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ABSTRACT

As the volume of marine transportation increases, it becomes increasingly important to 
monitor ships for efficient coastal mon-itoring and management. To this end, high-resolution 
satellite images can be utilized to surveil oceanic environments synoptically. In this study, 
high-resolution optical satellite image was used to detect ships and estimate the size of each 
ship in the Korean coastal region. All the pixels in an image were first classified into ship, ship 
shadow, wake, sea, and land by applying a maximum likelihood classifier. The positions 
corresponding to the boundary of the ship were obtained from the magnitude of the 2-
dimensional gradient on the classified ship pixels, and then the length and width of the ship 
were estimated by applying an ellipse fitting method to the ship periphery. This method 
resulted, in slight overestimations of the sizes of the ships. In order to improve the accuracy 
of the estimated ship sizes, a correction formula was developed by inves-tigating the errors of 
the estimated values and their potential relationships to the variables representing the spatial 
shape of the vessels, such as eccentricity, kurtosis. Applying the suggested for-mulation for 
ship size estimation improved accuracy by 54.41%compared to the estimated sizes obtained 
through ellipse fitting. We anticipate that our method of estimating the lengths of the vessels 
will contribute to identifying missing ships using high-resolution satellite images.

1. Introduction

Marine trade and traffic volume in coastal regions have been consistently increasing over

time. As the scale of marine affairs and various types of coastal disasters have increased,

there has been a proportional increase in efforts to monitor vessels and manage marine

resources (Kanjir, Greidanus, and Oštir 2018). Marine accidents such as collisions, fires,

explosions, and sinking have also been increasing around the Korean peninsula over time

(Kim, Na, and Ha 2011). In particular, human-made disasters such as the Hebei Spirit oil

spill accident in Taean in December 2007 and the oil spill in Yeosu in January 2014 caused
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considerable economic losses due to the leakage of large amounts of crude oil (Kim et al.

2010, 2015; Lee et al. 2016).

In the event of a ship accident, it is important to locate the missing ship promptly to

minimize potential damages. The search for missing ships can be carried out by other

ships, but this requires considerable time and cost, especially at offshore regions far from

the coastline as well as in the open ocean. As the areas of marine activity have expanded

through time, real-time monitoring using ships has becomes more difficult. Recently,

illegal fishing has emerged as a serious problem internationally. It is very difficult to

identify illegal fishing boats that enter a foreign country’s sea territory without official

sanction. The locations of ships can be obtained using the Automatic Identification

System (AIS) installed on board, thus improving maritime safety, efficiency of navigation,

and the protection of marine environments (IALA 2003). AIS data is widely used to detect

missing ships or those sunk due to collision with rocks or other ships, via information

sources for maritime traffic monitoring (position, identification, course, speed, etc.)

(Eriksen et al. 2006; Zhao et al. 2014; Zhang et al. 2015).

However, most ships intentionally turn off their AIS to hide their locations. According to

statistical surveys, the number of officially sanctioned fishing boats amounted to 1,700 in

2012 (Shin 2013). In contrast, the number of illegal foreign ships amounted to the

extremely high number of 10,000 off the coast of Korea. Such illegal and reckless fishing

have resulted in overfishing in the seas around the Korean Peninsula and significantly

damaged the local fishery economy by degrading the surrounding marine ecosystem.

On the other hand, satellite remote sensing enables near real-time monitoring and can

effectively provide additional information over a wide area. Ship detection can be accom-

plished via optical, Synthetic Aperture Radar (SAR), and hyperspectral sensor satellites. Optical

remote sensing is regarded as one of the most useful ship detection techniques in various

field of works such as marine traffic surveillance, marine rescue, and fishery management,

although the ships are difficult to be observed from optical satellite images under cloudy

weather condition (Scales and Swanson 1984; Jalkanen et al. 2009; Shi et al. 2014). Application

studies have extensively used high-resolution optical images from SPOT-5, WorldView,

Sentinel-2, and Gaofen with revisit periods of 3 − 5 days to detect ships (Corbane et al.

2010; Qi et al. 2015; Kanjir 2019). Kanjir, Greidanus, and Oštir (2018) reviewed 119 papers on

optical ship detection and classified the methods of detection into eight categories: the

threshold classification method is based on a histogram algorithm (Corbane, Marre, and

Petit 2008); other detection methods are based on image salience (Bi et al. 2012), shape

and texture information of the ship (Zhu et al. 2010; Liu et al. 2014), statistical analysis

including Principal Component Analysis (PCA) and Bayesian decision theory (Wu et al. 2009;

Proia and Pagé 2010), and the transformation domain (Xu et al. 2014).

Additionally, there are anomaly detection methods based on Intensity Discrimination

Degree (IDD) or Reed-Xiaoli algorithms (Shi et al. 2014; Yang et al. 2014), and computer

vision methods such as Haar-like features (Mattyus 2013). Finally, there are ship detection

method using neural networks or machine learning based on the crust patterns of the

human brain (Tang et al. 2015; Yao et al. 2016). The actual ships are ultimately distin-

guished by utilizing the geometrical features such as the length and width, the ratio

between the two, and their compactness (Liu et al. 2014; Yang et al. 2014; Heiselberg

2016). The Maximum-Likelihood Classifier (MLC) method was also used to detect ships

from satellite images (Park et al. 2018).
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Most studies on ship detection have focused on how many ships are to be detected

rather than the size of a ship. In this study, our analyses have six objectives: 1) to classify all

objects in optical images into five classes, namely, ship, shadow, wake, sea, and land; 2) to

validate the accuracy of the ship location by matching the AIS data; 3) to extract the

geographical location information of ship boundary pixels by a using 2-dimensional

gradient; 4) to estimate the ship length and width by applying ellipse least squares

fitting; 5) to estimate the accuracy of estimated ship sizes and errors; and 6) finally to

develop an algorithm to estimate the ship size.

2. Data and methods

2.1. Satellite data and study area

The satellite optical image used in the study was observed by the Korea Multi-Purpose

SATellite-2/3 (KOMPSAT-2/3), a multipurpose utility satellite launched by the Korea

Aerospace Research Institute (KARI) on 28 July 2006 and 17 May 2012, respectively. The

KOMPSAT-2 includes one Panchromatic (PAN) image with a spatial resolution of 1 m and

four Multi Spectral (MS) images with a spatial resolution of 4 m and a revisit period of

5.5 days. On the other hand, the KOMPSAT-3, with an orbit period of 1.4 days, has a much

higher resolution of 0.7 m and 2.8 m in spatial resolution for PAN andMS, respectively. The

satellite has a footprint with a spatial coverage of 15 km × 15 km. Details of satellite

specifications are summarized in Table 1. The detectable length of a ship is expected to be

slightly longer than three times the pixel resolution of a satellite image, due to the spatial

resolution of existing satellite imagery.

The KOMPSAT-2 image, captured at 01:25 UTC on 12 January 2013 and at 02:02 UTC on

15 March 2016, encompassed the study area consisting of the Gwangyang Bay at the

southern coast of the Korean peninsula (Figure 1(b, c)). The KOMPSAT-3 image observed

at 04:38 UTC on 7 September 2014 was also selected (Figure 1(d)). In order to detect ships

located at sea, we removed the land pixels in the image using the Digital Elevation Model

(DEM) operating on data with a resolution of 30 m × 30 m provided by the National

Aeronautics and Space Administration (NASA) Shuttle Radar Topography Mission (SRTM).

Since the coastlines of the Korean peninsula, especially in the study region, are so

complicated and artificially change frequently, the DEM data failed to eliminate the

land pixels completely. An additional procedure was required to successfully mask the

pixels corresponding to land. As a result, pixels with a digital number (DN) greater than 45

in the near infrared channel were considered as land and removed following the proce-

dure (Lee et al. 2016).

Table 1. Information on KOMPSAT-2/3 images including spectral ranges and spatial
resolutions of panchromatic and multispectral images.

Satellite KOMPSAT-2 KOMPSAT-3

Spectral band (nm) Panchromatic 500 − 900
Multi spectral 1 450 − 520
Multi spectral 2 520 − 600
Multi spectral 3 630 − 690
Multi spectral 4 760 − 900

Ground resolution (m) Panchromatic 1 0.7
Multi spectral 1 − 4 4 2.8
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Figure 2 shows the spatial distributions of DN in the blue, green, red, and near infrared

channels, with values ranging from 0 to 255. In all channels, the ship pixels have higher

values than the sea pixels, and in particular, the two ships moored on the left lower part of

the figure show relatively high values greater than 100. In contrast, the sea pixel present

low values at long-wavelength channels such as the red and the near infrared channels

(Figure 2(c, d)), compared to the other shorter wavelength channels in the blue and green

bands (Figure 2(a, b)).

2.2. AIS data

To verify the geolocation of the ships detected using our vessel detection algorithm, we

collected AIS information from the General Information Centre on Maritime Safety and

Security (GICOMS), Ministry of Oceans and Fisheries, Korea. The AIS data includes ship

location information in the study area, including time information within five minutes

before and after the observation time of satellite images.

In addition, we collected information on ship in/out port provided by the Yeosu

Gwangyang Port Corporation (https://www.ygpa.or.kr) and thirty cross sections of various

types of ships were also obtained from searching the website of the ship manufacturer

(https://shipdh.com). Such information of ship size and shape were utilized to estimate

Figure 1. (a) Study area at the southern coast of the Korean peninsula, marked in a red box, (b) an RGB
composite image of KOMPSAT-2 data at 01:25 UTC on 12 January 2013, (c) at 02:02 UTC on
15 March 2016, (d) and KOMPSAT-3 data at 04:38 UTC on 7 September 2014 and (e)−(g) an enlarged
portion of the image of (b)−(d) (Park et al. 2018).
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the length and width of the ships in the study region and validate the analytical results

from the algorithms developed in this study.

2.3. Image classification method

The MLC method assumes that all classes corresponding to each band follow a normal

distribution, and the pre-classified classes can be expressed as a probability density

function using mean and standard deviation (Richards and Jia 1999). This is

a parametric classification method that takes into account the variance-covariance of

each class (ERDAS 1999).

Figure 3(a) shows the distribution of the Gaussian probability density function in the

red and green channels for the four classes of ship, wake, sea, and shadow. The four

channels have DN values between 0 and 255, of which the ship pixels have the largest DN

values with a wide spectral range. Figure 3(b) shows the contours of the 2-dimensional

elliptic probability values for each class on the space domain consisting of red and green

bands. The ship pixels have DN values greater than 100 in both bands and the pixels

corresponding to the wake class range from 20 to 70 in the red band and from 50 to 150 in

green band. In contrast to these wide distributions, the sea pixels are concentrated at the

relatively narrowest spectral ranges of between 20 and 30 in the red band and between

50 and 60 in the green band. The shadow pixels can be discriminated from other classes

because of their smallest DN values ranging from 10 to 30 in the red band and from 0 to

30 in the green band, as shown in the lower left of Figure 3(b). This plot shows spatial

distributions of the classes in red and green wavelengths. To assess the performance of

the classification, the MLC method was applied to all the channels, including blue and

near infrared band data.

Figure 2. Spatial distribution of the digital number (DN) at each band of KOMPSAT-2 data at 01:25 UTC
on 12 January 2013 corresponding to (a) blue, (b) green, (c) red, and (d) near-infrared spectral ranges.
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2.4. Ellipse fitting

We used an ellipse fitting method to estimate the ship size because the shape a ship is

most similar to an ellipse. To apply the ellipse fitting, the pixel coordinates corresponding

to the ship’s boundary are required. The locations of the ship periphery were extracted

from a 2-dimensional gradient difference of the category values corresponding to the ship

pixels and the other surrounding background pixels. The red pixels in Figure 4(a) show the

ship pixels detected by MLC method, while the black pixels in Figure 4(b) correspond to

the ship boundary obtained from 2-dimensional gradient difference the ship and the

Figure 3. (a) Gaussian probability density function of the four classes (ship, wake, sea, and shadow)
and (b) their 2-D distributions, where the elliptic contours represent the probability of each class.

Figure 4. (a) An example of ship pixels detected using the maximum-likelihood classifier method,
(b) the spatial distribution of the pixels corresponding to the ship boundary from 2D-gradient
difference, (c) an ellipse fitted to the ship edges of (b) where A and B are the major and minor-axis
lengths and a tilting angle of θ, and (d) the length (LS) and width (WS) of the ship determined from the
rotated ellipse of which the major axis aligns to the horizontal line.
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background. If the gradient of an image (S) including a ship is non-zero, the correspond-

ing pixels are assigned a value of one because they are associated with the ship’s

boundaries (BSÞ. If the gradient is zero, the corresponding pixels are assigned a value of

zero with i and j representing the direction of the unit vector. In this study, using gradient

difference, we extracted ship boundary pixels from the background of an image.

(Equation 1, 2).

BS ¼
1 �Sj ji;j�0
� �

0 �Sj ji;j ¼ 0
� �

8

<

:

(1)

�Si;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@S

@x

� �2

i;j

þ @S

@y

� �2

i;j

s

(2)

Overall, all detected ships are not always parallel but are tilted to the horizontal axis. In order

to estimate the length and the width of the ship as shown in Figure 4(d), all the elements

describing the characteristics of an ellipse, such as major- and minor-axis length, the tilting

angle, etc., were derived by performing least-squared fitting of the ellipse equation to the

pixel locations of the ship edge. To avoid interference from objects on the ship, we

combined two adjacent segments into one if the shortest distance between them was

three times as small as the spatial resolution of satellite image. Next, the ellipse was rotated

by the tilting angle θ so that its major axis is parallel to the x-axis (Figure 4(d)). The variables

x and y of the general mathematical formula of an ellipse shown in equation (3) are replaced

by x
0 ¼ xcosθþ ysinθð Þ and y0 ¼ �xsinθþ ycosθð Þ. Then, the ellipse equation is written in

the form of equations (4) and (5). The non-tilting ellipse equation is expressed as Equation

(6). The values of A and B in equation (7) represent the lengths of semi-major and semi-

minor axes, and e is the eccentricity of the ellipse (Park, Woo, and Ryu 2012).

ax2 þ bxy þ cy2 þ dx þ ey þ f ¼ 0 (3)

x2 acos2θ� bcosθsinθþ csin2θ
� �

þ xy 2acosθsinθþ cos2θ� sin2θ
� �

b� 2ccosθsinθ
� �

þ y2 asin2θþ bcosθsinθþ ccos2θ
� �

þ x dcosθ� esinθð Þ
þ y dsinθecosθð Þ þ f ¼ 0

(4)

a1x
2 þ b1xy þ c1y

2 þ d1x þ e1y þ f1 ¼ 0 (5)

a1 x þ d1

2a1

� �2

þ c1 y þ e1

2c1
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¼ �f1 þ
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þ e1

2

4c1
(6)
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u

t ; e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � B2
p

A
(7)

The parameters of an ellipse constituting the major- and minor-axis lengths, the tilting

angle, and the eccentricity of the ship were derived using the ellipse equation with the
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ship boundary pixels. The ellipse in Figure 4(c) indicated by the red circle is the result of

ellipse fitting of the ship using the least-squared method, where θ is the rotation angle of

the ellipse. The length (LS) and width (WS) of the ship correspond to the major and minor

axes of the ellipse (Figure 4(d)).

3. Results

3.1. Classification of satellite optical image

Figure 5(a) shows an RGB composite image of a representative ship in Figure 2, where the

centrally-positioned ship appears brighter than the surrounding dark pixels. The bright-

ness also varies depending on the position of the ship, and relatively dark pixels are

distributed in the northwest direction of the ship due to the location of the sun to the

southeast, which in the optical images correspond to the shadow of the ship. The height

of the shadow tends to increase as it goes to higher latitudes and the height of the ship is

high. Figure 5(b) shows the results of the classification into four classes (ship, sea, shadow,

and wake) using the MLC method. The red pixels represent the ship class and are located

at the central portion with elongated yellow shadow pixels in the northwestern side,

which provide a clear contrast to the surrounding sea pixels. There are many other pixels

scattered around the sea, and these correspond to the wake pixels (Figure 5(b)).

Figure 6 shows the results of the classification of the KOMPSAT-2 data of the entire

study area, including the land, which marked in green. On the left side of image, there are

two relatively large anchored ships (S3 and S4), near which are three vessels (S5, S6, S7) with

considerable wakes located at the southern left corner of the image. In particular, the

vessel S5 is associated with a long wake, reflecting fast movement anticlockwise from the

bay to the offshore region. The longer tails of the wakes of vessels S6 and S7 at opposite

sides of the ships imply that the ships were navigating in different direction, i.e., to the

north and south directions. At the right side of the image, there is a ship sailing westward

Figure 5. An example of classification: (a) an RGB composite image including a ship and (b) classified
results of (a) into four classes of shadow, wake, ship, and sea as the result of applying the maximum
likelihood classifier method.
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(S10) and other small ships on the lower right corner (S8, S9). On the upper left, there is

a ship sailing in the northwest direction (S2) and two other ships with clear shadows

(S1, S11) are seen in the northern direction. A total of eleven ships, either moving or

anchored, were properly detected. Aside from the classification results, more information

was obtained from the spatial distribution of the wakes and shadows, enabling us to infer,

the navigational direction of each ship, at that point in time, based on the spatial

distribution of the wake pixels.

3.2. Validation of the ship detection

In order to verify the accuracy of each ship location, we compared the geolocation of the ship

from the registered AIS data, which were received within 5 minutes before and after satellite

image capture. Only six (S1, S2, S3, S4, S7, and S11) out of the eleven ships in Figure 1(e) were

identified from the AIS data, but this because only six ships transmitted their positions

through the Vessel Monitoring System (VMS) data. The identified vessels are located at the

centres of the black circles next to the ships in Figure 6. As shown in Figure 1(f), only five out of

the six ships detected transmitted their position through the AIS. In Figure 1(g), four out of the

five ships matched AIS data.

Table 2 summarizes the information on space-time locations of the fifteen vessels,

records of the locations from AIS data, and observation times and their differences. In the

case of S2, for example, there is a time difference of 13 seconds between the image and

the AIS data, with a maximum spatial distance difference of approximately 117 m. Such

a large difference may be due to the movement of ship S3 at a relatively high speed of 9.4

knots, which is confirmed by the detected wake at the rear of the ship. Likewise, the

distance difference is large for another moving ship S7, with 98.5 m difference. In contrast,

the stationary ships S1 and S11 have relatively low distance difference values of about

40 m. Among ships V1−11, the maximum space difference is 114.4 m corresponding to V8,

Figure 6. Results of classification of pixels into five classes (shadow, wake, ship, sea, and land) using
maximum likelihood classifier method, where the black circles indicate the ship locations (S1, S2, S3, S4,
S7, and S11) with the AIS data record.
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and the maximum time difference is 2 minutes and 34 seconds corresponding to V1. The

general distance error between the AIS detected position and that recorded by the Global

Position System (GPS) was approximately 100 m (Kim, Park, and Kim 2014).

The geolocations of the fifteen ships registered in the AIS are quite a similar to the

locations of the ships in the satellite image. However, a total of seven ships detected

through satellite images were not found using AIS data. According to the country’s Marine

Law, all ferries operating in sea, international shipping vessels weighing more than 300

ton, domestic shipping vessels weighing more than 500 ton, and fishing boats with cargo

more than 10 ton must instal the AIS and transmit ship information to a ground station

(Ship Safety Act 2009). Smaller vessels less than 10 ton are not obliged to transmit AIS. In

light of this, the detected vessel positions can be considered to be in good agreement

with the actual vessel positions.

3.3. Characteristics of the classification results

In order to analyse the detailed characteristics of the classified ship and others in its vicinity, all

detected ships in Figure 6 were enlarged and compared with the RGB composite images

(Figure 7). All objects classified as ships, shadows, wakes, seas, and land classes, are clearly

illustrated in the second and fourth columns of Figure 7. The yellow pixels that appear mostly

on the upper left of a ship coincide with the shadows of the ships. It follows that the position

of the sun determines the direction of the shadows, specifically, the local solar angle at the

time of image capture determines the direction of the shadows. On 12 January 2013 at 1:25

UTC, the satellite was located with an azimuth of 145.98° and an altitude of 25.49° at the

central position of the satellite image, that is, the sun was located in the southeast direction at

the time of imaging. The direction of the shadow of the ship in the satellite image is opposite

to the position of the sun, i.e., in the northwest direction (S1, S2, S3, S4, S8, S11). The difference in

shadow height between S1 and S11 reflects the height of the ship’s deck and the wheelhouse.

In general, the height of the shadow increases with the rear of the ship because the height of

the wheelhouse at the stern is higher than that of the deck at the front.

In the case of a moving ship, it is possible to infer the ship’s trajectory based on the wake

marked by cyan (S2, S5, S6, S7, S10). The wake manifests the flow of an object passing over

a fluid and generally appears at the back of the ship when the ship moves over the sea. The

shape of the wake depends on various factors such as the ship’s appearance, propeller, speed,

etc. Wakes are generally classified as either turbulent wake or Kelvin wake. A turbulent wake

appears linear and in a direction parallel to the ship’s direction of movement, while the Kelvin

wake appears as two branches in the shape of a V behind the ship, where themaximum angle

between the two is 39 (Thomson 1887; Hennings et al. 1999; Dias 2014; Liu and Deng 2018).

The two types of wakes also appear in this satellite image. A turbulent wake with a linear

shape is shown by ships S2, S5, S6, S7, and S10. However, ships S2 and S10 also show a v-shaped

Kelvin wake. There are some wakes that do not show a specific pattern, and these occur

anchor ships or small sized ships (S1, S3, S4, S8, S9, S11).

3.4. Ellipse fitting of detected ships and estimation of ship size

The least-squared fitted ellipse was applied to estimate eleven ship sizes detected using

the MLC technique. In order to utilize the ellipse equation, arbitrary points constituting

11



the ellipse are used as boundary pixels of the ship. The pixels representing the ship are

assigned a value of one, and the values of the pixels surrounding the ship are substituted

with zero; then the 2-dimensional gradients are calculated to separate the boundary

Figure 7. RGB composite images of the ships from S1 to S11 on the first and third columns and the detected
ships after applying classification methods to reveal five classes: shadow, wake, ship, sea, and land.
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pixels. We then applied the ellipse equations to the selected boundary pixels and

extracted the ellipses which are most similar to the actual shape of the ship periphery.

Figure 8 shows the spatial distribution of all the detected ships along with the least-

square fitted ellipses. The red and grey colours represent ship pixels and land pixels,

respectively, while the ellipses with black contours represent the edge of the ships from

the ellipse equation. Most ship pixels are quite consistent with the ellipses except for

some overestimation by the ellipses, such as for ships S3 and S11. Ellipses may over-

estimate the actual detected ship pixels due to the shape of the boundary pixels at both

edges. For example, in the case of a ship with both ends rounded, such as S1 or S4, the

simulated ellipses are quite similar in size and the shape to those of the actual ships. In

contrast, the size of the ellipse of ships S3 or S11 overestimated the actual sizes partly

because of straight lines rather than rounded edges at the ends of the ships. We used the

same algorithm for the other two satellite images to detect the ship and estimate the size

of each ship.

To verify the performance of the aforementioned method, we applied it to two satellite

images, as shown in Figure 9. Figure 9(a) shows the ship with ellipses in the KOMPSAT-2

image obtained on 15 March 2016. In total, six ships (V1 to V6), coloured in green, were

detected. Figure 9(b) shows the ship with ellipses in the KOMPSAT-3 image obtained on

7 September 2014. In total, five ships (V7 to V11), coloured in blue, were detected. The

Figure 8. Spatial distribution of the classified pixels corresponding to the ships from S1 to S11, as
marked in red, and least-squared fitted ellipses along the edges of the ships.
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fitted ellipses matched considerably well with the boundaries of the ships. The length of

the vessel estimated from the ellipse in Figure 9(a) ranges from 82.4 m to 146.0 m, and the

vessel width varies from 14.5 m to 29.1 m. Based on the length of the vessel, the vessels

can be classified as V1, V4, and V5, which are relatively large, and V2, V3, and V6, which are

smaller. Figure 9(b) shows a wider range of ship lengths from 30.2 m to 352.6 m. Among

the vessels between V1 and V11, V8 has a length of about 352.6 m and is the largest vessel,

which shows the orange deck in the RGB composite image.

Table 3 summarizes the length and width of the ship estimated from the simulated

ellipses. Since the detected ships are located in different directions, all the points of the

ellipse were rotated by their tilting angles in the horizontal direction parallel to the x-axis

and then the lengths of the major and minor axes of the ellipse were calculated. The

largest estimated size is for ship S4, regarded as a large tanker, estimated at 334.9 m in

length and 83.4 m in width. On the other hands, the smallest dimensions are for ship S8,

Figure 9. Spatial distribution of the classified pixels corresponding to the ships from V1 to V11, as
marked in green (KOMPSAT-2) and blue (KOMPSAT-3), and least-squared fitted ellipses along the
boundary of the ships.
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estimated at 23.7 m in length and 16.3 m in widths, a size corresponding to a small fishing

boat. In order to verify the accuracy of ship size estimated by ellipse, we obtained the

names and sizes of the ships S3 and S4 from Yeosu Gwangyang Port Corporation. The ship

S3 was identified as BEI HAI ZHAN WANG, a Chinese crude oil carrier anchored at the

Gwangyang port sappho 1 pier. The length and width of the ship are registered as 244 m

and 42 m, respectively, which are 0.85 times and 0.85 times less than the estimated length

and width, respectively, from the simulated ellipse. Likewise, the ship S4 was identified as

a NEW RESOURCE crude oil carrier anchored at the Yeosu crude oil pier. The length and

width of this ship are registered as 331 m and 60 m, which are 0.98 and 0.72 times less

than the respective estimates from the simulated ellipses (Table 4).

3.5. Factors for the overestimation of ship size

3.5.1. Eccentricity

The results reveal that the ellipse fitting approach occasionally overestimates sizes as shown

the cases of ships S3 and S11 in Figure 8. To determine the source of errors in estimating ship

sizes by ellipse fitting and to investigate potential relationship between estimated and other

Table 3. Estimated length and width of each ship
from the ellipse fitting procedure.

Ship symbol Length (m) Width (m)

S1 110.1 25.4
S2 101.7 26.4
S3 285.9 49.2
S4 334.9 83.3
S5 42.0 14.6
S6 51.3 30.2
S7 108.3 28.2
S8 23.7 16.3
S9 27.8 15.4
S10 36.2 16.4
S11 142.9 30.4
V1 158.0 27.3
V2 88.1 25.5
V3 83.3 19.7
V4 146.0 25.7
V5 129.8 29.1
V6 82.4 14.5
V7 111.3 41.8
V8 352.6 68.9
V9 30.2 20.2
V10 62.0 30.8
V11 115.7 33.0

Table 4. Information of the ships (S3 and S4) including ship name, port name, registered length and
width (m). The ratios represent estimated lengths and widths divided by the registered ones,
respectively.

Ship
symbol Ship name Port

Registered
length (m)

Registered
width (m)

Ratio
(length)

Ratio
(width)

S3 BEI HAI ZHAN
WANG

Gwangyang port sappho
1 pier

244 42 0.85 0.85

S4 NEW RESOURCE Yeosu crude oil pier 331 60 0.98 0.72

15



parameters representing the shapes of the horizontal cross section of the ships, we collected

thirty cross sections of different types of ships of known sizes. All the schematic maps of the

cross sections were digitized and converted to 2-dimensional images with spatial coordinates.

Since the sizes and shapes of ships vary according to their purpose, we selected vessel

types covering the widest range of the cross-sectional structures as possible. Compared to

a fishing ship, cargo ships such as a container ship or a tanker are relatively larger, and the

front part of the ship is usually sharper than its rear part. The cross-sectional views of the

ships reveal different features in terms of the degree of convexity and asymmetry between

the front and the rear parts of the vessels such as aircraft carrier, yachts, and others.

Figure 10 shows the schematic maps of the cross-sections of the ships and their least-

squared fitted elliptic shapes marked in red contours for the thirty vessels. Apparently, the

ellipses failed to represent the true length of the ships, which may be the source of the

overestimation problem. In contrast, the widths of the ships matched comparatively well

with the actual widths. Because of the discrepancy between actual and simulated ship

lengths, we considered other statistical parameters of the fitted ellipses.

First of all, we considered the eccentricity of the ellipse as one of the primary causes for

the error in ship size estimation by ellipse fitting. The eccentricity of an ellipse is expressed as

Equation (7) and depends on the ratio of the squares of the semi-major axis length and the

semi-minor axis length. The closer the eccentricity is to zero, the more similar the shape of

the ellipse is to the circle; the closer the eccentricity is to 1, the closer is the shape to

a distorted ellipse. Figure 11(a) shows the errors of ship lengths, ratio of the difference

between the estimated and the actual lengths in percentage, and the eccentricity of the

ellipse for the cross sections of the thirty vessels. As clearly shown by the scattered errors

Figure 10. Results of applying an ellipse-fitting method on the periphery of each vessel from K1 to K30.
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and the regression line, the errors of ship lengths have a quadratic relationship to the

change in eccentricity. This implies that the errors tended to amplify as the eccentricity was

lower as well as higher based on the eccentricity of about 0.97 with the minimum error.

3.5.2. Kurtosis

The shape of the bow of most ship is a pointed triangle, and in the case of a Destroyer, a fast

moving warship, the shape is also relatively sharp. Such differences in the cross-sectional

shapes of ships suggest that the kurtosis can be an important variable related to the sharpness

of the shape of a ship. The cross-section analysis of ship kurtosis shows that the ship length

errors tended to decrease as kurtosis of the ship shape increased (Figure 11(b)). When the

kurtosis values are less than 2, the length errors reached high values ranging from 16.02% to

37.75%. However, as the kurtosis value increased to about 2.4, the length errors decreased to

less than 3.23%. This is associated with the compensation effect due to the differences in the

shape of the front and rear ends of the ship. The ellipse fitting tends to underestimated the

length of the bow portion of a ship with a high kurtosis, while it is overestimated in the stern

portion. Thus, the errors in ship length estimates decrease as the kurtosis increases.

3.6. Adjusted formulation to estimate ship size

Investigation of the errors suggests that the estimation of the ship size can be improved

with some parameters of the ship shape in a regression formulation. The correction

formula for estimating ship sizes with new length (LS
0
) and width (WS

0
) was derived by

considering both the eccentricity of the ellipse and the kurtosis of the detected edges of

the ship, as expressed in the following equations:

LS
0 ¼ a1LS þ a2LSE þ a3LSK þ a4 (8)

WS
0 ¼ b1WS þ b2WSK þ b3 (9)

Figure 11. Errors in the estimated lengths of the ships as a function of (a) eccentricity and (b) kurtosis
of the ship shape for the fore half of the ship, where the red lines are linear least-squared fits.
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The equations (8) and (9) are the correction formula for the estimated ship lengths (LS) and

widths (WS), respectively, where E represents the eccentricity and K represents the

kurtosis. The error of in vessel length corresponding to eccentricity is a linear least-

squared fit for vessels larger than 0.97, and the error of in vessel length corresponding

to kurtosis also shows the first-order regression. We constructed the correction formula to

be a linear combination of two variables. The correction formula for ship width is also

derived from the linear least-squared fit of the ship width for corresponding to kurtosis.

The coefficients corresponding to the two correction formulas are summarized as pre-

sented in Table 5.

3.7. Validation of the corrected ship size

Figure 12(a) shows the estimated ship lengths before and after the corrections, which are

compared to the actual lengths of the ship cross-sections. The estimated ship lengths

derived from the ellipse fitting, marked as black dots, tend to be higher than the actual

lengths. This tendency to overestimate was amplified as ship lengths increased, that is,

the longer the actual length of the ship, the greater the error, as seen from the large

deviations from the expected lengths. For relatively short vessels, the errors tend to

decrease, showing discrepancies of less than 5 m. However, when the correction equa-

tions are applied, the adjusted lengths, indicated as red dots in Figure 12(a), show good

agreement with the actual ship lengths. The RMS error decreased from 7.7 m to 0.7 m after

applying the correction procedure (Table 6).

A similar improvement is shown by the estimated ship widths (Figure 12(b)). The

estimated ship widths, marked as black dots, tend to be higher than the actual ship

Table 5. Coefficients used for the estimation of ship size in the correction formula (8) and (9).

Ship size Length Width

Coefficient a1 a2 a3 a4 b1 b2 b3

Value 6.9468 −6.8203 0.3043 −0.8586 0.6593 0.1163 0.1795

Figure 12. Comparison before and after the correction procedure suggested in this study of (a) the
estimated lengths and (b) widths of the ships to the actual dimensions.
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widths, although the deviation are much lower (< 1 m) than those for the ship lengths.

However, the estimated minor-axis of the ellipse still tend to overestimate the ship length.

Thus, the widths were converted to the adjusted widths using the equation (9). As a result,

the RMS error also decreased from 0.5 m to 0.1 m as presented in Table 6, which lists the

results of the statistical analysis of ship size before and after correction.

3.8. Validation using satellite-observed ships

The accuracies of the ship sizes estimated from satellite images, shown in Figures 8 and 9,

was evaluated by applying the correction equation. We extracted the actual ship sizes of

ten ships (S1, S2, S3, S4, S11, V1, V2, V4, V5, V8) from AIS data. The AIS data for some ships did

not include ship size.

The length of the vessels used for verification ranged from 92 m (V1) to 331 m (S4), and

the width ranged from 15m (V1) to 60 m (S4). Figure 13 (a) shows the lengths derived from

analysis of the satellite images before and after correction. The black dots correspond to

the length of the ship estimated by applying the ellipse fitting, that is, the length of the

major axis of the ellipse. The red dots indicate the length of the ship after correction by

reflecting the eccentricity and kurtosis on the length of the elliptical major axis. The RMS

error of the ship length estimated from a simple ellipse was approximately 26.5 m before

correction but decreased to approximately 12.1 m after correction. Also, the average bias

decreased from approximately 17.6 m to −8.0 m. Figure 13 (b) shows the comparison of

the ship width before and after correction. Here too, the black dots indicate that the

Table 6. Comparison of bias and RMS errors for the estimated ship length
and width before and after the correction procedure.

Before After

Ship size Bias RMSE Bias RMSE

Length (m) 7.0 7.7 −1.4 × 10−5 0.7
Width (m) 0.5 0.5 −0.1 × 10−1 0.1

Figure 13. Comparison before and after the correction procedure using satellite images of (a) the
estimated lengths and (b) widths of the ships based on AIS data.
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ellipse was applied, and the red dots show the results after applying the correction

formula. The RMS error of the ship width estimated by simple ellipse fitting was approxi-

mately 11.3 m, but after correction, the error decreased to 6.8 m. The average bias

decreased from 10.2 m to 5.8 m after correction.

The ship size can be estimated from the longest and shortest distances from the

extracted boundary of the ship by rotating the ship pixels by theta. This edge method

was applied to the ships and the results were compared with those of the ellipse method.

The estimated ship lengths of the edge method, indicated by grey dots, had an RMS error

of approximately 12.1 m, which was quite a similar to those for the ellipse method,

indicated by red dots. In contrast, the widths estimated by the edge method (grey dots

in Figure 13(b)) had remarkably high RMS error, approximately 14.2 m, as compared to

that for the ellipse method, 6.8 m. This implies that the ellipse method can be utilized for

high accuracy results in the estimation of ship size.

In spite of the application of the correction scheme, however, the length and width

estimates of the ship still tended to exceed the actual values. One reason for the

discrepancy is the differences between satellite-observed spatial features and the regis-

tered lengths and widths of the ships. According to Park et al. (2018), the registered

lengths measured at a level several metres below the deck of the ship are always shorter

than that of the surface structure of the ship.

4. Summary and conclusion

This study uses the MLC method to detect the ships of various sizes in optical

satellite images and to estimate the size of ships as well. A total of twenty-two

ships were detected in the KOMPSAT-2/3 image of the study area. To estimate the

ship sizes, geolocation information of the pixels at the boundary of the ship was

extracted by following the spatially-dominant gradient differences between ship

pixels and the surrounding background field and then the least-square fitted ellipse

was fitted to the ship boundary pixels. Thereafter, the ship sizes were estimated from

the fitted ellipses which are similar to the overall shape of a ship. However, the

estimated size of the ship from the ellipse fitting tended to be overestimated. Since

ships have varying shapes and sizes, the cross sections of thirty ships of varying

types were collected; errors in ship length and width, estimated from the fitted

ellipses, were analysed. The primary factors causing the errors are the eccentricity

of the ellipse and the kurtosis of the front of the ship. The correction formula

developed in this study enabled us to reduce bias and RMS errors of ship size,

estimated with ellipses, by a maximum of approximately 54.41%.

The automatic monitoring of the vessels will enable the prompt detection of accidents,

which will minimize the impacts of these various types of ship accidents. This study has

provided fundamental knowledge and validated methods to enable ship detection and

estimation of its size. The methods suggested in this study may be used to monitor ships

from satellite images at near-real time. Thus, this study is believed to contribute to both

near-real time automation of ship detection and size monitoring for diverse purposes

including scientific researches as well as not a few practical uses in marine affairs and

management in the future.

20



Acknowledgements

This research was a part of the project titled 'Development of Management Technology for HNS

Accident', funded by the Ministry of Oceans and Fisheries, Korea.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Ministry of Oceans and Fisheries of Korea.

ORCID

P-Y Foucher http://orcid.org/0000-0002-0435-4573

References

Bi, F., B. Zhu, L. Gao, and M. Bian. 2012. “A Visual Search Inspired Computational Model for Ship

Detection in Optical Satellite Images.” IEEE Geoscience and Remote Sensing Letters 9 (4): 749−753.

doi:10.1109/LGRS.2011.2180695.

Corbane, C., F. Marre, andM. Petit. 2008. “Using SPOT-5 HRG Data in Panchromatic Mode for Operational

Detection of Small Ships in Tropical Area.” Sensors 8 (5): 2959−2973. doi:10.3390/s8052959.

Corbane, C., L. Najman, E. Pecoul, L. Demagistri, and M. Petit. 2010. “A Complete Processing Chain for

Ship Detection Using Optical Satellite Imagery.” International Journal of Remote Sensing 31 (22):

5837−5854. doi:10.1080/01431161.2010.512310.

Dias, F. 2014. “Ship Waves and Kelvin.” Journal of Fluid Mechanics 746: 1−4. doi:10.1017/jfm.2014.69.

ERDAS, L. 1999. Erdas Field Guide. Atlanta, GA: Erdas. .

Eriksen, T., G. Høye, B. Narheim, and B. J. Meland. 2006. “Maritime Traffic Monitoring Using a

Space-based AIS Receiver.” Acta Astronautica 58 (10): 537−549. doi:10.1016/j.actaastro.2005.12.016.

Heiselberg, H. 2016. “A Direct and Fast Methodology for Ship Recognition in Sentinel-2 Multispectral

Imagery.” Remote Sensing 8 (12): 1033. doi:10.3390/rs8121033.

Hennings, I., R. Romeiser, W. Alpers, and A. Viola. 1999. “Radar Imaging of Kelvin Arms of Ship Wakes.”

International Journal of Remote Sensing 20 (13): 2519−2543. doi:10.1080/014311699211912.

IALA. 2003. IALA Technical Clarifications on ITU Recommendation ITU-R M.1371-1, Edition 1.4.

Jalkanen, J. P., A. Brink, J. Kalli, H. Pettersson, J. Kukkonen, and T. Stipa. 2009. “AModelling System for

the Exhaust Emissions of Marine Traffic and Its Application in the Baltic Sea Area.” Atmospheric

Chemistry and Physics 9 (23): 9209−9223. doi:10.5194/acp-9-9209-2009.

Kanjir, U. 2019. “Detecting Migrant Vessels in the Mediterranean Sea: Using Sentinel-2 Images to Aid

Humanitarian Actions.” Acta Astronautica 155: 45−50. doi:10.1016/j.actaastro.2018.11.012.

Kanjir, U., H. Greidanus, and K. Oštir. 2018. “Vessel Detection and Classification from Spaceborne

Optical Images: A Literature Survey.” Remote Sensing of Environment 207: 1−26. doi:10.1016/j.

rse.2017.12.033.

Kim, D. Y., G. K. Park, and H. Y. Kim. 2014. “A Study on the Ship Information Fusion with AIS and ARPA

Radar Using by Blackboard System.” Journal of Korean Institute of Intelligent Systems 24 (1): 16−21.

doi:10.5391/JKIIS.2014.24.1.016.

Kim, H. T., S. Na, and W. H. Ha. 2011. “A Case Study of Marine Accident Investigation and Analysis

with Focus on Human Error.” Journal of the Ergonomics Society of Korea 30 (1): 137−150.

doi:10.5143/JESK.2011.30.1.137.

21



Kim, M., U. H. Yim, S. H. Hong, J. H. Jung, H. W. Choi, J. An, and W. J. Shim. 2010. “Hebei Spirit Oil Spill

Monitored on Site by Fluorometric Detection of Residual Oil in Coastal Waters off Taean Korea.”

Marine Pollution Bulletin 60 (3): 383−389. doi:10.1016/j.marpolbul.2009.10.015.

Kim, T. S., K. A. Park, X. Li, M. Lee, S. Hong, S. J. Lyu, and S. Nam. 2015. “Detection of the Hebei Spirit

Oil Spill on SAR Imagery and Its Temporal Evolution in a Coastal Region of the Yellow Sea.”

Advances in Space Research 56 (6): 1079−1093. doi:10.1016/j.asr.2015.05.040.

Lee, M. S., K. A. Park, H. R. Lee, J. J. Park, C. K. Kang, and M. Lee. 2016. “Detection and Dispersion of

Thick and Film-like Oil Spills in a Coastal Bay Using Satellite Optical Images.” IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing 9 (11): 5139−5150. doi:10.1109/

JSTARS.2016.2577597.

Liu, G., Y. Zhang, X. Zheng, X. Sun, K. Fu, and H. Wang. 2014. “A New Method on Inshore Ship

Detection in High-resolution Satellite Images Using Shape and Context Information.” IEEE

Geoscience and Remote Sensing Letters 11 (3): 617−621. doi:10.1109/LGRS.2013.2272492.

Liu, Y., and R. Deng. 2018. “Ship Wakes in Optical Images.” Journal of Atmospheric and Oceanic

Technology 35 (8): 1633−1648. doi:10.1175/JTECH-D-18-0021.1.

Mattyus, G. May 21−24 2013. “Near Real-time Automatic Marine Vessel Detection on Optical Satellite

Images.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information

Sciences, Hannover, Germany. doi:10.5194/isprsarchives-XL-1-W1-233-2013

Park, K., J. J. Park, J. C. Jang, J. H. Lee, S. Oh, and M. Lee. 2018. “Multi-Spectral Ship Detection Using

Optical, Hyperspectral, and Microwave SAR Remote Sensing Data in Coastal Regions.”

Sustainability 10 (11): 4064. doi:10.3390/su10114064.

Park, K. A., H. J. Woo, and J. H. Ryu. 2012. “Spatial Scales of Mesoscale Eddies from GOCI

Chlorophyll-a Concentration Images in the East/Japan Sea.” Ocean Science Journal 47 (3): 347

−358. doi:10.1007/s12601-012-0033-3.

Proia, N., and V. Pagé. 2010. “Characterization of a Bayesian Ship Detection Method in Optical

Satellite Images.” IEEE Geoscience and Remote Sensing Letters 7 (2): 226−230. doi:10.1109/

LGRS.2009.2031826.

Qi, S., J. Ma, J. Lin, Y. Li, and J. Tian. 2015. “Unsupervised Ship Detection Based on Saliency and S-HOG

Descriptor from Optical Satellite Images.” IEEE Geoscience and Remote Sensing Letters 12 (7): 1451

−1455. doi:10.1109/LGRS.2015.2408355.

Richards, J. A., and X. Jia. 1999. Remote Sensing Digital Image Analysis: An Introduction, IIIrd Edition.

Heidelberg, Germany: Springer-Verlag.

Scales, W. C., and R. Swanson. 1984. “Air and Sea Rescue via Satellite Systems: Even Experimental

Systems Have Helped Survivors of Air and Sea Accidents. Two Different Approaches are

Discussed.” IEEE Spectrum 21 (3): 48−52. doi:10.1109/MSPEC.1984.6370206.

Shi, Z., X. Yu, Z. Jiang, and B. Li. 2014. “Ship Detection in High-resolution Optical Imagery Based on

Anomaly Detector and Local Shape Feature.” IEEE Transactions on Geoscience and Remote Sensing

52 (8): 4511−4523. doi:10.1109/TGRS.2013.2282355.

Shin, S. 2013. “A Study on the Countermeasures against Illegal Fishing by Chinese Boats.” Maritime

Law Review 25 (3): 217−248.

Ship Safety Act. 2009. Korea Ministry of Government Legislation.

Tang, J., C. Deng, G. B. Huang, and B. Zhao. 2015. “Compressed-domain Ship Detection on

Spaceborne Optical Image Using Deep Neural Network and Extreme Learning Machine.” IEEE

Transactions on Geoscience and Remote Sensing 53 (3): 1174−1185. doi:10.1109/

TGRS.2014.2335751.

Thomson, W. 1887. “On the Waves Produced by a Single Impulse in Water of Any Depth, or in

a Dispersive Medium.” Proceedings of the Royal Society of London, 42: 80−83. doi:10.1098/

rspl.1887.0017

Wu, G., J. de Leeuw, A. K. Skidmore, Y. Liu, and H. H. Prins. 2009. “Performance of Landsat TM in Ship

Detection in Turbid Waters.” International Journal of Applied Earth Observation and

Geoinformation 11 (1): 54−61. doi:10.1016/j.jag.2008.07.001.

Xu, J., X. Sun, D. Zhang, and K. Fu. 2014. “Automatic Detection of Inshore Ships in High-resolution

Remote Sensing Images Using Robust Invariant Generalized Hough Transform.” IEEE Geoscience

and Remote Sensing Letters 11 (12): 2070−2074. doi:10.1109/LGRS.2014.2319082.

22



Yang, G., B. Li, S. Ji, F. Gao, and Q. Xu. 2014. “Ship Detection from Optical Satellite Images Based on

Sea Surface Analysis.” IEEE Geoscience and Remote Sensing Letters 11 (3): 641−645. doi:10.1109/

LGRS.2013.2273552.

Yao, Y., Z. Jiang, H. Zhang, M. Wang, and G. Meng. March 2 2016. “Ship Detection in Panchromatic

Images: A New Method and Its DSP Implementation.” International Society for Optics and

Photonics, Xiamen, China.

Zhang, W., F. Goerlandt, J. Montewka, and P. Kujala. 2015. “A Method for Detecting Possible near

Miss Ship Collisions from AIS Data.” Ocean Engineering 107: 60−69. doi:10.1016/j.

oceaneng.2015.07.046.

Zhao, Z., K. Ji, X. Xing, H. Zou, and S. Zhou. 2014. “Ship Surveillance by Integration of Space-borne

SAR and AIS–Review of Current Research.” The Journal of Navigation 67 (1): 177−189. doi:10.1017/

S0373463313000659.

Zhu, C., H. Zhou, R. Wang, and J. Guo. 2010. “A Novel Hierarchical Method of Ship Detection from

Spaceborne Optical Image Based on Shape and Texture Features.” IEEE Transactions on

Geoscience and Remote Sensing 48 (9): 3446−3456. doi:10.1109/TGRS.2010.2046330.

23


	Abstract
	1. Introduction
	2. Data and methods
	2.1. Satellite data and study area
	2.2. AIS data
	2.3. Image classification method
	2.4. Ellipse fitting

	3. Results
	3.1. Classification of satellite optical image
	3.2. Validation of the ship detection
	3.3. Characteristics of the classification results
	3.4. Ellipse fitting of detected ships and estimation of ship size
	3.5. Factors for the overestimation of ship size
	3.5.1. Eccentricity
	3.5.2. Kurtosis

	3.6. Adjusted formulation to estimate ship size
	3.7. Validation of the corrected ship size
	3.8. Validation using satellite-observed ships

	4. Summary and conclusion
	Acknowledgements
	Disclosure statement
	Funding
	ORCID
	References

