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A method is proposed to place sensors in an electrical machine in order to be able to reconstruct the magnetic field distribution. This 
method is based on the Empirical Interpolation Method combined with the Maxvol technique. The results applied on a surface mounted 
permanent magnet machine at no load show that the field distribution can be accurately reconstructed even when the sensor location is 
imposed in the airgap of the rotating machine.  
 

Index Terms— Electrical machines, Field reconstruction, Sensor placement, Finite Element Method  
 

I. INTRODUCTION 

eing able to reconstruct the magnetic flux density 
distribution in an electrical machine from several local field 

measurements would be of great interest enabling to estimate 
global and local quantities (iron losses, torque…) in real time. 
With the development of IoT (Internet of Things) combined 
with the progress in microelectronics, we can expect, in a next 
future, to equip electrical machines with wireless sensors of 
magnetic field, temperature… at low cost. The question, which 
arises, is then: are we able to reconstruct the field distribution 
in an electrical machine from a limited number of sensors and 
where shall we locate them?  

It seems that this issue of sensor placement has not been 
addressed in the case of electrical machines especially for 
internal field reconstruction. 

Besides, in numerous research fields, methods have been 
proposed to find the best position of sensors. Some methods are 
based on the derivation of the sensor location from Partial 
Derivative Equations (PDE) model solved analytically [1] or 
numerically like the (Discrete) Empirical Interpolation Method 
((D)EIM) [2,3]. This last method has been applied in the case 
of nuclear reactor [4]. Moreover, in the field of computational 
electromagnetics, the (D)EIM has been already applied with 
success to reconstruct the distribution of the electromagnetic 
field in the regions where the behavior law is nonlinear, when 
constructing a reduced order model from a Finite Element (FE) 
model [5][6]. For all these reasons, the (D)EIM seems to be a 
good candidate for sensor placement for field reconstruction on 
the whole electrical machine.  

In this paper, a method based on (D)EIM is investigated to 
place sensors in order to reconstruct the field distribution in a 
rotating electrical machine. The (D)EIM is coupled with the 
Maxvol technique to improve its efficiency [7]. The method is 
tested on a permanent magnet machine. 

II. METHOD FOR SENSOR PLACEMENT 

A. Description of the problem 

Let us consider a FE model of an electrical rotating machine. 
We denote ne the number of mesh elements, θ the rotor position 

and B(θ), 2ne×1, the vector containing the radial and tangential 
components [bi(θ)]1≤i≤2ne of the magnetic flux density on each 
element. Let us introduce the vector Bsens(θ), M×1, of the 
magnetic flux density measured by M sensors which represent 
in fact M entries of B(θ). We denote ϕ, M×1, the vector of the 
indices of these M entries. We have then: 
 

Bsens(θ)= [bsens
1(θ),…,bsens

M (θ)] t=[bϕ(1)(θ),…,bϕ(M)(θ)] t
        (1) 

 
The problem of sensor placement consists then in finding the 

vector of indices ϕ and the 2ne×M matrix R=[r i]  1≤i≤M, such that 
the error between B(θ) and the reconstructed field 

 
 Breconst(θ)=R Bsens(θ)                                                          (2)  

 
is minimum. Once ϕ and R are determined, the magnetic flux 
density distribution Breconst(θ) is reconstructed from Bsens(θ) 
gathering M radial or tangential components of the magnetic 
flux density of B(θ). 

The problem of choosing the best vector of indices ϕ, which 
is equivalent to finding the best sensor locations, is 
combinatorial, which is computationally unfeasible. In fact, the 
complexity of this combinatorial optimization problem is 

proportional to  �2 n�M � which represent the number of the M-

combinations of the 2ne entries of B(θ). For example, let us 
consider a mesh with ne=30000 elements and a sensor number 
M=10, the M-combination number of sensors is equal to 1.62 
1038.  As an alternative, we have applied the (D)EIM [1][2] 
combined with the Maxvol algorithm [3]. It enables to obtain 
quickly a suboptimal sensor location ϕ as well as the 
reconstruction matrix R. The complexity of this algorithm is 
proportional to the number of sensors M. In the following, we 
present the (D)EIM and then the Maxvol algorithm.  

B. (D)EIM 

The aim of the (D)EIM is to approximate the 2ne×1 vector 
B(θ) by a 2ne×1 vector Breconst(θ) in the form [2,3]: 
 �	θ� ≈ �
������	θ� = � �	θ� = ∑ c�	θ� ��      ����             (3) 
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with Ui the ith column of a 2ne×M matrix U and c(θ) is a 
vector which entries [c1(θ),…,cM(θ)] being linear combinations 
of M “well-chosen entries” of the vector B(θ). Then, it is 
possible to “measure” only M entries of B(θ) to compute ci(θ) 
and thus, by applying (1), to determine an approximation 
Breconst(θ) of B(θ). In order to determine these M entries, 
snapshots of B(θ) (i.e. solutions of the FE model) are calculated 
for N angular positions of the rotor (θ1,…,θN). Then, the 
approximation Breconst(θ) is sought in a subspace KM spanned by 
an orthogonal basis U=[U1,…,UM]. This basis can be 
determined by a Gram-Schmidt Process or a Singular Value 
Decomposition (SVD) of the snapshot matrix B =[B(θ1), …, 
B(θn)]. In our case, we have considered the M singular vectors 
Ui associated to the M most significant singular values of the 
SVD of the matrix B.  Then, by applying a greedy algorithm, 
the M entries of B(θ) are determined and stored in the M×1 
index vector ϕ. Only the entries [bϕ(1)(θ),…,bϕ(M)(θ)] need to be 
calculated to determine the vector c(θ) and so Breconst(θ) from 
(2).   Let P denote the N×M matrix such that the jth column is 
the ϕ(j) th column eϕ(j) of the identity matrix INxN. All the entries 
of P are equal to zero except the M entries pϕ(j),j (1≤j≤M). The 
vector c(θ) is then given by: 

 
c(θ) = (PtU)-1 Pt B(θ)                                                         (4) 

 
The M×M matrix (PtU)-1 can be precalculated and the M 

entries of the vector PtB(θ) are equal to the M entries of B(θ) 
gathered in the M×1 vector Bsens(θ) introduced in (1). Then, 
combining (3) and (4), the expression of the matrix R is given 
by: 

 
    R =U(PtU)-1                                                                                                      (5)   

     
which enables to reconstruct the field distribution Breconst(θ) by 
(2). 

A. Maxvol technique 

The algorithm Maxvol is an iterative process which aims at 
finding a M×M submatrix Msub of the N×M matrix M (N>M) 
with an almost maximum volume (the volume of a square 
matrix Msub is given by vol(Msub)=|det(Msub)|. The problem of 
finding the matrix with the maximum volume is combinatorial. 
The Maxvol technique enables to obtain a suboptimal solution 
in a reasonable time [9]. The input is the index set ϕ obtained 
with the (D)EIM describes in the previous section. The output 
is new index set ϕ from which a new matrix R is recalculated 
from (5).   

III.  APPLICATION 

A. Machine studied 

A 5-phase buried permanent magnet synchronous machine is 
considered. The machine has 7 pole pairs and 20 slots leading 
to a fractional number of slots per pole pair. The mesh of the 
ferromagnetic part is given in Fig.1 and the number of elements 
is equal to ne=37552. 

B. Evaluation of (D)EIM combined with Maxvol technique 

In order to evaluate the proposed method of sensor placement 
for the reconstruction of the magnetic flux distribution, we 
consider the operating point at no load. The supply currents of 
the machine are equal to zero, the magnetic field is only created 
by the permanent magnets. We consider a rotation interval of 
360/7°, which corresponds to an electrical period. The field 
distribution Bj (1≤j≤N) has been calculated for N=90 angular 
positions uniformly distributed on this interval. We have then 
constructed the 2ne×N matrix of snapshots B by concatenating 
the 2ne×1vectors Bj (1≤j≤N). Then, we have applied the 
(D)EIM and the Maxvol technique (see II-B and II-C) to 
determine the position of the M sensors ϕ as well the 
reconstruction matrix R (see (2)). In order to evaluate the 
quality of the reconstructed field as a function of the number of 
sensors M, we define the reconstruction error εM: 

 

ε� = log " #∑ $�% &�%'()*+,-,/$01%23
∑ $�% $01%23 4                           (6) 

  
With �5
������,� being the reconstruction field at the jth position 

using M sensors. We have calculated the error εM when 
applying the (D)EIM alone and when combining the (D)EIM 
with the Maxvol technique.  We present in Fig. 2 the evolution 
of the error ε� as a function of the sensor number M (1≤j≤N-
1). We do not consider the case M=N because, by principle of 
the (D)EIM, the error ε� is equal to zero. We can see that the 
(D)EIM and (D)EIM/Maxvol method has almost the same 
behavior with a decrease of the error as a function of the sensor 
number which tends to zero. We can see also that the Maxvol 
technique enables to improve slightly the quality of the 
reconstruction by relocating more conveniently the sensors. It 
should be noticed that the (D)EIM is very fast, even combined 
with the Maxvol technique, leading to very short computation 
time of ϕ and R whatever the number of sensors (less than 1 
minute with Scilab® for the proposed example). 

 

 
 

Fig.1. Geometry and mesh of the ferromagnetic parts of the studied machine 

C. Location of the sensors 

We also study the evolution of the position of the sensors as 
a function of the number of sensors. In Fig. 3, we indicate the 
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location of the sensors for M=20. We can see that all of them 
are close to the airgap and that the number of sensors measuring 
either the radial (Mr=11) or the tangential (Ms=9) components 
of the magnetic flux density are almost the same. We present 
also the location, where the error εmax which is equal to the 
maximum entry of the matrix B-Brecons, which corresponds to 
the next point that would be selected by the (D)EIM. We can 
see that it is still located in the airgap. Globally, whatever the 
number of sensors, we note that the sensors are almost always 
located in the airgap or very close to it either on the rotor or 
stator side. The field distribution varies not so much in the stator 
and in the rotor as a function of the position, whereas this 
variation is much more complex within the airgap or close to it 
leading to always a higher difference between the snapshot B 
and the reconstructed field Brecons in the airgap. This difference 
being the criterion for the choice of the sensor position by the 
(D)EIM/Maxvol, the sensors are always chosen in that region. 

 

 
 

Fig.2. Evolution of the error 6� (see (6)) as a function of the number of sensors 
for the DEIM and DEIM/Maxvol 

 

 
 
Fig.3. Locations of the sensors (o : radial component × : tangential component  
♦ : error maximum) for M=20. 

D. Modification of the selection process 

For further practical applications of the proposed method, the 
sensors should be located in regions where it is easy to 
implement them. The airgap seems to be the best fitting region. 
The sensors can be inserted easily since the region is quite 
accessible. Moreover, this insertion can be done almost at the 
end of the process of fabrication before assembling the stator 

and the rotor together. It leads only to few modifications on the 
existing manufacturing processes to add the sensors.      
It has been shown previously that the sensors are located in the 
airgap or very close to it without imposing any constraint on the 
position (The sensors should be located inside the machine). If 
we impose the sensors to be located inside the airgap, we can 
expect to keep a good quality of reconstruction. In order to 
evaluate it, we have run the (D)EIM/Maxvol technique by 
restricting the sensor location to the airgap. In Fig.4, we present 
the evolution of the error εM (see (1)) as a function of the number 
of sensors when applying the (D)EIM/Maxvol technique with 
and without imposing the sensor location in the airgap. We can 
see an error decreasing according to M in both cases. The 
comparison, with the original (D)EIM/Maxvol technique, 
shows that there is a small accuracy loss for a sensor number M 
lower than 20 but which remains acceptable (the maximum 
error ratio is equal to 1.2 for M=7). In the following, we will 
use only the (D)EIM/Maxvol/Airgap technique.  

 

 
 
Fig.4. Comparison of the evolution of the error εM (see (6)) as a function of the 
number of sensors obtained with the original DEIM/Maxvol technique and the 
DEIM/Maxvol/Airgap technique where the sensor locations are imposed in the 
airgap. 
 

 
 
Fig.5. Locations of the sensors (o : radial component  ♦ : selected points to 
compare the evolution of the reconstructed field as a function of the number M) 
for M=10. 

E. Local field reconstruction 

We have reconstructed the magnetic flux density for different 
numbers M of sensors. In order to illustrate our method, we 
have selected to two points, presented in Fig.5, one located in 
the rotor and one in the stator. In Fig.6 and Fig.7, we have 
compared the evolution of the reconstructed components (radial 
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and tangential) for three sensor numbers (M=5,10 and 20) to the 
components obtained by the FE model, which is our reference. 
We can see that for M=5 the quality of the reconstructed field 
is quite poor. We can notice that a good approximation can be 
obtained with M=10 sensors in the stator (point 2). In Fig.5, we 
present the sensor location in the airgap. However, in the rotor, 
it appears spurious oscillations on the radial components which 
can be met when applying interpolation method like the 
(D)EIM. However, we can see that with M=20 sensors, we have 
a good agreement with the reference. This result can be 
generalized to the whole machine. 

IV.  CONCLUSION 

In this paper we have tested a method to automatically 
determine the sensor locations in order to reconstruct the 
magnetic flux density distribution in a permanent magnet 
machine as a function of the position. It appears surprisingly 
that the method places the sensors mainly in the airgap of the 
machine which will facilitate the insertion of such sensors 
inside the machine. The chosen machine has a fractional 
number of slots per pole pair leading to a complex evolution of 
the magnetic flux density distribution as a function of position 
of the rotor. Thus, to obtain an accurate reconstruction of the 
field on the whole machine, the sensor number is quite high. 
However, we have also seen if the targeting domain of field 
reconstruction is reduced (for example the stator yoke), this 
number can be reduced. It appears through the obtained results 
that it is potentially possible to reconstruct the magnetic flux 
density distribution in the machine by means of a limited 
number of sensors. 
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Fig.6. Radial (top) and tangential (bottom) components of the magnetic flux 
density reconstructed with different numbers of sensors M compared to the 
reference computed with the FE model in the rotor (point 1 in Fig. 5).  
 

 

 
 
Fig.7. Radial (top) and tangential (bottom) components of the magnetic flux 
density reconstructed with different numbers of sensors M compared to the 
reference computed with the FE model in the stator (point 2 in Fig. 5).  
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