
HAL Id: hal-03218403
https://hal.science/hal-03218403v1

Submitted on 5 May 2021 (v1), last revised 24 Feb 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

My Cookie is a phoenix: detection, measurement, and
lawfulness of cookie respawning with browser

fingerprinting
Imane Fouad, Cristiana Santos, Arnaud Legout, Nataliia Bielova

To cite this version:
Imane Fouad, Cristiana Santos, Arnaud Legout, Nataliia Bielova. My Cookie is a phoenix: detection,
measurement, and lawfulness of cookie respawning with browser fingerprinting. Privacy Enhancing
Technologies Symposium (PETS 2022), Jul 2022, Sydney, Australia. �hal-03218403v1�

https://hal.science/hal-03218403v1
https://hal.archives-ouvertes.fr

Did I delete my cookies? Cookies respawning with
browser fingerprinting.

Imane Fouad
Inria, France

Cristiana Santos
Utrecht University

Arnaud Legout
Inria, France

Nataliia Bielova
Inria, France

Abstract—Stateful and stateless web tracking gathered much
attention in the last decade, however they were always measured
separately. To the best of our knowledge, our study is the first to
detect and measure cookie respawning with browser and machine
fingerprinting. We develop a detection methodology that allows us
to detect cookies dependency on browser and machine features.

Our results show that 1, 150 out of the top 30, 000 Alexa web-
sites deploy this tracking mechanism. We further uncover how
domains collaborate to respawn cookies through fingerprinting.
We find out that this technique can be used to track users across
websites even when third-party cookies are deprecated. Together
with a legal scholar, we conclude that cookie respawning with
browser fingerprinting lacks legal interpretation under the GDPR
and the ePrivacy directive, but its use in practice may breach
them, thus subjecting it to fines up to 20 million e.

Index Terms—fingerprinting; cookie respawning; GDPR

I. INTRODUCTION

In the last decades, the usage of the web has considerably
increased, along with the web browsers sophistication. In
parallel, numerous companies built their business models on
profiling and tracking web users. Therefore, browsers evolu-
tion does not only provide a better user experience, but also
allows the emergence of new tracking techniques exploited by
companies to collect users’ data. There are two main categories
of tracking techniques: stateful and stateless.

Stateful tracking is a standard technique that relies on
browser storage such as cookies [56], [2], [8], [26]. Track-
ers store a unique identifier in the cookie and later use it
to recognize a user and track her activity across, possibly,
different websites. The simplest way to protect from such
tracking is to delete the unique identifier by, e.g., cleaning the
cookie storage. However, trackers can recreate deleted cookies
using a technique called cookie respawning to track users.
For instance, a tracker can use multiple browser storages that
store identifiers, in addition to the cookie storage, such as the
HTML5 localStorage [8]. Consequently, even if the user cleans
the cookie storage, the tracker can still recreate cookies using
other storages [64], [8], [2], [56].

Stateless tracking allows to track a user without storing
identifiers in her browser storage. Using browser fingerprint-
ing [51], [15], [25], [3], [37], [34], trackers can identify a user
through a combination of the user’s browser and machine fea-
tures, such as the user agent or IP address. Whereas it is hard
to prevent it, browser fingerprinting is not stable over time.
Vastel et al. [71] showed that fingerprints change frequently:
out of 1,905 studied browser instances, 50% changed their
fingerprints in less than 5 days, and 80% in less than 10 days.

This instability is caused either by automatic triggers such as
software updates or by changes in the user’s context such as
travelling to a different timezone.

In summary, stateful tracking is a stable way to track a user
until she cleans cookies and other browser storages. Stateless
tracking is not stable over time, but does not require any
storage and can’t be easily stopped by the user. So given
that each technique is not perfect, how can a tracker take
advantage of the best of the two worlds? The tracker can first
use a browser fingerprint to create an identifier and store it
in the browser’s cookie. In this way, even if a user cleans
this cookie, the identifier can be recreated with a browser
fingerprint. Moreover, even if the fingerprint changes over
time, the identifier stored in the cookie can help to match
the new fingerprint with the old fingerprint of the same user.
We refer to this tracking technique as cookie respawning with
browser fingerprinting, that ensures continuous tracking even
if all cookies are deleted or if the fingerprint changes over
time.

Several studies measured the prevalence of stateful [2],
[56], [26] or stateless [51], [15], [25], [3] tracking techniques
separately. However, to the best of our knowledge, we are
the first to study how trackers profit from both stateful and
stateless techniques by combining them.

The aim of this paper is to propose a robust methodology
to detect and measure the prevalence of cookie respawning
with browser fingerprinting, followed by a technical and legal
analysis of the privacy implications of this tracking technique.
In this paper, we make the following contributions.

1) We designed a robust method to identify which fea-
tures are used to respawn a cookie. Our contribution
lays in the design of a method to automatically identify
the set of fingerprinting features used to generate a
cookie, hence, to conclude which user information is
collected. We additional perform a permutation test
(N=10,000, p<0.05)) to provide certainty on the depen-
dency between the features and the cookies.

2) We make the first study of cookie respawning with
browser fingerprinting. We show that the stateful and
stateless tracking techniques that were studied separately
are, in fact, actively used together by trackers. We found
that 1, 150 (3.83%) of the Alexa top 30, 000 websites use
cookie respawning with browser fingerprinting.

3) We identify who is responsible of cookie respawning
with browser fingerprinting. We made a detailed study
of the responsibility delegation of cookie respawning

with browser fingerprinting. We show that multiple
actors collaborate to access user features, set and own
the cookies: we uncovered collaborations between 35
distinct domains that together respawn 67 different cook-
ies.

4) We show that cookie respawning with browser fin-
gerprinting is highly deployed in popular websites.
Cookie respawning with browser fingerprinting is also
happening on websites from different categories includ-
ing highly sensitive ones such as adult websites.

5) We show that cookie respawning with browser fin-
gerprinting lacks legal interpretation and its use,
in practice, violates the GDPR and the ePrivacy
directive. We are the first to assess the legal conse-
quences of this practice together with a legal expert co-
author. Despite the intrusiveness of this practice, it has
been overlooked in the EU Data Protection Law and it
is not researched in legal scholarship, nor audited by
supervisory authorities.

II. BACKGROUND

A. Scope of cookies: host and owner

In this paper, we make a distinction between the notion of
cookie host and cookie owner. When a cookie is stored in
the browser, it’s identified by a tuple (host, key, value). If the
cookie is set via an HTTP(S) response header, then the host of
the cookie represents a domain that set the cookie. However,
when the cookie is set programmatically via a JavaScript script
included in the website, the script gets executed in the context,
or “origin” where it is included. Due to the Same Origin Policy
(SOP) [58], the host of a cookie set by the script is the origin
of the execution context of the script, and not the domain that
contains the script. Given a cookie stored in the browser with
its (host, key, value), when a browser sends a request to a
domain, it attaches a cookie to the request if the cookie host
matches the domain or the subdomain of the request [45].

A cookie owner is the responsible of setting the cookie. It
is either a domain that sets a cookie via HTTP(S) response
header (and in this case, matches with the cookie host), or the
domain that hosts a script that sets the cookie programmat-
ically (generally speaking, here the owner is different from
host). For example, site.com is a website that includes a
third party script from tracker.com. After loading, the
script sets a cookie in the context of the visited website
site.com. In this case, the cookie owner is tracker.com,
but the cookie host is site.com.

B. Web Tracking Technologies

Cookie-based tracking. Websites are composed of first
party content and numerous third-party content, such as ad-
vertisements, web analytic scripts, social widgets, or images.
Following the standard naming [41], for a given website we
distinguish two kinds of domains: first-party domain that is
the domain of the website, and third-party domains that are
domains of the third-party content served on the website.

Using HTTP request (or response), any content of the
webpage can set (or receive) cookies. Additionally, cookies
can be set programmatically via an included JavaScript library.
Every cookie is stored in the browser with an associated
domain and path, so that every new HTTP request sent to
the same domain and path gets a cookie associated thereto
attached to the request. First-party cookies set by first-party
domains are capable to track users within the same website.
Third party cookies set by third-party domains allow third
parties to track users cross-websites [56].

Browser fingerprinting. Browser fingerprinting is a state-
less tracking technique that provides the ability to identify and
track users without using their browser storage [23], [3], [15],
[5], unlike cookie-based tracking. When a user visits a web
page that includes a fingerprinting script, this script will return
to a fingerprinter server a list of features composed of user’s
browser and machine characteristics, such as user agent or
time zone. The trackers use these collected features to build a
unique identifier.

Cookie respawning. Cookie respawning is the process of
automatically recreating a cookie deleted by the user (usually
by cleaning the cookie storage). Several techniques can be
used to respawn a cookie. While related works focused on
exploiting another browser storage (e.g., the HTML5 local
storage) that duplicates the information contained in the
cookie, in this work, we focus on the usage of a browser
fingerprint to recreate a cookie. Section IV describes how a
tracker can exploit a browser fingerprint to respawn a cookie.

III. RELATED WORK

Cookie based tracking is a classical tracking technique
which has been widely studied in the past decade [64], [56],
[8], [52], [25], [23], [3], [51], [41], [55], and is now commonly
blocked by modern browsers [50], [35] and add-ons [32],
[20]. In this paper, we explore a more sophisticated technique
combining cookie based tracking with fingerprinting.

In 2010, the Panopticlick study showed that fingerprints can
be potentially used for web tracking [23]. Following this study,
several fingerprinting tracking techniques were discovered.
Acar et al. studied canvas based fingerprinting [3]. Englehardt
et al. presented a new fingerprinting technique based on the
AudioContext API. Cao et al. presented a fingerprinting study
mainly based on hardware features including WebGL [15].
Al-Fannah et al. studied fingerprinting in Majestic top 10,000
websites [5]. Solomos et al. [63] combined browser finger-
printing and favicons caches to identify users.

The term respawning was first introduced in 2009 by Soltani
et al. [64]. They showed that trackers are abusing the usage
of the Flash cookies in order to respawn or recreate the
removed HTTP cookies. This work attracted general audience
attention [46], [47] and triggered lawsuits [39], [40]. Following
Soltani et al. work, other studies started analyzing the usage
of other storages for respawning such as ETags and localStor-
age [8]. Sorensen studied the usage of browser cache in cookie
respawning [66]. Acar et al. automated the detection of cookie
respawning and found that IndexedDB can be used to respawn

cookies as well [3]. Roesner et al. showed that cookies can be
respawned from local and Flash storages [56].

Laperdrix et al. [37] surveyed recent advancement in mea-
surement and detection of browser fingerprinting. The survey
mentions [37, §5.1] that browser fingerprint together with IP
address can be used to regenerate deleted cookies, however no
previous work studied this phenomena.

Unlike previous works that studied the usage of browser
storages to respawn cookies, or measured fingerprinting in-
dependently, our study analyzes the usage of fingerprinting to
respawn cookies.

IV. METHODOLOGY

When a user visits a web page with some content located on
a tracker’s server, the user’s browser sends an HTTP(s) request
to the server to fetch this content. This request contains several
HTTP headers, such as user agent, and an IP address that
tracker’s server receives passively. We refer to such informa-
tion as passive features. To collect additional information, the
tracker can include in the visited web page a script that gets
executed on the user’s browser. The script retrieves multiple
browser and machine information, such as the time zone, and
sends them to a server of the remote tracker. We refer to such
information as active features. In the following, we define a
browser fingerprint as the set of active and passive features
accessed by the tracker.

We say that a tracker respawns a cookie when it recreates
the exact same cookie after the user revisit the website in a
clean browser.

A. How can trackers benefit from a combination of cookies
and browser fingerprint?

To benefit from both techniques, the tracker can first use
a browser fingerprint to create an identifier and store it in
the browser’s cookie. In this way, even if a user cleans
this cookie, the identifier can be recreated with a browser
fingerprint. Moreover, even if the fingerprint changes over
time, the identifier stored in the cookie can help to match
the new fingerprint with the old fingerprint of the same user.
We explain these scenarios and benefits in details below.

Figure 1(a) shows that the tracker first receives a set of
user’s active and\or passive features (step 1). In step 2 , the
tracker generates an identifier from the received features, that
it might store on the server’s matching table. The tracker then
stores the created identifier in the user’s browser cookie, either
via the Set-cookie header (step 3) or programmatically
via JavaScript (not shown in Figure 1(a)). As a result, an
identifier is stored in the browser’s cookie database (step 4).

Figures 1(b) shows what happens when the user does not
have a cookie 123 in her browser, however the fingerprint
fp456 remains the same. In this case, the fingerprint fp456 is
sent to the server of tracker.com (step 5), and it allows
the tracker to match the known fingerprint and the cookie
previously set for this user (step 6). As a result, the tracker is
able to set again the same cookie 123, previously deleted by

the user (step 7). This allows the tracker to respawn deleted
user cookies with browser fingerprinting and continue tracking
her via such cookies (step 8).

Figure 1 (c) presents the consequences of cookie respawning
with browser fingerprinting. When the browser fingerprint
of the user is updated from fp456 to fp789, the server of
tracker.com receives an old cookie 123 with a new
fingerprint fp789 (step 9). The cookie 123 helps the server
to recognize the user’s browser and update the corresponding
record in the matching table and substitute a fingerprint fp456
to fp789 associated to cookie 123 (step 10). This allows the
tracker to match different fingerprints of the same user, given
that fingerprinting is not stable over time.

As a result, cookie respawning with browser fingerprinting
allows trackers to respawn deleted cookies, and also to link
different browser fingerprints of the same user. This makes the
tracking robust to either cookie deletion or fingerprint change.
Only in case the browser fingerprint changes and the cookie
is deleted at the same time, the tracker will not be able to
recognize the user and hence to continue tracking this user.

In this paper, we propose a robust methodology to detect the
mechanisms presented in Figures 1 (a) and (b). In this section,
we first introduce our methodology to crawl Alexa top 30, 000
websites (Section IV-B). Next, we present our method to detect
cookie respawning with browser fingerprinting (Section IV-C).
Then, we describe the fingerprinting features used in our study
and spoofing techniques (Section IV-D). Finally, we list the
limitations of our methodology (Section IV-E).

B. Measurement setup

We performed passive web measurement on March 2021
of the Alexa top 30, 000 websites extracted on March 20201.
All measurements are performed using the OpenWPM plat-
form [53] on the Firefox browser. OpenWPM provides browser
automation by converting high-level commands into automated
browser actions. We used two machines to perform the crawls
in our study. The versions of OpenWPM and Firefox, the time
period of the crawl, and the characteristics of the two machines
used in this study are presented in Table IX of the Appendix
(Section A).

We used different characteristics with two machines so that
they appear as different users, as done by previous works [31],
[2], [26], [25]. Ideally, we would have used two distinct ma-
chines with different locations to detect user specific cookies,
however, both machine A and machine B are located in France.
Hence, to change the Machine B geolocation, we spoofed
the parameters latitude and longitude by modifying the value
of geo.wifi.uri advanced preference in the browser and
point it to Alaska.

All our crawls are based on the notion of stateless crawling
instances. We define a stateless crawling instance of a website
X as follows: (1) we visit the home page of the website X and
keep the page open until all content is loaded to capture all
cookies stored (we set the timeout for loading the page to

1We made this list of websites publicly available [6].

(a) Cookie respawning with browser fingerprinting tacking mechanism (b) Recreation of cookies using browser fingerprint

(c) Usage of cookies to ensure fingerprint stability

Fig. 1: Cookie respawning with browser fingerprinting tracking technique. (a) (step 1) The tracker receives user’s features,
(step 2) then stores a fingerprint fp456 associated with the features and generates a corresponding cookie 123. (step 3) Next,
the tracker sets the cookie in the user’s browser. (step 4) As a result an identifier is stored in the browser cookie storage. (b)
When the user cleans her browser and revisit the website, (step 5) the tracker receives the fingerprint fp456, (step 6) extracts
the corresponding cookie from the matching table, (step 7) and re-sets it in the user’s browser. (step 8) As a result, the cookie
123 is recreated in the user’s browser. (c) The fingerprint is not stable over time, (step 9) thus the user fingerprint might change.
(step 10) The tracker can use the cookie received with the fingerprint to update the latest on the server side.

JavaScript calls API
HTML5 Canvas HTMLCanvasElement, CanvasRendering-

Context2D
HTML5 WebRTC RTCPeerConntection
HTML5 Audio AudioContext
Plugin access Navigator.plugins
MIMEType access Navigator.mimeTypes
Navigator properties window.navigator
Window properties Window.screen, Window.Storage, win-

dow.localStorage, window.sessionStorage,
and window.name

TABLE I: Recorded JavaScript calls.

90s), (2) we clear the profile by removing the Firefox profile
directory that includes all cookies and browser storages. The
rational behind the stateless crawling instance is to ensure that
we do not keep any state in the browser between two crawling
instances. This guarantees that respawned cookies do not get
restored from other browser storages.

We perform stateless crawling instances of the Alexa top
30, 000 websites and for each stateless crawling instance,
we extract the following from the information automatically
collected during the crawls by OpenWPM:

1) For each HTTP request: the requested URL, the HTTP
header.

2) For each HTTP response: the response URL, the HTTP
status code, the HTTP header.

3) All JavaScript method calls described in Table I.
4) All cookies set both by JavaScript and via HTTP Re-

sponses. On these collected cookies, we perform the
following filtering as shown in Figure 2: first, we select
cookies recreated after cleaning the cookies database;
second, we filter out cookies that are not user-specific;

finally, we filter out cookies that are not respawn with
studied features (Section IV-C).

C. Detecting cookie respawning with browser fingerprinting
with sequential crawling

Figure 2 presents our sequential crawling methodology that
detects which fingerprinting features are used to respawn
cookies. Our method consists of two main steps explained in
this section:

• Create the initial set of candidate respawned cookies:
we identify candidate respawned cookies by collecting all
cookies that get respawned in a clean browsing instance,
and we remove cookies that are not user-specific.

• Identify dependency of each respawned cookie on
each fingerprinting feature: we spoof each feature
independently to detect whether the value of a respawned
cookie has changed when the feature is spoofed. We
perform a permutation test (N = 10, 000, p < 0.05)
to add statistical evidence on the dependency between a
feature and the respawned cookie.

1) Creation of the initial set of candidate respawned cook-
ies: To build the initial set of candidate respawned cookies,
we perform two stateless crawling instances from machine A
as described in Figure 2 (see initial crawl and reappearance
crawl). Via these two crawls, we ensure that all browser
storages are cleaned and the only possible way for cookies
to be respawn is with browser fingerprinting.

We define a cookie as the tuple (host, key, value) where
host is the domain that can access the cookie. To create the
set of candidate respawned cookies, we only collect cookies
that appear in both the initial crawl and reappearance crawl

Fig. 2: Sequential crawling of 30, 000 top Alexa websites to identify cookie respawning with browser fingerprinting.
For each website, we perform an initial crawl from machine A and, a user specific crawl from machine B to detect machine
unrelated cookies. After initial crawl finishes, we start a reappearance crawl from machine A to detect reappearance of cookies.
Using initial crawl, user specific crawl, and reappearance crawl we detect user-specific cookies that reappear in reappearance
crawl, but not in user specific crawl. For such cookies, we randomly chose one configuration Ci: either spoof one feature at
a time or to set all features to initial value. We perform 99 stateless crawls (11 spoofing crawls per feature and 11 control
crawls where the studied features are unspoofed). Finally, we perform a permutation test for each feature (N=10,000), and we
consider that the cookie is feature dependent if the resulting p-value < 0.05. All these steps are discussed in Section IV-C.

when visiting the same website in the two crawls. Note that
due to our sequential crawling (that is, we visit websites in
a sequence), we only consider candidate respawned cookies
within the same website.

Previous research [31], [2], [26], [25] considered that cook-
ies are non specific to the users and hence unlikely to be used
for tracking when their values are identical for several users.
Therefore, using distinct machines to remove non user-specific
cookies became a common method in this research area. We
follow this methodology and remove cookies that are not user-
specific from our set of candidate respawned cookies. To do
so, we performed an additional user specific crawl2 from a
different machine B that appears to trackers as a different
user. It’s important that machines A and B have different
fingerprinting features (see Table IX of the Appendix) to avoid
wrong categorization of cookies that depend on these features
as non user-specific.

We hence remove the following cookies from the candidate
set of respawned cookies and keep only user-specific cookies:

• a cookie (host, key, value) if it appears on both the initial
crawl on machine A and user specific crawl on machine
B with the same host, key, and value.

• a cookie (host, key, value) if a cookie with the same host
and key is not present in a user specific crawl. We adopt a
conservative strategy to remove such cookies because we
do not have a proof that such cookies are user-specific.

Our robust deletion method for cookies that are not user-
specific or do not re-appear in a user specific crawl allows us
to ensure that only user-specific cookies are further analysed.

2) Identifying dependency of each respawned cookie on
each fingerprinting feature.: The set of candidate respawned
cookies contains cookies that are both user-specific and
respawn when crawled a second time after we used a new

2Practically, we perform the initial crawl and user specific crawl in parallel,
and the reappearance crawl right after the initial crawl completes (Figure 2).

browser instance with a cleaned browser storage. Therefore,
cookies in this set are very likely to be respawned with the
use of browser fingerprinting. To detect which fingerprinting
features are used to respawn the collected cookies, we per-
formed the following steps. We first identified 8 fingerprinting
features from previous research (see more details on the choice
of features and methods to spoof them in Section IV-D). Then,
for each website u where we have at least one candidate
respawned cookie, we perform 99 crawls, 11 spoofing crawls
per studied fingerprinting feature f, and 11 crawls with all fea-
tures set to their initial values (as in initial crawl) that we refer
to as control crawls. In each of the total 88 spoofing crawls, we
first spoof the feature f and perform a stateless spoofing crawl
of the website u. For each user-specific respawned cookie from
the candidate set, we perform the following algorithm.

• For each of the 99 crawls, we label the cookie as
respawned if the cookie’s host and key are identical but
value are different from the initial crawl. As a result we
get 11 observations for each configuration (either one of
the 8 features is spoofed or no feature spoofed.)

• For every feature, we perform a permutation test with
the 11 observations from the control crawls using 10,000
permutations. The statistical test assess the difference of
the probability to have the cookie respawned between the
feature crawls and the control crawls.

• We consider that the cookie is feature dependent if the
p-value for the test statistic is lower than 0.05.

D. Selection of fingerprinting features and spoofing techniques

To achieve a high uniqueness of an identifier built from a
browser fingerprint, trackers use a combination of both passive
and active browser and machine features. Though browser
features are useful for fingerprinting, using them alone might
be problematic for trackers because the usage of multiple
browsers is recommended and common among users [70],

Browser
features

Accept language [38], [5] Active/Passive
Geolocation [5] Active
User agent [38], [12], [33], [5] Active/Passive
Do not track [38], [33] Active/Passive

Machine
features

WebGL [38], [15], [33], [5], [49] Active
Canvas [38], [15], [33], [2], [19],
[25], [49]

Active

IP address [12], [5], [19], [25] Passive
Time zone [38], [12], [33] Active

TABLE II: Studied fingerprinting features.

[61], [15]. To improve the accuracy of the fingerprint, trackers
also use machine related features such as the IP address, or
the OS version [12], [5].

Table II presents a full list of studied browser and machine
features that we selected based on the most common features
in prior works for browser fingerprinting [38], [12], [33], [5],
[15], [2], [19], [25], [49].

We have used two methods to spoof fingerprinting features:
1) via Firefox preferences and 2) add-ons. We have validated
that each feature has been properly spoofed on our own testing
website with a fingerprinting script and also by using whoer
website [73] that verifies the information sent by the user’s
browser and machine to the web.

1) Spoofing using Firefox preferences: Firefox allows to
change its settings in the browser preferences of about:config
page. With this method, we spoofed the following features.

User agent. The User-Agent HTTP header allows the
servers to identify the operating system and the browser used
by the client. The initial crawl run in Firefox under Linux
(see Table IX in the Appendix for details). To spoof the user
agent, we changed the general.useragent.override
preference in the browser to Internet Explorer under Windows:
(Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; AS;
rv:11.0) like Gecko). We checked the spoofing efficiency on
our testing website with an injected script. The script returns
the user agent value using the navigator.userAgent
API. We tested the user agent value returned with the HTTP
header using the whoer website. We found that the user agent
value was spoofed both in JavaScript calls and HTTP headers.

Geolocation. The geolocation is used to identify the
user’s physical location. The initial crawl has as location
Cote d’Azur, France. We spoofed the geolocation param-
eters latitude and longitude by modifying the value of
geo.wifi.uri preference in the browser and point it
to the Time Square, US (”lat”: 40.7590, ”lng”: -73.9845).
We validated the spoofing efficiency using a script call to
navigator.geolocation API.

WebGL. The WebGL API is used to give information
on the device GPU. In our study, we focus on the We-
bGL renderer attribute that precises the name of the model
of the GPU. We spoofed the WebGL renderer using the
webgl.render-string-override preference in the
browser. We changed the value of WebGL renderer to GeForce
GTX 650 Ti/PCIe/SSE2. To retrieve information about the
graphic driver and read the WebGL renderer value, we used
the WEBGL_debug_renderer_info add-on. We validated

the WebGL spoofing efficiency by using the add-on in our
customized website.

Do Not Track. The Do Not Track (DNT) header indicates
user’s tracking preference. The user can express that she
doesn’t want to get tracked by setting the DNT to True. In
the initial crawl, the DNT was set to null. We enabled the
Do Not Track header, and we set it to True using the pri-
vacy.donottrackheader.enabled preference. We validated that
the DNT returned value in the HTTP header is set to True
using the whoer website.

2) Spoofing using browser add-ons: The browser prefer-
ences do not provide a spoofing mechanism for all fingerprint-
ing features. We used browser add-ons to spoof such features.

Canvas. The HTML canvas element is used to draw
graphics on a web page. The difference in font rendering,
smoothing, as well as other features cause devices to draw
images and texts differently. A fingerprint can exploit this
difference to distinguish users. We spoofed the canvas by
adding a noise that hides the real canvas fingerprint. To do
so, we used the Firefox add-on Canvas Defender [14]. To test
the add-on efficiency, we built a customized website where
we inject a canvas fingerprinting script. The script first draws
on the user’s browser. Next, the script calls the Canvas API
ToDataURL method to get the canvas in dataURL format and
returns its hashed value. This hashed value can then be used
as a fingerprint. To evaluate the add-on efficiency against the
canvas fingerprinting, we revisited the customized website and
compared the rendered canvas fingerprint. We found that the
returned canvas hashed values were different upon every visit.

IP address. We run the initial crawl with an IP address
pointing to France. We spoofed the IP address using a VPN
add-on called Browsec VPN [72]. We used a static IP address
pointing to the Netherlands. Consequently, the spoofed IP
address remain constant during the runs of spoofed crawls. We
checked that the IP address changed using the whoer website.

Time zone. We launched the initial crawl with Paris
UTC/GMT +1 timezone. We spoofed the timezone to Amer-
ica/Adak (UTC-10) using the Chameleon add-on [17].

Accept-language. The Accept-language header precises
which languages the user prefer. We used English as Accept-
language in initial crawl. We spoofed the accept-language
header using the Chameleon add-on [17] to Arabic. We
checked that it was properly spoofed using the whoer website.

E. Limitations

Spoofing features and implementing the spoofing solution
with the OpenWPM crawler requires substantial engineering
effort. Therefore, we limit our study to 8 browser features
that are commonly used by previous works and that can be
spoofed either directly using browser settings, or using the
add-on (Canvas Defender, Browsec VPN, and Chameleon) that
we successfully run with OpenWPM. Consequently, cookies
respawned using other features are excluded from this study.
The number of excluded cookies is 2,976 (see Section V-A.
This is a limitation that does not impact the main goal of our

Crawls Initial Reappearance User
specific

Feature
dependent

Collected cookies 428,196 88,470 5,144 1,425
Occurrence on
websites

30,000 18,117 4,093 1,150

TABLE III: Cookie respawning with browser fingerprinting
is common on the web. We detected 1,425 respawned cookies
that appear on 1,150 websites. We define the Initial, Reappear-
ance, User specific crawls and Feature dependent cookies in
Section IV-C.

study, as we do not intend to be exhaustive in the identification
of respawned cookies, but we aim to understand and describe
the mechanisms behind respawning, and propose a robust
methodology to detect features that are used by trackers to
respawn cookies.

Given that we spoof one feature at a time, we may introduce
inconsistency between different features. For example, when
we spoof the geolocation API, we don’t modify the time zone
or the IP address. This method doesn’t invalidate our results
because we detect dependency on each feature separately. Nev-
ertheless, we may miss trackers that modify their behaviour
when some features are spoofed.

Non user-specific cookies are not intrusive for the user’s
privacy because they are identical among different users. We
are aware that the cookies we classify as non user-specific
might have been respawned due to features we do not consider.

V. RESULTS

In this section, we present findings on prevalence of cookie
respawning with browser fingerprinting, identify responsible
parties, and analyze on which type of websites respawning
occurs more often. Our results are based on Alexa top 30, 000
websites where we extracted a total of 428, 196 cookies. We
study the respawning of both first and third party cookies.

A. How common is cookie respawning with browser finger-
printing?

Table III presents an overview of the prevalence of cookie
respawning with browser fingerprinting. We extracted 428, 196
cookies from the visited 30, 000 websites. Using the reappear-
ance crawl, we extracted a set of cookies that did reappear in
the crawl. As a result, we obtained a set of 88, 470 (20.66%)
reappearing cookies that appear on 18, 117 (60.39%) websites.

Next, we filtered out cookies that are not user-specific – they
appear with the same (host, key, value) on initial crawl and
user specific crawl – and cookies that only appear on initial
crawl but not in user specific crawl (Section IV-C1). We found
that out of 88, 470 reappearing cookies, 5, 144 (5.81%) are
user specific. The set of user specific cookies is observed on
4, 093 (22.59%) websites.

After filtering out non reappearing cookies and keeping
only user specific cookies, we identified cookies whose value
depend on at least one of the studied features following
our methodology detailed in Sections IV-C2. As a result,
we extracted 1, 425 respawned cookies that appear on 1, 150

Passive Active/Passive Active
Features IP UA Lang DNT CV GEO GL TZ
Occurrence 672 486 278 277 231 249 292 310

TABLE IV: IP address is the most commonly used feature
to respawn cookies. Occurrence: number of times a feature
has been used to respawn a cookie (either independently or in
combination with other features). CV: Canvas, IP: IP address,
UA: User agent, GEO: Geolocation, GL: WebGL, TZ: Time
zone, Lang: Accept language, DNT: Do Not Track.

(3.83%) websites. Out of the remaining 3, 719 set of cookies,
743 were excluded from the statistical test because they did not
appear on the 99 spoofing and control crawls. The remaining
2, 976 cookies that are user specific and not detected as feature
dependent can be respawned via other features that are out of
scope of our study.
Summary. We found 1, 425 cookies respawned using at least
one of the studied features. These cookies were respawned in
1, 150 websites that represent 3.83% of the visited websites.

B. Which features are used to respawn cookies?

In this section, we present the results we obtained from
the sequential crawling methodology (Section IV-C). For each
of the 1, 425 respawned cookies, we detected features on
which the cookie value depends (see all studied fingerprinting
features in Table II).

Given that a cookie can be respawned with several features,
we consider that a cookie C is respawned with a set of features
F if the value of C depends on every feature in F (such
detection was done independently for each feature as described
in Section IV-C2).

Table IV presents the number of times each feature is used
to respawn a cookie. IP address is the most commonly used
feature to respawn cookies and is used in respawning of 672
(47.15%) cookies. The second most popular feature to respawn
cookies is User-Agent (UA) – it is observed with 486 (34.10%)
cookies. Note that features that can be easily collected pas-
sively, like IP address and UA, are more frequently used than
features that can only be accessed actively, such as Canvas or
Geolocation.

We found that cookies are usually respawned with a set
of different fingerprinting features. In our dataset, cookies are
respawned with 184 distinct sets of features. Figure 3 shows
the sets of features most often used for cookie respawning.
We see that the IP address alone is the most commonly used
feature to respawn cookies, and moreover no other set of
features is more popular than the IP address alone.

The IP address is used alone to respawn 366 (25.68%) cook-
ies. Mishra et al. [48] studied the stability and uniqueness of
the IP address over a duration of 111 days on a dataset of 2,230
users. They showed that 87% of participants retain at least
one IP address for more than a month. Hence, IP addresses
are both stable and unique, therefore, they can be used to
uniquely identify and track user’s activity. Interestingly, the
top-2 sets of features, {IP}, and {UA}, contain only passive

Fig. 3: Top 20 set of features used to respawn cookies.
IP addresses alone are used to respawn over 25% of the
cookies. CV: Canvas, IP: IP address, UA: User agent, GEO:
Geolocation, GL: WebGL, TZ: Time zone, Lang: Accept
language, DNT: Do Not Track.

features that are easier to collect. Active features are rarely
use, timezone, the most popular active feature for respawning,
is used alone for 46 (3.23%) cookies.
Summary. We show that trackers use multiple combinations
of features to respawn cookies and that the IP address, which
is overlooked in a number of fingerprinting studies [38], [15],
[33], [2], [49], is the most used feature to respawn cookies.

C. Discovering owners of respawned cookies

Cookie respawning opens new opportunities for different
companies to collaborate together to track users. Usually, the
host of a cookie defines the domain that can access the cookie.
We introduce in this paper a notion of cookie owner that has
set the cookie via an HTTP header or programmatically via
JavaScript (see Section II-A). However, additional stakehold-
ers can help to respawn a cookie by serving a fingerprinting
script. We explore each of these new potential stakeholders in
the rest of this section.

1) Identifying cookie owners: Due to the the Same Origin
Policy (SOP) [58], the domain that is responsible for setting a
cookie can be different from the domain that receives it (see
Section II-A). Therefore, we differentiate two stakeholders:
Owner – the domain that is responsible for setting the cookie,
and Host – the domain that has access to the cookie and to
whom the cookie is sent by the browser. In the following, we
define both owner and host as 2nd-level TLD domains (such
as tracker.com).

It’s important to detect the cookie owner – for instance, in
order to block its domain via filter lists [21], [22], [20] and
prevent cookie-based tracking. Indeed, the notion of cookie
owner is often overlooked when the reasoning is only based
on the cookie host [13]. When one cookie owner sets a cookie
in the context of several websites (the owner’s script can be
embedded directly on a visited website or in a third-party
iframe), the host of this owner’s cookie is the context where
the cookie is set because of the SOP [58]. To identify cookie

Fig. 4: Emergence of new domains when considering cookie
owners. The 1, 425 respawned cookies have 765 distinct hosts
and 574 distinct owners. The notion of cookie owner allows
to identify 75 cookie owner domains that never appear as a
cookie host. We also found 266 cookie host domains that are
never used to set the cookie.

owners in the context of our paper, we distinguish two cases,
as described below.

Cookie set by a script. Document.cookie prop-
erty is the standard way for a JavaScript script to set a
cookie [36] programmatically. To check whether a cookie is
set via JavaScript and to extract its owner (the domain who
serves the script) when crawling a website, we (1) extract
the set of scripts S that set a cookie on the website using
document.cookie, (2) for every script in S, we extract the
set of cookies C set by this script, and (3) check whether there
is an overlap between the set of respawned cookies identified
in Section V-A and in the set C. If it is the case, we conclude
that the cookies in the overlap are set via JavaScript, and their
owner is the 2nd-level TLD domain that served the script.

Cookie set by HTTP(S) header. If the cookie is set by the
HTTP(S) Set-Cookie response header, then the owner of
the cookie is the same as its host because it corresponds to
the 2nd-level TLD of the server that set the cookie.

For each of the 1, 425 respawned cookies, we identified
its owner depending on how the cookie was set. Figure 4
shows domains appearing as host only (left blue part), as
owner only (yellow part), or both (middle overlap). In total,
1, 425 respawned cookies are labeled with 765 distinct hosts,
however they were set by 574 distinct owners. Figure 4
also depicts that 75 domains appear as owners and never as
cookies hosts. These domains serve JavaScript scripts that
set cookies, but never serve cookies directly via an HTTP(S)
response header. Hence, when only considering cookies hosts,
these domains are not detected. We evaluated the efficiency of
disconnect [20] filter list in detecting these 75 domains. We
found that disconnect miss 53 (70.66%) owners domains. We
also found that 266 domains that appear as cookie hosts are
never identified as cookie owners. Cookies associated with
these domains were set in the context of the hosts domain
because of the SOP, but these domains were never actually
responsible of setting these cookies.

Figure 5 presents the top 10 domains responsible for
cookie respawning that are either cookie hosts, cookie own-
ers, or both. Two domains, rubiconproject.com and
casalemedia.com, represent the largest fraction of web-
sites. All cookies served by these two domains are served

Fig. 5: The top 10 respawned cookies owners. The bar is
green when the domain is both host and owner, and yellow
when the domain only appears as owner. For each domain, we
show when cookies are set via an HTTP(S) header and when
they are set via JavaScript. When considering cookie owners,
new domains are identified such as adobedtm.com.

via HTTP(s). Three out of the top 10 domains are exclu-
sively cookie owners: adobetm.com, bizible.com, and
maricopa.gov. These domains are only setting respawned
cookies via JavaScript and never directly through HTTP(S).
Out of the 1, 425 respawned cookies, 514 (36.07%) are set
via JavaScript.
Summary. Previous studies that only looked at the cookie
host can miss the trackers responsible for setting the cookies.
In our study, 75 domains could be missed if we only con-
sidered cookie hosts. We found that disconnect miss 70.66%
of these domains. Considering cookie owners improves the
understanding of the tracking ecosystem.

2) Identifying scripts used for respawning: A cookie can be
respawned using a set of different features. These features can
be all accessed by a single script or by multiple collaborating
scripts as we describe in this section. To identify the scripts
that are responsible of accessing browser or machine features
used for respawning a cookie, we use the recorded JavaScript
calls described in Table I.

Every feature can be accessed only actively, only passively
or actively and passively (see Table II). In this section, we
focus only on the active features collected using the follow-
ing JavaScript calls: window.navigator.geolocation
(to access the Geolocation) and HTMLCanvasElement (to
access the Canvas). As OpenWPM does not log calls to Time
zone and WebGL, we do not consider these active features
in this section. For every respawned cookie C, we identified
the set of features F used for respawning C as described in
Section IV-C2. To extract the scripts that are responsible of
respawning C via the set of features F, we analyze the features
used to respawn each cookie. If the cookie is respawned with
only passive or active/passive features, then no conclusions
can be made for both HTTP(S) and JavaScript cookies. In
fact, these features are sent passively, therefore no conclusion
can be made on which scripts used them in respawning.

Owner # of cookies
adobedtm.com 10
ssl-images-amazon.com 3
hdslb.com 2
bitmedia.io 2
19 Others 20
Total 37

TABLE V: Top domains suspect to set and respawn the
cookies.

In total, we found that 931 (65.33%) cookies are respawned
with only passive or mixed features. For the remaining 494
cookies depending on active features, 95 (19.23%) are only
using WebGL or Time Zone that are out of the scope of
this study. In the rest of this section, we consider the 399
respawned cookies that are respawned with only active fea-
tures for which we can access method calls.

We refer to the set of active features used to respawn a
cookie as fa. We extract the set of features accessed by every
script on the website where the cookie is respawned, and
distinguish three cases.

1 - The owner of the cookie is suspect to be the
responsible of respawning. We identify such cases when
(1) the cookie is set via JavaScript, and all active features fa
used to respawn it are accessed by the owner of the cookie, or
(2) the cookie is set via HTTP(S) and a script hosted by the
same 2nd-level TLD accesses all active features. If one of the
two cases is validated, then we suspect that the owner of the
cookie is the responsible of respawning it. In total, we found
37 (9.27%) cookies that are respawned by their owners. Out
of these 37 cookies, 17 are set via HTTP(S) and respawned by
scripts that belong to the same domain. These 37 respawned
cookies are owned by 23 distinct owners. Table V presents the
top 4 owners that are suspect to respawn the cookies as well.

We found that adobedtm.com [4] (the tag manager
owned by adobe) is the top domain that both owns
and respawns cookies. Though respawning is not ex-
plicitly indicated in their policy, the policy states that
they collect browser and machine features. We didn’t
find any information regarding cookies respawned ei-
ther by ssl-images-amazon.com, hdslb.com or
bitmedia.io [10].

2 - The respawning is a result of a potential collaboration
between the cookie owner and other scripts. If the set of
active features used to respawn the cookie are not accessed
by the owner, but are accessed by other scripts on the same
website, then we suspect that the cookie is potentially a result
of collaboration between the owner of the cookie and other
scripts on the same website. In this study, we don’t assess
whether the domains are actively collaborating, or if one
domain is leveraging scripts from other domains to glean
fingerprint information. In total, we found that 67 (16.79%)
cookies are suspect to be a result of collaboration between
multiple domains. The 67 cookies are a result of collaboration
of 35 distinct domains.

Table VI presents the top domains that are suspect

Owner Collaborator # of cookies
rubiconproject.com googlesyndication.com 8
rubiconproject.com pushpushgo.com 3
adobedtm.com morganstanley.com 2
adobedtm.com provincial.com 2

TABLE VI: Top domains suspect to collaborate to respawn
cookies. The reported domains are both first- and third- party.

to collaborate in order to respawn cookies. We define
the collaborator as the only domain accessing the fea-
tures used for respawning the cookie and not accessed by
the owner of the cookie. The top collaboration involves
googlesyndication.com owned by Alphabet (parent
company of Google). Googlesyndication.com is ac-
cessing and potentially sharing user’s Canvas information3.

3 - The responsible of respawning the cookie are not
all known. If not all the active features used to respawn
the cookie are accessed on the website where the cookie is
respawned via JavaScript calls, then we assume that the owner
is accessing the features via other means. This happens with
295 (73.93%) cookies. In 186 (63.05%) cookies out of the
295, the owner is not accessing the geolocation API and do
access other active features it used for respawning the cookie.
This can potentially be a result of the dependency between
geolocation and IP addresses. When we spoof the geolocation
to Time Square in the US, we keep an IP address that points
to France because we only spoof one feature at time. Hence,
companies may detect this incoherence, and not use the IP
address to respawn the cookie, which, in our experiment will
be identified as dependency on the geolocation feature.
Summary. Identifying the responsible of respawning can
prove to be a complex task. While 23 owners respawn cookies
themselves, 35 domains collaborate to respawn cookies.

D. Where does respawning occur?

In section V-C, we studied the domains that are respon-
sible of setting and respawning cookies. In this section, we
analyse on which types of websites respawning occurs. In the
following, we refer to these websites as websites including
respawning. We analyse Alexa ranking distribution and impact
of websites category on the usage of cookie respawning,
present websites including respawning that process special
categories of data, and present the geolocation of owners of
respawned cookies and websites.

Popularity of websites including respawning. We detected
1, 150 websites where at least one cookie is respawned.
Table VII presents the number of websites including respawn-
ing for each Alexa rank interval. We observe that cookie
respawning with browser fingerprinting is heavily used on
popular websites: out of the top 1k visited websites, 4.9%
are websites including respawning. This percentage decrease
to 3.70% in less popular websites.

Categorization of websites including respawning. We
used the McAfee service [43] to categorize the visited websites.

3We will make the data available upon paper acceptance.

Alexa rank in-
terval

Websites including
respawning

of owners

0 — 1k 49 (4.9%) 49
1k — 10k 360 (4%) 213
10k+ 741 (3.70%) 382

TABLE VII: Popular websites are more likely to include
cookie respawning. Number of owners: presents the total
number of distinct respawned cookies owners in the Alexa
ranking interval.

Fig. 6: General news is the top category including cookie
respawning with browser fingerprinting. We consider that
a website U is including respawning if it contains at least
one respawned cookie. The bar is gray when we don’t detect
respawning in the website, and is blue when we do.

The McAfee uses various technologies and artificial intelli-
gence techniques, such as link crawlers, and customer logs
to categorise websites. It is used by related works [69]. A
description of the reported McAfee categories can be found in
the McAfee reference guide [44].

We successfully categorized Alexa 29,900 visited websites.
For every category, we present the percent of respawn web-
sites. We found that the visited websites belong to 669 cat-
egories and the 1, 150 websites including respawning belong
to 143 different categories.

Figure 6 gives an overview of the 10 most prominent
categories within the Alexa visited websites. We found that
all top 10 categories contain websites that include respawning.
Business is the top websites category, 8.62% of the visited
websites are categorized as business.

Most of websites including respawning are categorized as
General News. Out of the 29, 900 visited websites, 6.73% are
categorized as General News, and 5.95% of these General
News websites contain at least one respawned cookie. Gen-
eral News is known for using more third parties than other
categories [65], which can be the reason behind the high
deployment of respawning in this category of websites.

Websites processing special categories of data. The
GDPR [67, Recital 51] stipulates that personal data which
are particularly sensitive by their nature, merit specific pro-
tection, as their processing could create significant risks to
the fundamental rights of users. Such data include personal
data revealing sensitive information such as data concerning a

Fig. 7: Cookie respawning with browser fingerprinting
is geolocaly distributed. Corresponding countries of owners
(left) and websites including respawning (right) of respawned
cookies. We present the top 10 (owner,website) geolocation.
”EU” label represents the 27 member states of the EU.

natural person’s sex life or sexual orientation [67, Article 9].
Processing such categories of data is forbidden, unless allowed
by the user’s explicit consent [67, Article 9(2)].

We studied tracking via the third-party respawned cookies
on websites processing sensitive data. As a result, we detected
21 cookies respawned in Adult websites that are set by 19
different owners. The top domain respawning cookies on
sensitive websites is adtng.com (no corresponding official
website was found for adtng.com). It respawned cookies
on 3 different adult websites, and therefore, can track and
link user’s activity within adult websites in a persistent way,
without explicit consent to legitimize such operation, rendering
such respawning practise unlawful.

Geolocation of websites including respawning and
respawned cookies owners. Independently of the country of
registration of a website, if a website monitors the behavior
of users while they are in the EU, the GDPR applies to such
monitoring [67, Article 3(2)(b)]. Notice that any form of web
tracking will be deemed as ”monitoring”, including cookie
respawning with browser fingerprinting. Since our experiments
simulate users located in France (EU), both EU and non-EU
organizations must comply with the GDPR.

We extracted the country of registration of the owners of
respawned cookies and the websites including them using the
whois library [74]. We successfully identified the country of
registration of 362 (63.07%) out of 574 total distinct owners,
and 670 (58.26%) out of 1,150 websites including respawning.
We found that the owners and websites are distributed across
the globe, ranging respectively over 29 and 47 different
countries, including EU. Out of these 670 websites, 52 (7.76%)
are in the EU.

Figure 7 presents the registration countries of respawned
cookies owners and websites where they are set. We observe
that top countries of both respawned cookies and websites
including respawning are not in the EU: 356 (24.98%) of
the respawned cookies are both originated and included by
domains from the US. We also observed that respawned
cookies on Chinese websites are only set by Chinese owners,

Fig. 8: Persistent third-party tracking based on respawned
cookies. Top 10 cross-site trackers using respawned cookies.

and interestingly, websites registered in Panama are active in
respawning as well (22 (3.28%) of the studied 670 websites
including respawning are from Panama).
Summary. Cookie respawning with browser fingerprinting
is commonly used: 5.95% of General News websites contain
at least one respawned cookie. We found that cookies are
respawned in sensitive adult websites as well, which leads to
serious privacy implications: Cookie respawning with browser
fingerprinting is distributed across the globe, however, only
7.76% of the websites that include respawning are in the EU.
Nevertheless, both EU and non-EU websites must comply with
the GDPR as it is applicable independently of the country of
registration of the website where EU users are monitored.

E. Tracking consequences of respawning

1) Persistent cross-site tracking with respawned cookies:
Basic tracking via third-party cookies [56], [30] is the most
known tracking technique that allows third parties to track
users across websites, hence to recreate her browsing history.
When a third party cookie that enables cross-site tracking
is respawned, such tracking becomes persistent. That is, in
contrast to regular third-party tracking, the user can not prevent
it by deleting cookies. Hence, respawned cookies enable
persistent tracking that allows trackers to create larger users’
profiles by linking users activity before and after they clean
their browser. Since the host is the domain to whom browser
automatically sends the cookies, we focus on the cookie host
and not on cookie owner.

Third party cookies allow trackers to track users cross-
websites [56]. In this section, we only analyse third-party
respawned cookies that can be used to track users across web-
sites. Note that all extracted respawned cookies are user spe-
cific (Section IV-C1) and therefore can be considered as unique
identifiers. Out of 1, 425 respawned cookies, 528 (37.05%) are
third-party cookies. In total, we identified 144 unique hosts
that have access to these cookies. Figure 8 presents the top 10
cross-site trackers that have access to respawned cookies. We
found that rubiconproject.com is the top domain: it has

access to at least one respawned cookie on 200 (17.39%) of
the visited websites out of 1, 150. Rubiconproject.com
defines itself as a publicly traded company, as it is automating
the buying and selling of advertising [57].

2) Cookie respawning with browser fingerprinting beyond
deprecation of third-party cookies: Web browsers are mov-
ing towards deprecation of third party cookies which are
the core of cross-site tracking [59]. Can this deprecation
prevent cross-site tracking? In the following, we show how
cookie respawning with browser fingerprinting can overcome
browsers preventions.

Via persistent tracking with respawned cookies, do-
mains can track users across websites without third-party
cookies. Consider the following scenario: example.com
and news.com include a fingerprinting script from
tracker.com. When the user visits these websites, the
script from tracker.com accesses the user’s browser and
machine features, and sets a corresponding first-party cookie.
As a result, two first-party cookies are set in the user’s browser
and labeled with two different hosts: example.com and
news.com, but the values of these two cookies are identical,
because they are created from the user’s browser and machine
features. By respawning these two cookies on both websites,
the owner tracker.com shows to be able to track the user
in a persistent way across sites with a first-party cookie only.

We analyzed the usage of the same (owner, key, value)
first-party respawned cookie across different websites. The
1, 425 cookies correspond to 1,244 respawned (owner, key,
value) instances, out of which 40 (3.21%) are respawned on
multiple websites in a first party context with the same value
(see Table X in Appendix). wpbeaverbuilder.com [75]
is the top owner setting identical first party respawned cookies
across websites. It respawned the same cookie on 15 distinct
websites. It defines itself as a WordPress page builder. Its
policy declare to collect user’s information, but it does not
precise the type of this information.
Summary. Cookie respawning with browser fingerprinting
enable tracking across websites even when third party cookies
are deprecated. We found 40 first party cookies that can serve
for cross-site tracking.

VI. IS RESPAWNING LEGAL?

In this section, with a legal expert which is a co-author,
we evaluate the legal compliance of 1, 425 respawned cookies
and reflect upon the applicability of current regulations in
practice. Our legal analysis is based on the General Data
Protection Regulation (GDPR) [67] and the ePrivacy Direc-
tive (ePD) [27], as well as in its recitals (which help legal
interpretation of provisions in a specific context, but they are
not mandatory for compliance). The GDPR applies to the
processing of personal data [29] and requires that companies
need to choose a legal basis to lawfully process personal
data (Article 6(1)(a)). The ePD provides supplementary rules
to the GDPR in particular in the electronic communication
sector, such as websites, and requires those, whether inside

or outside the EU, to obtain consent from users located in the
EU for processing of their personal data. We have additionally
consulted the guidelines of both the European Data Protection
Board (an EU advisory board on data protection, representing
the regulators of each EU member state) [1] and the European
Data Protection Supervisor (EDPS, the EU’s independent data
protection institution) [24]. While these guidelines are not
enforceable, they are part of the EU framework for data
protection which we apply in this work to discern whether
respawning is compliant.

To assess the legal consequences of respawning, the legal
expert analysed legal sources to interpret cookie deletion. To
our surprise, we found that there is no explicit legal interpre-
tation of cookie deletion. Only the EDPS [24, Section 4.3.4]
noted that ”if cookies requiring consent have disappeared, this
is most probably because the user deleted them and wanted
to withdraw consent”. As a result, cookie respawning also
does not have a clear legal interpretation and merits attention
for its plausible legal consequences. These consequences can
arguably be derived, not only from the consent perspective, but
also from the core principles of data protection, as discussed in
the following sections (fairness, transparency and lawfulness
principles). Thus, owners of respawned cookies and website
owners that embed those may be jointly responsible for their
usage (Article 26 [67]) and may then be subject to fines of
up to 20 million EUR (or 4% of the total worldwide annual
turnover of the preceding financial year, Article 83(5)[67]).

A. Fairness Principle.

This principle requires personal data to be processed fairly
(Article 5(1)(a)). It requires that i) legitimate expectations of
users are respected at the time and context of data collection,
and ii) there are no “surprising effects” or potential negative
consequences occurring in the processing of user’s data.
Findings: We consider that all 1, 425 respawned cookies
plausibly violate the fairness principle, as respawning seems
to be inconsistent with the user’s expectations regarding
respawned cookies after its deletion from her browser, and
also considering the cookie’s duration.
Suggestions for policymakers: It’s hard to operationalize the
high-level fairness principle into concrete requirements for
website owners and map it into legitimate expectations of
users. Policy makers need to provide more concrete guidelines
on the operationalization of this principle in the Web.

B. Transparency principle.

Personal data processing must be handled in a transparent
manner in relation to the user (Article 5(1)(a)). This principle
presents certain obligations for websites: i) inform about the
scope and consequences [68] and the risks in relation to the
processing of personal data (Recital 39); ii) inform about the
purposes, legal basis, etc. before processing starts (as listed
in Art. 13); iii) provide the above information in a concise,
transparent, intelligible and easily accessible form (Art. 12).
Findings: We analyzed the privacy policies of the 10 top
popular respawned cookie owners: rubiconproject.com [57],

casalemedia.com [16], pubmatic.com [54], adobedtm.com [4]
smartadserver.com [62], bizible.com [11], betweendigi-
tal.com [9], maricopa.gov [42], wpbeaverbuilder.com [75],
and contextweb.com (Figure 5). Some policies [57], [16],
[4], [62], [11] refer to the use of browser’s features without
referencing the consequences or risks thereof. Also, none of
the policies refer to cookie respawning. As such, these seem
to be in breach of the transparency principle.
Suggestions for policymakers: In practice, the description of
data (purposes, legal basis, types of personal data collected,
features used and its consequences) is often mixed within
the text, which makes harder to extract concrete information
therefrom [31]. Policy-makers need to converge on harmonized
requirements and standard format for privacy policies.

C. Lawfulness Principle.

The ePD requires websites to obtain user consent to lawfully
process personal data using cookies. When a cookie recreates
itself without consent, every data processed henceforth could
be considered unlawful due to lack of legal basis for personal
data processing [28]. This practice incurs in violation with the
lawfulness principle (Articles 5(1)(a) and 6(1) of the GDPR,
and 5(3) of the ePD). The EDPS [24] already advised against
the use of cookie respawning if the processing relies on
users’ consent. It mentions that ”cookie respawning would
circumvent the user’s will. In this case (...) institutions must
collect again user’s consent”.

To evaluate compliance with the lawfulness principle, we
need first to evaluate whether cookies are exempted or subject
to consent. The 29WP [7] asserts that ”it is the purpose that
must be used to determine whether or not a cookie can be
exempted from consent”.

Given that only a small percentage of cookies include a
description of their purposes [31], we adopted the Cookiepedia
open database [18] which has over 11 million cookies used
across 300,000 websites and has been used in prior work [69].
It uses the classification system developed by ”The UK In-
ternational Chamber of Commerce” (ICC) and relies on four
common purposes of cookies: i) Strictly Necessary (which in-
cludes authentication and user-security); ii) Performance (also
known as analytics, statistics or measurement cookies); iii)
Functionality (includes customization, multimedia content);
and iv) Targeting (known as advertising). Even though this
classification is not binding, we point to the fact that it is the
largest database of pre-categorized cookies.

The 29WP [7] adds two other characteristics contributing to
determine whether cookies are exempted or subject to consent:
duration (session and persistent cookies) and context (first and
third-party cookies). Building on the analysis made by Santos
et al. [60, Table 5] on the list of purposes that are subject
to consent and those that are exempted therefrom, we firstly
studied the Cookiepedia purposes and then we derived which
are the purposes subject to consent according to their duration
and context. Table VIII summarizes the Cookiepedia purposes
requiring consent depending on the duration and the context
on which it is running.

Session Persistent
First-
party

Targeting/ Advertising Targeting/ Advertising

Third-
party

Targeting/ Advertising Targeting/ Advertising
Performance Performance
Strictly necessary Strictly necessary

Functionality

TABLE VIII: Purposes of Cookiepedia [18] that require
consent according to their context and duration.

Findings: In our study we crawled websites and even if a
website provided a consent banner, we did not give consent
thereto. We evaluated whether respawned cookies are subject
to or exempted from consent (as described in Table VIII). As
a result of our evaluation, we found that out of 336 respawned
cookies categorized by Cookiepedia, 130 (38.69%) are subject
to consent. Hence, these 130 cookies are in breach of the
lawfulness principle.
Suggestions for policymakers: Companies can embed
respawning and still claim respawned cookies are exempted
of consent. We analysed that both the duration and context of
cookies contribute to determine whether cookies are exempted
or subject to consent. However, from a technical point of
view, these criteria can be bypassed by domains that embed
respawning. As per duration, session cookies can get recreated
even after their elimination by the user. Functionality cookies
are exempted of consent when used as session cookies and are
subject to consent when used in a persistent way [7]. When
respawned, such cookies can be used for a longer duration than
previously envisaged. We found that out of 1, 425 respawned
cookies, 446 (31.30%) are session cookies. Regarding context,
performance cookies are exempted of consent when used in
a first party context and are subject to consent when used
as third party cookies. However, in practice, a cookie set
in the first party context can be considered as a third party
cookie in a context of a different website. We found that 4
respawned cookies (host,key,value) appear as first- and third-
party in different websites. These cookies are respectively set
by pornhub.com, mheducation.com, hujiang.com
and fandom.com. Given that a cookie context and duration
can be altered, these should not be used as a criteria to evaluate
the need of consent.

VII. CONCLUSION

This work presents a large scale study of cookie respawning
with browser fingerprinting, a tracking technique that is devoid
of a clear legal interpretation in the EU legal framework. We
employed a novel methodology to reveal the prevalence of
cookie respawning with browser fingerprinting in the wild. The
detection of such behavior and the identification of responsible
domains can prove to be hard to achieve, which impacts both
the ability to block such behavior, and its legal assessment. We
believe this work can serve as a foundation for improvement
of future regulation and protection mechanisms.

REFERENCES

[1] 29 Working Party. https://edpb.europa.eu/our-work-tools/
article-29-working-party en.

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez, Arvind
Narayanan, and Claudia Dı́az. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, pages 674–689, 2014.

[3] Gunes Acar, Marc Juárez, Nick Nikiforakis, Claudia Dı́az, Seda F.
Gürses, Frank Piessens, and Bart Preneel. Fpdetective: dusting the web
for fingerprinters. In 2013 ACM SIGSAC Conference on Computer and
Communications Security (CCS’13), pages 1129–1140, 2013.

[4] Adobedtm.com privacy policy. https://www.adobe.com/privacy/policy.
html.

[5] Nasser Mohammed Al-Fannah, Wanpeng Li, and Chris J. Mitchell. Be-
yond cookie monster amnesia: Real world persistent online tracking. In
Liqun Chen, Mark Manulis, and Steve A. Schneider, editors, Information
Security - 21st International Conference, ISC 2018, Guildford, UK,
September 9-12, 2018, Proceedings, volume 11060 of Lecture Notes
in Computer Science, pages 481–501. Springer, 2018.

[6] Alexa websites. https://www.dropbox.com/sh/wnmugbzb2bfp7ca/
AACUJbCbFM2iBcN7y2b-bqF-a?dl=0.

[7] Article 29 Working Party. Opinion 04/2012 on Cookie Consent Exemp-
tion (WP 194).

[8] Mika D Ayenson, Dietrich James Wambach, Ashkan Soltani, Nathan
Good, and Chris Jay Hoofnagle. Flash cookies and privacy ii:
Now with html5 and etag respawning. Technical report, Available
at SSRN: https://ssrn.com/abstract=1898390orhttp://dx.doi.org/10.2139/
ssrn.1898390, 2011.

[9] Betweendigital.Com privacy policy. https://betweenx.com/.
[10] Bitmedia.io privacy policy. https://bitmedia.io/cookie-policy.
[11] Bizible.com privacy policy. https://documents.marketo.com/legal/

privacy.
[12] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor

Imre. User tracking on the web via cross-browser fingerprinting. In 16th
Nordic Conference on Secure IT Systems, NordSec 2011, pages 31–46,
2011.

[13] Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. An
empirical study of web cookies. In Jacqueline Bourdeau, Jim Hendler,
Roger Nkambou, Ian Horrocks, and Ben Y. Zhao, editors, Proceedings
of the 25th International Conference on World Wide Web, WWW 2016,
Montreal, Canada, April 11 - 15, 2016, pages 891–901. ACM, 2016.

[14] Canvas defender. https://addons.mozilla.org/en-US/firefox/addon/
no-canvas-fingerprinting/.

[15] Yinzhi Cao, Song Li, and Erik Wijmans. (cross-)browser fingerprinting
via os and hardware level features. In 24th Annual Network and Dis-
tributed System Security Symposium, NDSS 2017, San Diego, California,
USA, 26 February - 1 March, 2017, 2017.

[16] Casalmedia privacy policy . https://sugru.com/cookies.
[17] Chameleon extension. https://addons.mozilla.org/en-US/firefox/addon/

chameleon-ext/.
[18] Cookiepedia Official website. https://cookiepedia.co.uk/.
[19] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The

web’s sixth sense: A study of scripts accessing smartphone sensors.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng
Wang, editors, Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 1515–1532. ACM, 2018.

[20] Disconnect Official website. https://disconnect.me/.
[21] EasyList filter lists. https://easylist.to/.
[22] EasyPrivacy filter lists. https://easylist.to/easylist/easyprivacy.txt.
[23] Peter Eckersley. How Unique is Your Web Browser? In Proceedings of

the 10th International Conference on Privacy Enhancing Technologies,
PETS’10, pages 1–18. Springer-Verlag, 2010.

[24] Guidelines on the protection of personal data processed through
web services provided by EU institutions, November, 2016.
https://edps.europa.eu/sites/edp/files/publication/16-11-07 guidelines
web services en.pdf.

[25] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-
site measurement and analysis. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security ACM CCS,
pages 1388–1401, 2016.

[26] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmer-
man, Jonathan Mayer, Arvind Narayanan, and Edward W. Felten.
Cookies that give you away: The surveillance implications of web
tracking. In Proceedings of WWW 2015, pages 289–299, 2015.

[27] Directive 2009/136/EC of the European Parliament and of the Council
of 25 November 2009. https://eur-lex.europa.eu/legal-content/EN/TXT/
?uri=celex\%3A32009L0136, accessed on 2019.10.31.

[28] European Data Protection Board. Opinion 15/2011 on
the definition of consent (WP 187), adopted on 13 july
2011. https://ec.europa.eu/justice/article-29/documentation/
opinion-recommendation/files/2011/wp187 en.pdf.

[29] European Data Protection Board. Opinion 4/2007 on
the concept of personal data (WP 136), adopted on
20.06.2007. https://ec.europa.eu/justice/article-29/documentation/
opinionrecommendation/files/2007/wp136 en.pdf.

[30] Imane Fouad, Nataliia Bielova, Arnaud Legout, and Natasa
Sarafijanovic-Djukic. Missed by filter lists: Detecting unknown
third-party trackers with invisible pixels. volume 2020, 2020.

[31] Imane Fouad, Cristiana Santos, Feras Al Kassar, Nataliia Bielova, and
Stefano Calzavara. On Compliance of Cookie Purposes with the Purpose
Specification Principle. In IWPE 2020 - International Workshop on
Privacy Engineering, pages 1–8, Genova, Italy, September 2020.

[32] Ghostery Official website. https://www.ghostery.com/.
[33] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. Hiding in

the Crowd: an Analysis of the Effectiveness of Browser Fingerprinting
at Large Scale. In WWW2018 - TheWebConf 2018 : 27th International
World Wide Web Conference, pages 1–10, Lyon, France, April 2018.

[34] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the
fingerprinters: Learning to detect browser fingerprinting behaviors. In
IEEE Symposium on Security & Privacy, 2021.

[35] Intelligent Tracking Prevention. https://webkit.org/blog/10218/
full-third-party-cookie-blocking-and-more/.

[36] JS cookies. https://www.w3schools.com/js/js cookies.asp.
[37] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine.

Browser fingerprinting: A survey. ACM Transactions on the Web
(TWEB), 14(2):8:1–8:33, 2020. https://dl.acm.org/doi/10.1145/3386040.

[38] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and
the Beast: Diverting modern web browsers to build unique browser
fingerprints. In 37th IEEE Symposium on Security and Privacy (S&P
2016), 2016.

[39] W. Davis. KISSmetrics Finalizes Supercookies Settle-
ment. http://www.mediapost.com/publications/article/191409/
kissmetrics-finalizes-supercookies-settlement.html,2013..

[40] R. Singel. Online TrackingFirm Settles Suit Over Undeletable Cookies.
http://www.wired.com/2010/12/zombie-cookie-settlement/.

[41] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska
Roesner. Internet jones and the raiders of the lost trackers: An archae-
ological study of web tracking from 1996 to 2016. In 25th USENIX
Security Symposium (USENIX Security 16). USENIX Association, 2016.

[42] Maricopa.gov privacy policy. https://www.maricopacountyparks.net/
privacysecurity-policies/.

[43] McAfee categorization service. https://www.trustedsource.org/.
[44] Description of McAfee categories. https://www.trustedsource.org/

download/ts wd reference guide.pdf.
[45] Using http cookies, MDN Web Docs. https://developer.mozilla.org/

en-US/docs/Web/HTTP/Cookies#define where cookies are sent.
[46] N. Mohamed. http://www.wired.com/2009/08/

you-deleted-your-cookies-think-again/.
[47] J. Leyden. Sites pulling sneaky flash cookie-snoop. http://www.

theregister.co.uk/2009/08/19/flashcookies/.
[48] Vikas Mishra, Pierre Laperdrix, Antoine Vastel, Walter Rudametkin,

Romain Rouvoy, and Martin Lopatka. Don’t count me out: On the
relevance of IP address in the tracking ecosystem. In Yennun Huang,
Irwin King, Tie-Yan Liu, and Maarten van Steen, editors, WWW ’20:
The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages
808–815. ACM / IW3C2, 2020.

[49] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting
canvas in HTML5. In Matt Fredrikson, editor, Proceedings of W2SP
2012. IEEE Computer Society, May 2012.

[50] Firefox blocking tracking cookies. https://blog.mozilla.org/blog/2019/
09/03/todays-firefox-blocks-third-party-tracking-cookies-and-cryptomining-by-default/.

[51] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster:
Exploring the ecosystem of web-based device fingerprinting. In IEEE
Symposium on Security and Privacy, SP 2013, pages 541–555, 2013.

[52] Lukasz Olejnik, Minh-Dung Tran, and Claude Castelluccia. Selling off
user privacy at auction. In 21st Annual Network and Distributed System

Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014, 2014.

[53] Information stored by openwpm. https://github.com/mozilla/OpenWPM.
[54] Pubmatic privacy policy . https://pubmatic.com/legal/

platform-cookie-policy/.
[55] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez,

Srikanth Sundaresan, Mark Allman, Christian Kreibich, and Phillipa
Gill. Apps, trackers, privacy, and regulators: A global study of the
mobile tracking ecosystem. In Network and Distributed System Security
Symposium, NDSS, 2018.

[56] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting
and defending against third-party tracking on the web. In Proceedings
of the 9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2012, pages 155–168, 2012.

[57] Rubicon privacy policy . https://rubiconproject.com/
rubicon-project-advertising-technology-privacy-policy/
platform-cookie-statement/.

[58] Same Origin Policy. https://www.w3.org/Security/wiki/Same Origin
Policy.

[59] Google Privacy Sandbox. https://www.chromium.org/Home/
chromium-privacy/privacy-sandbox.

[60] Cristiana Santos, Nataliia Bielova, and Célestin Matte. Are cookie ban-
ners indeed compliant with the law? deciphering EU legal requirements
on consent and technical means to verify compliance of cookie banners.
Technology and Regulation, pages 91–135, 2020.

[61] You should install two browsers. http://www.compukiss.
com/internet-and-security/you-should-install-two-browsers.html.

[62] Smartadserver privacy policy . https://www.sublime.xyz/en/
legal-mentions.

[63] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis.
Tales of favicons and caches: Persistent tracking in modern browsers.
In NDSS, 2021.

[64] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and
Chris Jay Hoofnagle. Flash cookies and privacy. In AAAI Spring
Symposium: Intelligent Information Privacy Management, 2010.

[65] Jannick Kirk Sørensen and Sokol Kosta. Before and after GDPR: the
changes in third party presence at public and private european websites.
In Ling Liu, Ryen W. White, Amin Mantrach, Fabrizio Silvestri, Julian J.
McAuley, Ricardo Baeza-Yates, and Leila Zia, editors, The World Wide
Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17,
2019, pages 1590–1600. ACM, 2019.

[66] Ove Sörensen. Zombie-cookies: Case studies and mitigation. In 8th
International Conference for Internet Technology and Secured Transac-
tions, ICITST 2013, London, United Kingdom, December 9-12, 2013,
pages 321–326. IEEE, 2013.

[67] The European Parliament and the Council of the European Union.
Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), 2016.

[68] “Guidelines on transparency under Regulation 2016/679, WP260
rev.01. https://ec.europa.eu/newsroom/article29/item-detail.cfm?item
id=622227.

[69] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann.
Beyond the front page: Measuring third party dynamics in the field.
In Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen,
editors, WWW ’20: The Web Conference 2020, Taipei, Taiwan, April
20-24, 2020, pages 1275–1286. ACM / IW3C2, 2020.

[70] Securing your web browser. https://www.us-cert.gov/publications/
securing-your-web-browser.

[71] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain
Rouvoy. FP-STALKER: tracking browser fingerprint evolutions. In
2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings,
21-23 May 2018, San Francisco, California, USA, pages 728–741. IEEE
Computer Society, 2018.

[72] Browsec vpn. https://addons.mozilla.org/en-US/firefox/addon/browsec/.
[73] Whoer website. https://whoer.net.
[74] Whois library. https://pypi.org/project/whois/.
[75] wpbeaverbuilder.com privacy policy. https://www.wpbeaverbuilder.com/

privacy-policy/.

VIII. APPENDIX

A. Machines characteristics

Table IX presents the characteristics of machine A and
machine B used in our study.

Characteristics Machine A Machine B
Date of the crawl March 2021 March 2021
OS Fedora 25 Fedora 31
Firefox version 68.0 45.0.1
Location France France
IP address 193.51.X.X 138.96.Y.Y
OpenWPM version v0.9.0 v0.7.0
Language English (en US) German (de DE)
Time zone CET AKST
Geolocation France Alaska
Do not track Null True

TABLE IX: Crawls Characteristics. All crawls were performed
from machine A except user specific crawl that was done from
machine B.

B. Additional results

Table X presents the top first-party cookies respawned
across websites. This practice is studied in Section V-E2.

Owner Occurrence
wpbeaverbuilder.com 15
clarip.com 13
maricopa.gov 9
google-analytics.com 7

TABLE X: Top first-party cookies respawned across websites.
Every line in the table represents a cookie, hence the same
owner can appear on multiple lines. Occurrence: presents the
number of websites where the instance (owner,key,value) was
respawned. T0:

