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Abstract: This paper proposes an instrumental variable approach for continuous-time system
identification using fractional models with multiple input single output context. This work is an
extension of the simplified refined instrumental variable approach (srivef) developed for single
input-single output fractional model identification (Malti et al. (2008a); Victor et al. (2013)) to
the multiple input-single output case. Monte Carlo simulation analysis is used to demonstrate
the performance of the proposed approach. A study is then provided to motivate differentiation
order estimation, and more specifically, commensurate order estimation.

Keywords: system identification, continuous-time, instrumental variable, multiple inputs, state

variable filter, fractional model.

1. INTRODUCTION

System identification aims at providing mathematical
models for dynamical systems based on observed inputs
and outputs. Dynamical systems are normally formulated
in continuous-time (CT), such as differential equations,
unfortunately, most system identification algorithms have
been developed in discrete-time (DT).

This paper focusses on Multiple Input Single Output
(MISO) system identification, and especially for fractional
models. Kortmann and Unbehauen (1987) have proposed
system identification algorithms for a specific class of
MISO nonlinear Hammerstein models. Westwick et al.
(2006) proposed to use auto- and cross-correlation matri-
ces with singular value decomposition to get robust estima-
tion, unfortunately, the estimation provides high level of
uncertainties in the estimation. Least squares algorithms
can also be used for identifying MISO systems (see Zhang
and Wang (2016)), leading to high variance on the esti-
mated parameters when dealing with high level of noise. In
Garnier et al. (2007), the Refined Instrumental Variables
for Continuous-time system approach was extended to
handle MISO models. Thanks to the instrumental vari-
able mechanism, the estimates become consistent with low
estimation variance. Two variants were developed: rivc
(see Young and Jakeman (1980)) in presence of colored
noise and the Simplified rivec in presence of white noise.
An analysis of the consistency of the Simplified Refined In-
strumental Variable method for Continuous-time systems
has been discussed in Siqi et al. (2019).

Fractional system identification has become more and
more important in different fields. First works, on frac-
tional system identification, started in the late nineties.
A state of the art on fractional system identification is
carried out in Malti et al. (2008a). More recently, param-
eter estimation has been proposed by using least squares
technique (see Chen et al. (2016); Zhao et al. (2017)) with
the inconvenient of providing high estimation variance
when measurements have high level of noise. Rahmani
and Farrokhi (2019) have developed neuro-fractional-order
Hammerstein model with a Lyapunov-based identification
method by using state space representation, with a specific
method. In order to eliminate bias and to reduce estima-
tion variance, Cois et al. (2001) have proposed to add state
variable filters to cut noise in high frequencies and also to
use instrumental variable technique (ivsvf) for fractional
model identification to remove bias in the estimation. The
Simplified Refined Instrumental Variable (sriv) approach
was extended to fractional models in Malti et al. (2008b);
Victor et al. (2013) where estimates become consistent.

In this paper, a first contribution enables adjusting the
cut-off frequency of state variable filters in order to reduce
the estimation variance when using ivsvf method. Then,
an extension of the srivcf approach is developed to handle
MISO fractional model identification. Finally, a study is
provided to motivate differentiation order estimation.

The paper is organized as follows. After introducing frac-
tional calculus in section 1, the problem formulation is
presented in section 2. The main contributions are pre-
sented in section 3. Section 4 validates the developments
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on a simulation example. Finally a conclusion is drawn in
section 5.

Fractional calculus

A single-input-single-output (SISO) fractional mathema-
tical model can be described by a differential equation
containing operators of fractional order:

y(t) + a1p®y(t) + ... + ayp*Ny(t) =
bop ou(t) + bipPru(t) 4+ ... + bap®u(t) (1)
where u(t), y(t) respectively are the input and the noise-
free output, (a;i(i = 1,...,N),b;(j = 0,..., M)) € R? and
the differentiation orders are positive real numbers such
as:
I<ap<ag<..<ayn
0< By <f1<...<Bum

p refers to the differential operator (p = 4)).
The differentiation to an arbitrary order v of a function
f(t) in the sense of Griinwald-Letnikov is defined by:
1 & h
v h
0= 5> 0 (3) e @
h=0

with H = [ % (|.] is the floor operator), T is the sampling

time and (Z is the Newton’s binomial generalized to

fractional orders:
v (v+1)

_vlv—=1)..(v—-k+1)

k) T+ 1I(v—Fk+1) !

The Laplace transform of a v order derivative, of a causal
function f (null V¢ < 0), is given by :

L{p"x(t)} = s"X(s). (3)
This leads to the following non-integer transfer function:
M
> bysh
B(s) §=0
= = ) 4
Gls) = 5 (4)

N
14> a5
i=1
Definition 1.1. (Commensurate system). For a commen-
surate system, transfer function (4) can be rewritten in
the following form:
bols) ™+ bu(s") % by ()
0 v 1 R v
G(s) = — s  (5)
1+a1(s¥)” +...+an(s¥)™

where all powers of s¥ are integers.

In this case, equation (4) takes the following form:
mo_
. bjs?
3=0

G(s) = ,veRT, (6)

n

1 + Z diSiV
i=1

with j = 1,.,m,m=2% e N, i=1,..,n, n= 2 €N,
and

E)j =b; if Jje{0,1,..,M} suchthat jv=p;
bj =0 otherwise
a;=a; if Fe{l,..,N} suchthat iv=q;

a; =0 otherwise.

For commensurate order systems, the most well-known
stability criterion was introduced by Matignon (1998) who

—51 Gi(s)

u, (1)
—>

G,(s)

u, (1)
—_— Gn (.S)

]

Fig. 1. MISO model

demonstrated the stability of a commensurate system with
an order between 0 and 1. This theorem has been extended
by Moze and Sabatier (2005) for a commensurate order
between 1 and 2.

Theorem 1.1. Stability theorem:
Let G be a commensurate transfer function (6) and v its

%:8 is BIBO (bounded

input bounded output) stable if and only if:
O<vr<2 (1)

commensurate order. G(s) =

and

Vs € C,P,(sx) =0 |arg(sk)| > vI. (8)

such
such as 5

2. PROBLEM FORMULATION

Consider a MISO fractional system (see Fig. 1) described
by:
Yu,, (1) = Gr(p)ux(t)

y(t) = 3 Yu (t) 9)

k=1
y*(tn) = y(tn) + e(tn)
where n,, is the number of inputs and u(t) = [u1(t)...un, (t)].
The input-output dataset (u(t),y(t)) are collected at regu-
lar samples. The input signals uq (t), u2(¢), ..., up, (t) must
be uncorrelated. The output measurement y(¢) is tainted
by a white noise e(ty) and G (p) is the fractional transfer
function that relates the input signal u(t) to its noise-free
output y,, (t), defined as follows:
My,

b .,kpﬁj,k
_ By(p,0k) =0’

Gr(p) = =
Ak)(pa Gk) Ny
L+ 2 a;kp>i*

(10)

The objective is to estimate the parameters of the
model described by equation (9) using H samples of
inputs/output data {ui(tn), ..., un, (tn), y*(tn)}_,. The
fractional commensurate order is supposed known a priori
and only the linear coefficients are estimated.

The parameter vector is defined as
k=1,...,ny

(11)
It is well known that the methods based on least squares
give biased parameters in presence of noise affecting the
output measurements. To solve this problem, the use of
methods based on instrumental variable is proposed in this
work.

O = [b0,ks 01,5 ooy DAy ks Q1 s ---7aNk,k]Ta
0 =10, ---797:,“,] .



3. REFINED INSTRUMENTAL VARIABLE FOR
CONTINUOUS-TIME FRACTIONAL MODELS

3.1 srivef approach for SISO models

The srivef approach is developed in Victor et al. (2013)
for SISO system identification by fractional models. It is
based on the use of an auxiliary model.

The error function € is given by the output error:
. B(p,0
(1.0) = v (1) - DDy (12)

A(p,0)
which can be rewritten as,

1 1
e(t,0) =Ap,0) | —=y*(t) | — B(p,0) | ——=u(t) ] .
(1.6) = 40.0) (5050 () = B0.0) (000
(13)
Thus a low-pass filter is applied to both input and output
signals.

Setting y}(t) = my*(t) and uy(t) =
tion (13) takes the following form:

e(t, 0) = A(p, 0)y;(t) — B(p, 0)ug(t). (14)
The original output error is put under an equation error
function, which yields to optimal Instrumental Variable

(IV) estimates, (as defined in Young (2011)). The filter
transfer function is defined as

Fopt(p) =

mu(t), equa-

A 0) (15)

However, in practice 6 is unknown and so is A(p,¥6).
Therefore this problem is solved in an iterative optimiza-
tion procedure, which is intended to adjust the estimates
iteratively until convergence. Hence, the following filter is
initialized and computed iteratively:

. 1 1
iter _ —
F) = s = (19)
’ L+ > app™
i=1
where iter is the iteration number, iter = 1,2, ... until

convergence, and a@; is the estimate at each iteration.

Hence, expression (14) can be rewritten as:

e(t,0) = y3(t) — s ()0, (17)
where @(t) is the regression vector defined as:
Bo By T
_ | P uf(t)"“vp uf(t)
t - (03 * (e% * . ].8
or0 = [ ()

Solving this problem with least squares minimization will
lead to biased estimates as the output is corrupted by
additive noise.

To avoid this problem, an instrumental vector goé}’ (t,0) is
built at each iteration:

Bo Bum T
i jitery _ | PTTUF (t)...p ur (t) )

P07 = [ — pyter (t).. — pON Yt (t) | (19)
The noise-free output estimates yffif(t) are obtained from
an auxiliary model calculated at each iteration:
yiter (t éiter) _ y;iLter (t) B(p, giter)

, =

u, f A ~. = . ’U,(t)
! A(p, 07ty  A(p, Giter)?

(20)

The optimal IV estimates are computed at each iteration:

Niter . —1_. «
grertt = [@P @] @YY} (21)
where:
Y = [4p}”(t1,91te"), ...7aplf”(tH,9””)] (22)
Oy = [ps(tr), - ips(tm)] (23)
Yi = [yp(th), - yj(ta)] - (24)
The srivef algorithm is iterated until convergence:
dim(9) é;teT+1 _ é;‘_ter 2
Z éiterJrl <t (25)
j=1 j

where /£ is a given precision factor.

An estimation of the covariance matrix on the estimation
f can be computed:

. 9 e o T —1
Py=o¢ [@}“((I)}”) ] (26)
where 62 is the empirical estimation of the noise variance

and <I>’}}’ is the instrumental vector computed at the last
iteration.

Convergence properties of the refined IV methods can be
found in Liu et al. (2011).

Suboptimal instrumental variable with state vari-
able filters The least squares-based state-variable filter
(Issvf) or the suboptimal instrumental variable state-
variable filter (ivsvf) developed by Cois et al. (2001) and
Malti et al. (2008a) can be used by replacing the filter (16)
by a state variable filter defined as a Poisson filter:

1
Fsvf(p) = N.’
(1+2)

w. and N, being two parameters to be established by the
user. N, is determined as the integer above the maximum
of ay and By. As the system is strictly proper, this means
an > B, hence N. = |an]| + 1. Concerning the cut-off
frequency w., the main idea of using the state-variable
filter is to let all the signal harmonics that are lower than
w. by attenuating all frequencies above it.

(27)

8.2 srivef approach for MISO models

For a MISO model, an algorithm is proposed to optimize
the parameters. The main idea is to decompose the MISO
model, described in (9), into n,, SISO models. In this case,
the error function takes the following form:

ek(t,ﬁ) ::Z?k7f(t,9) 7yuk,f(ta9k)7 k= 1,...,nu (28)
where, v, is the noise-free part of xy:
2 (t,0) = y* (1) = Y Yu, (£, 0n). (29)

n=1
n#k

At each iteration, a “for” loop is launched to estimate
each parameter vector 0 (k = 1,...,n,), assuming that 6,
(with n # k) are known, by applying the SISO version of
the srivef algorithm. The same steps described in Section
3.1 are used.

In this case, (17) can be expressed in the following form:

€k(t,9) :xk(t,ek) —gOk7f(t)9k, k=1,..,1ny (30)



where,

Borugs, ¢ (£)r-pPM g4 (1) g
£ o) = | Pk (D) p M g ¢
4Pk,f( ’ k) —palxk’f(t, Gk) — paNmk’f(t, Hk)
(31)
noting that:
Ty, (t,0k) = Fi(p)zi(t, Ok) (32)
and )
Fi.(p) = B E— (33)
L+ > appit
i=1

where Fji(p) is the filter that yields the optimal IV
estimates of ;. In practice, the estimates are unknown,
therefore Fy, is updated at each iteration with F{'"(p) as
defined in (16).

The MISO version of srivef approach is summarized by
the following steps.

Stepl:
Initialize the parameters vector 6y to calculate the auxi-
liary model outputs y,,:

B 69
o (1, 00) = D )uk(t), k=1,n,  (34)
Ag(p. 67)
Step2:
iter =1, ..., Njter
A)fork=1,..,n
a) Compute the response x?”( 0iter) to uy(t):
xitET(tv ézter _ y Z yun ezter (35)

n;ﬁk

b) Filter the noisy response of xi“"(t), the auxiliary
model outputs ¥, , and the input signals u:

P (1) = FEer ()i () (36)
T () = Fi* (o) (1) (37)
k(1) = F{" (p)ug 1 (39)

¢) Form the instrumental variable <p“’

sion ¢y, 5 vectors:

and the regres-

il (t) = [pﬁouk () pP ey, f (1)
& PR O)..

o )]T (39)

— AN
p yu,w

Bo B T
_|p ka(f) PPMew p ()

b) t - wer (07 wter 40
Prr (1) { —p° xtf(t) —p kaktf (t) (40)

d) Compute the TV-based solution i+

Gt = (e ef ] el XL (41)
with
W= ek t), i (ta)] (42)
Pr,p = [r,p(t1)s s Pre, (twr)] (43)
XiS = [l (), s il (tm)] (44)

e) Generate the auxiliary model output y,, (t) using
éiter+1_
N :

( 91ter+1)

Yuy, (t7 0]1':67"-{-1) (Ter-i—l)

B) Iterate step (A) until convergence:

dim(0y) [y iter+1 o iter 2
ak 7] k;j
testy = e <! (46)
j=1 kyj
where / is a sufficiently small fixed edge.
Step3:
Compute the parametric covariance matrix Py, after con-
vergence 67" is found:
fork=1,...,n,
P, = aopt%”_ (47)

with 62 is the empirical estimation of the noise variance,
given by:

Z yzter (48)
where yZ¢"(t) is calculated at the last iteration.
2, is the approximate Hessian given by:
e T e
=— — 49
k 89k; 60k ) ( )
where 88—(;6 is the error sensitivity function given by:
N . " " N T
89k 89k 8[)07]@7“'7 8ka,k’ 8&1’/@7.”7 aaNk,k
(50)
Here gg“" and ay"" are the output sensitivity functions,
given by
a9 5
613;’“ =7 up(t), V¥j=0,.. My, (51)
k K
]’ 14 > a;,p%
i=1
M. N ~ .
B0 > bjppte
yuk jZO .
= t), Vi=0,..,Ng. (52
8ai,k Ny ) 2uk( )7 ¢ sy VE ( )
<1 + 2 &i,kﬁ‘”)
i=1

Initializing the srivef MISO algorithm  The srivcf
algorithm is an iterative algorithm that can be initialized
by a suboptimal method: the (Issvf) or the (ivsvf) by
using state-variable filters such as described in section 3.2.

The svf as defined in relation (27) takes the form of
a Poisson filter. Such as implemented in the CRONE
toolbox, the cut-off frequency w,. can be set either by the
user or automatically as ws/10, where w; is the Shannon’s
frequency.

A procedure is now proposed to enhance the setting of
the filter cut-off frequency. The svf is set to each different
Ws Wg Ws Ws

frequency of Q = [, %=, 5, ¥£], around Shannon’s fre-

quency ws, then a quadratic error criterion J; is computed

Ji=|lei(®)|ly, i=1,...,length(S2), (53)
with €(t) = y*(t) — Yest(t). A table containing Q and the
associated criterion value J; is defined and the minimum
value is chosen as it provides the optimal cut-off frequency.

4. SIMULATION EXAMPLE

A simulation example is considered in this section.



40 50 60 70
1 JLE R LI LIS LI, S, —r 4
(I LN IR IR L
1o, B i oL crAr R
0 10 20 3 4 5 60 70

0 10 20 30 40 50 60 70
Time (seconds)

Fig. 2. The input/output data used for system identifica-
tion of system (54)

Data are generated using the following MISO system:

) { Yu(t) = 3130.715““1(75) + ﬁuﬂt) + po%ﬂuzs(t)’
"L y(th) = yu(tn) + eltn).
(54)

Three uncorrelated pseudo random binary sequences
(prbs), with amplitudes fixed between —1 and 1, are ap-
plied to system (54) as input signals u;, i = 1,2,3. The
length of each prbs is set to 3 X Tinaz, Where Toar =
max(7y, T2, 73) is the maximum time constant of each sub-
system (54). The noise-free output y,(¢), being the sum of
the three output responses, is corrupted by a zero mean
Gaussian white noise, with a noise to signal ratio NSR
set to -20dB, to give the output measurement y*(t) (see
Figure 1 with n, = 3). In this simulation, the sampling
period is set to T' = 0.05s (see Fig.2).

4.1 Coefficient estimation with known differentiation orders

Assume that all the differentiation orders are known, set
to v1 = vy = v3 = 0.5 such as the true system (54), and
estimate all the coefficients. A Monte Carlo analysis, for
Negp = 75 experiments, is carried out to illustrate the
efficiency of the MISO srivcf method.

Table 1 illustrates the numerical results of the Monte
Carlo simulation and the performances of srivcf and ivsvf
methods. Thanks to the IV mechanism, both methods,
ivsvf and srivcf, provide unbiased estimates with lesser
bias with the srivef method. Comparing the estimate
variances, the srivef method provides better results as
the estimates have lower variance (up to 2.6 times less).
Therefore, the srivef provides more consistent estimates.

4.2 Coefficient estimations with unknown differentiation
orders

Unique commensurate order influence

Varying the commensurate order, between v = 0.25 and
v = 1, and applying the srivcf method on the MISO
system (54), the cost function is computed as:

Table 1. Monte Carlo simulation with 75 runs
(0 being the mean, &(0) being the standard
deviation of the parameter estimates).

True ivsvf srivef
o | e o | &
bo,1 1 1.0159 | 0.0233 | 1.0078 | 0.0089
ai,1 3 3.1159 0.3045 3.0451 0.1397
bo2 | 2 1.9762 | 0.0071 | 2.0100 | 0.0043
a1z | 2 1.9801 | 0.0134 | 2.0087 | 0.0081
bo3 | 5 5.0184 | 0.0012 | 4.9969 | 0.0009
ai,3 1 1.0136 0.0001 0.9995 0.0001

-20 i i i i i i i
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Commensurate order

Fig. 3. Cost function versus commensurate order

H
> (Yest(hts) — y*(hts))2
Jap = 10log,, et % (55)
E yest(hts>2
h=1

where yes: is the estimated output.

To study the influence of the commensurate order, the cost
function Jyp is plotted versus the commensurate order. As
shown in Fig.3, the minimum of the cost function is found
at v = 0.5 which corresponds to the true commensurate
order. In fact, this minimal value corresponds to the
applied NSR of -20dB, there is no modeling error for
v =0.5.

Moreover, as illustrated in Fig.3, for v = 0.8 the cost
function is around -14dB, consequently the modeling error
can be evaluated to 6dB.

Different commensurate order influence

Consider now the following MISO system where each
model has a different commensurate order:

S {yu<t) = 025+1 ( )+ 2p0 o+1u2(t>+ po%urll@(t)a
y(tn) = yu<th> +e(tn
(56)

The input/output data plotted in Figure 2, are again used
for the system identification. As a reminder, each model
has a different differentiation order in (56).



=191 b

_ogli i i i i i i i i i
0,350. 05 06 07 08 09 1 11 12 13 14

Commensurate ordre

Fig. 4. Cost function versus a unique commensurate order

The influence of estimating a unique commensurate order
is evaluated.

Varying the commensurate order, between v = 0.4 and
v = 1.35, and applying the srivef method on MISO
system (56), the cost function, defined by equation (55),
is computed in order to study the influence of a unique
commensurate order. The cost function Jyp is plotted
versus the commensurate order on Fig.4. The minimum
of the cost function is found at v = 0.75 where the cost
function is -19dB. Consequently the modeling error is of
1dB. For v = 0.6 the cost function is around -16dB, and
the modeling error is around 4dB.

5. CONCLUSION

In this paper, the simplified refined instrumental variable
for continuous-time fractional systems (srivef) has been
extended to multiple input models. A process to better
initialize the srivcf algorithm is proposed by varying the
cut-off frequency of the state variable filters. In order to
validate the MISO srivef method, a numerical example
with Monte Carlo simulation is provided. Finally a study of
the influence of the commensurate orders on the parameter
estimation have been realized. For future works, estimating
the commensurate order could be investigated.
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