficient and the applied forces of straightening plates)
which are difficult to measure experimentally; the numerical
conditions RCS processing may slightly differ from the experi-
mental ones. No attempt was made in the numerical simulations
to adjust the material and process parameters, which explains

Fig. 7. Average datasets and reconstruction of the residual stress 𝜎22 in RCS processing.

that the stress profile obtained numerically does not coincide
perfectly with that reconstructed.

(2) The reconstruction method was derived under some simplifying
assumptions that could induce some discrepancies:

• We assumed that the stress gradient effects only occur
in one direction of the space in order to derive a model
that requires experimentally a mapping in one direction.
In practice, this hypothesis can be questionable because
gradients can occur in two directions and the irradiated
area is circular; the average effect should be considered in
a two-dimensional area. In the problem considered (RCS),
the stress distribution calculated numerically suggests that,
for the profile considered (𝑥2 = 0), the 2D gradient effect
is negligible in most of the specimen. Thus in the case
treated, if the reconstructed stress should not be greatly
affected by the 2D effects, some (small) discrepancies may
be induced by the 2D averaging effect.

• We did not take into account the penumbra effect which
corresponds to a non-uniform intensity distribution inside
the irradiated area related to (i) the incident-beam in-
clination and (ii) the collimator size. It has been shown
in Hennion et al. (2000) that this effect is generally negligi-
ble when ‘‘large’’ collimators are used, typically with size
giving an irradiated area larger than 1 mm, which is the
case in this work. If small collimators are used, it would be
necessary to modify the definition of the average stress by
considering some weight according to the irradiated area
size.

• The accuracy of the deconvolution method depends on
the size of the overdetermined system (19) and on the
spatial discretization. A decrease of the spatial scale is
thus expected to allow a better representation of local
stress gradients. Moreover, an increase of the number of
datasets, through the use of multiple collimator sizes, is
also expected to increase to quality of the reconstructed
residual stress field.



It should also be noted that in presence of highly heterogeneous strain 
of order of the material grain size, the agreement between the recon-
structed stress and finite element simulations could be improved by in-
cluding appropriate heterogeneous and anisotropic material properties 
in the simulations (Wang et al., 2008).

6 Conclusion

The aim of this work was to develop a spatial deconvolution tech-
nique in order to reconstruct the heterogeneous residual stress profiles 
from diffraction data.

First, a method of reconstruction was developed based on the in-
version of a linear system constructed using average datasets that are 
obtained with several collimators of different diameters. The method 
was first applied to the reconstruction of heterogeneous residual stress 
profiles in several reference cases (laser shock peening and repetitive 
corrugation and straightening processing) where the surface stress dis-
tributions are determined numerically by the finite element method; 
the average datasets were calculated from the reference stress profile 
with additional noise in order to mimic measurement uncertainties. In 
both processes considered, a very good agreement is observed between 
the reference stress profiles and the ones reconstructed even with a 
high level of noise. The method was finally applied to experimental X-
ray diffraction data on a specimen processed by repetitive corrugation 
and straightening in similar conditions as the numerical simulations. 
A strong averaging effect was observed on the experimental results 
and a good agreement was observed between the local stress profile 
reconstructed and that predicted numerically.

The present paper shows that the residual stress profiles determined 
by X-ray diffraction can be far from the exact local stress field in 
presence of high surface stress gradients due to the irradiated area. 
It explains the gaps that are generally observed between experimen-
tal residual stress profiles and the results of numerical simulations, 
which are (often) wrongly attributed to a poor calibration of model 
parameters in finite element simulations. The deconvolution technique 
proposed in this study allows a better reconstruction of local stress 
profiles which should improve the comparison between experimental 
results and numerical calculations.
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