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Abstract: In recent years, applications for drones have increased, from surveillance, exploration,
rescue to transport applications. UAVs are more and more autonomous, therefore real-time
trajectory planning is necessary and can be achieved with potential fields. A study is proposed
to better scale attractive and repulsive forces which has always been problematic when dealing
with artificial potential fields. The purpose of this article is to develop a new dynamical fractional
potential repulsive field usable in a 3D environment by taking into account the obstacle dynamics
(position and speed) and their dangerousness. Obstacle avoidance robustness is guaranteed, both
from a safety point of view and from a trajectory optimization point of view. The potential
fields are based on the relative position and speed of the drone in relation to the target for the
attractive potential field or to the obstacle for the repulsive one.

Keywords: Mobile Robots, Potential Fields, Path Planning, Optimal Trajectories, Dynamical
Motion Planning

1. INTRODUCTION

Path planning is used to find a suitable path between
two points while avoiding obstacles in the environment.
These obstacles can be dynamical or static. The notion
of danger is therefore necessary to avoid a type of ob-
stacle in the most harmonious way. Artificial potential
field (PF) methods has been extensively studied, see e.g.
Khatib (1985); Krogh and Thorpe (1986); Sfeir et al.
(2011); Receveur et al. (2019). However, most methods are
generally adapted for a static environment or do not take
into account the type of obstacle (see e.g. Li et al. (2015);
Mac et al. (2016)). Ge and Cui (2002) have improved work
on artificial potential fields by taking into account the
obstacle dynamics. Furthermore, Poty et al. (2004) and
Metoui et al. (2009) have interpreted the attractive field
as a control loop ensuring stability degree robustness of
the trajectory towards mass variations of the ego-vehicle
and disturbances by taking into account the position and
speed of the target as defined by Ge and Cui (see Fig. 1).
Moreover, a novel interpretation of robust control is pro-
posed in Receveur et al. (2019) for autonomous vehicles.

The goal of this article is to present a new potential
repulsive field adapted to a dynamical 3D environment
that ensures the robustness of the trajectory. Potential
fields are well adapted for drone applications because
the holonomic model of a drone can be identified by a

point mass. The PF method allows this mass to be taken
into account for both attractive and repulsive fields. The
concept of danger will also be a priori taken into account,
the obstacles will be considered as known and the method
makes it possible to avoid the obstacles with a smoother
trajectory according to the obstacle type, in other words,
its dangerousness (pedestrian, building, bicycle, car etc.).

In Ge & Cui, no distinction is proposed to differentiate
the dangerousness of obstacles. Therefore, Weyl repulsive
potential definition has introduced a fractional degree to
distinguish obstacles by their dangerousness. It is safer
to go nearer a wall than a human. Unfortunately, by
gaining on differentiating obstacle danger, the dynamical
behaviors of obstacles have been lost. Therefore, a new
definition of repulsive field is proposed which takes into ac-
count both dangerousness and dynamics of the obstacles.
Furthermore, it is often difficult to scale the attractive and
repulsive potential forces. A methodology is proposed to
efficiently scale them.

The context and the Ge & Cui attractive force is presented
in section 2. Section 3 presents the repulsive force back-
ground and defines the new dynamical fractional repulsive
force. A set of simulation results is presented in section 4,
and a conclusion is drawn in section 5.
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Fig. 1. Dynamical interpretation of Ge and Cui attractive
and repulsive forces

2. CONTEXT

During a flight, the UAV can encounter many different
obstacles such as pedestrians, birds, trees, which are not
necessarily predictable before the UAV takes off. There-
fore, a local obstacle avoidance system is proposed when
surrounding objects have been detected. Given the de-
tection capacity of the usual sensors (LIDAR, camera),
a distance of one hundred meters is considered.

In order to compare our new repulsive PF to classic
repulsive fields, the same attractive PF is designed, as
presented by Ge and Cui (2002).

2.1 Attractive force background

In Metoui et al. (2009), the Ge and Cui (2002) method has
been reinterpreted as a control loop, see Figure 1.

The force presented makes it possible to obtain a real-
time trajectory that takes into account the position and
speed of the ego-vehicle as well as the target. This virtual
attractive force is defined by:

Fatt = αp (ptar − pego) + αv (vtar − vego) (1)

where ptar and pego respectively are the real-time positions
of the target and the ego-vehicle (EGV). vtar and vego
respectively are the real-time speeds of the target and the
ego-vehicle. αp and αv are positive constants that define a
lead-phase controller. With the help of this representation
as a control loop, it is possible to imagine integrating other
types of controllers (see Melchior et al. (2012)). Due to the
different obstacles, the forces stemming from the repulsive
fields will then be considered as disturbances in the control
loop, such as shown in Figure 1.

Equation (1) can be written as:

Fatt = mego (atar − aego) = αp (ptar − pego) + αv
d (ptar − pego)

dt
.

(2)

Introducing the error e(t) = ptar − pego, it then comes:

Fatt = αpe(t) + αv
de(t)

dt
, (3)

where atar and aego respectively are the real-time acce-
leration of the target and the ego-vehicle and mego is the
mass of the ego-vehicle.

Under zero initial conditions, the Laplace transform of
relation (3) gives:

Fatt(s) = (αp + αvs)E(s), (4)

where E(s) is the Laplace transform of e(t). For causality
reasons, this proportional derivative (or lead-phase) con-
troller is put under a proper form, namely:

Fatt(s) = C(s)E(s)

=
αp + αvs

1 + s
ωc

E(s) = αp

(
1 + αv

αp
s

1 + s
ωc

)
E(s), (5)

where ωc is the filter cut-off frequency to make the con-
troller causal. This lead-phase controller C(s) can be
rewritten as:

C(s) = C0

(
1 + s

ωb

1 + s
ωh

)
, (6)

where C0 = αp, ωb =
αp

αv
, ωh = ωc. The open-loop

gain crossover frequency ωcg is directly deduced from the
desired time response tr5% = 3

ωcg
. With a desired stability

given by the phase margin Mϕ, the desired lead phase is

φm = −π +Mϕ −Arg(G(jωcg), (7)

where G(jω) = 1/(mego(jω)2) is the EGV transmittance.
φm helps defining the ratio a = ωh/ωb with

a =
1 + sin(φm)

1− sin(φm)
(8)

and consequently

ωb =
ωu√
a

ωh = ωu
√
a.

Finally, C0 is calculated such that the open-loop gain
equals one at ωcg:

C0 =
1

|G(jωcg|

√
1 +

(
ωcg

ωh

)2
√

1 +
(
ωcg

ωb

)2 =
mego.ω

2
cg√

a
. (9)

For the simulation, mego = 1.5kg, the desired time res-
ponse is tr5% = 3s, which gives ωcg = 1rad/s. For a
stability degree of phase margin Mϕ = 60◦, the following
parameters are obtained: φm = 60◦, a = 13.93, ωb =
0.27rad/s, ωh = 3.7rad/s and C0 = 0.4.

In the following section, the definition of the potential
repulsive field is recalled and a new definition is proposed
in order to take into account the dynamical aspect of the
environment along with the obstacle dangerousness.

3. REPULSIVE POTENTIEL FIELD

3.1 Ge and Cui Repulsive force

As a reminder, this repulsive PF was proposed by Khatib
(1985), and is defined as follows:

U(ρ) =


1

2
η

(
1

ρ
− 1

ρmin

)2

if ρ ≤ ρmin

0 if ρ > ρmin,

(10)

where ρ is the distance between the UAV and the obstacle,
ρmin is the shortest safety distance to the obstacle and η
is a weighting factor.
From this potential, other definitions have emerged inclu-
ding the one of Ge and Cui (2002), where the speed enables
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Fig. 2. Representation of the scenario

taking into account the EGV that evolves in a dynamical
environment. This PF is defined as follows:

Urep (p,v) = η

(
1

ρs (p,pobs)− ρm (vRO)
− 1

ρmin

)
, (11)

where ρs (p,pobs) = |p − pobs| and ρm (vRO) is defined
in (13). As a comparaison, the squared power is removed
and the distance ρ is replaced by ρs (p,pobs) − ρm (vRO),
an expression that takes into account the relative speed
between the EGV and the obstacle. Figure 2 illustrates
the methodology in 2D, but this solution also works in
3D.
The relative speed between the robot and the obstacle is
defined as:

vRO (t) = [v(t)− vobs(t)]
T
nRO, (12)

where nRO is a unit vector going from the robot to the ob-
stacle. v(t) and vobs(t) respectively are the instantaneous
speeds of the robot and the obstacle. Thus, knowing the
maximum acceleration amax, it is possible to determine
the distance travelled by the robot:

ρm (vRO) =
v2RO(t)

2amax
. (13)

From expression (11), the resulting force, corresponding to
the negative gradient of the potential, is:

Frep =−∇Urep(p,v)

=−∇pUrep(p,v)−∇vUrep(p,v) (14)

where

∇pUrep(p,v) =
−η
(

1 + vRO

amax

)
(ρs (p,pobs)− ρm (vRO))

2nRO (15)

and

∇vUrep(p,v) =
ηvROvRO⊥ · nRO⊥

ρs(p,pobs)amax (ρs(p,pobs)− ρm(vRO))
2

(16)

with vRO⊥ =

√
‖v(t)− vobs(t)‖2 − ‖vRO(t)‖2 being the

magnitude of the relative velocity between the robot
and the obstacle. Note that the vector vRO⊥nRO⊥ is
perpendicular to the line passing through the robot and
the obstacle.

3.2 Repulsive Weyl potential field

Poty et al. (2004) generalized the PF from Weyl’s defini-
tion. This allows the PF to be defined with an order n
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Fig. 3. Influence distance of the normalized fractional
potential based on Weyl’s definition

that influences the evolution of the field as a function of
the distance. This order n is therefore used to adjust the
repulsive force according to the obstacle dangerousness.
The fractional potential field is defined as follows:

Urep
n (ρ) =


ρn−2 − ρn−2

max

ρn−2
min − ρ

n−2
max

,
∀n ∈]0; 2[∪]2;+∞],

∀ρ ∈ [ρmin; ρmax]
ln(ρmax)− ln(ρ)

ln(ρmax)− ln(ρmin)
, n = 2,∀ρ ∈ [ρmin; ρmax]

0, ∀ρ > ρmax

(17)

Figure 3 illustrates the Weyl repulsive potential field shape
for ρmax = 1m and ρmin = 0.05m.

The force represents the gradient of the potential field:
the higher the order, the greater the repulsive force at
ρmax but on the other hand, the lower its magnitude
at ρmin, thus leading to avoid the obstacle as soon as
possible. However, if for some reason the obstacle is very
close, the repulsive force will not be sufficiently high and
a risk of collision is possible. On the contrary, the lower
the order, the greater the repulsive force magnitude when
getting closer to ρmax, thus allowing smoother path for
obstacle avoidance. In Receveur et al. (2019) for a car,
a rule associates the value of degree n according to the
vulnerability and unpredictability of the obstacle. This
rule can be adapted for a UAV.

3.3 Dynamical fractional repulsive potential definition

Ge & Cui potential field definition (11) depends both
on the distance ρ between the EGV and the obstacle,
and their relative speed vRO. Weyl potential field solely
depends on the distance while distinguishing obstacle dan-
gerousness with order n. Therefore, it is proposed to dif-
ferentiate the obstacle dangerousness by keeping the order
n in the Weyl repulsive field definition, and by adding
distance and relative speed to add reactivity towards the
obstacle. The new repulsive potential becomes:

Urep (p,v) =
(ρs (p,pobs)− ρm (vRO))

n−2 − ρn−2max

ρn−2min − ρ
n−2
max

, (18)

from where one draws the repulsive force such as expressed
in (14) with:



∇pUrep(p,v) = η
(n− 2) (ρs (p,pobs)− ρm (vRO))n−3

(
1 + vRO

amax

)(
ρn−2
min − ρ

n−2
max

) nRO

(19)
and

∇vUrep(p,v) = η
(n− 2) (ρs (p,pobs)− ρm (vRO))n−3 vRO

ρs (p,pobs) amax

(
ρn−2
min − ρ

n−2
max

) vRO⊥nRO⊥.

(20)

Now, the repulsive potential field function takes into
account an order n to avoid obstacles according to their
dangerousness and the obstacle speed to operate in a
dynamical environment.

4. SIMULATION EXAMPLE AND RESULTS

The proposed fractional repulsive potential field allows to
take into account the dynamics of the obstacle as defined
by Ge and Cui (2000) and Yin et al. (2009). However,
it also takes into account the type of obstacle, previously
indicated by Poty (2006) and Melchior et al. (2001). This
field is indeed a combination of both methods. For the
simulations, trajectory planning is seen as a control loop,
such as illustrated in Figure 1

The controller used is in the form of a lead-phase controller
as explained in section 2.

4.1 Study and scaling of factor η

Some research on potential fields suggests that a positive
coefficient η applied to the repulsive force compensates for
the magnitude of the attractive force. Usually, this factor
η helps scaling the attractive and repulsive forces and is
usually is defined empirically. Note that η is correlated
to the ego vehicle mass. Here, a method to calculate the
magnitude of this coefficient using the maximum value
of the attractive force is proposed. Whatever the vehicle,
there are dynamical acceleration and speed limits, among
others. By knowing these limits, it is possible to define the
maximum attractive force of the EGV:

max(Fatt) = Fmaxatt = megoamax, (21)

where mego represents the mass of the ego-vehicle, and
amax represents its maximum acceleration. This maximum
force already gives us a magnitude order of the force
exerted on the vehicle. Note that the repulsive force must
be greater than the attractive force, in order to avoid a
collision. To achieve this goal, η is defined by Fmaxatt to a
factor k, such as:

η = kFmaxatt . (22)

So-defined, η becomes is dependent of the vehicle mass.

Figure 4 presents the results obtained with different values
of k. ρmin is fixed to the radius of the obstacle or the
minimum acceptable distance between the ego-vehicle and
the obstacle, and ρmax = 2ρmin. When the obstacle is
practically aligned with the ego-vehicle and the target, it
is indeed one of the worst cases as the ego-vehicle may be
trapped in a local minima.

The coefficient k depends on the type of obstacle. In the
case of a square obstacle, it is necessary that the repulsive
force be greater because of the presence of corners.
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Fig. 6. Robot path with a round obstacle and a factor
k = 15 : η = kFmaxatt ; mego = 1.5kg

One of the outcomes of this study lies in the fact that
the coefficient η no longer depends on the mass of the
ego-vehicle, such as illustrated on Figure 6 and Figure 7.
It is the type of the obstacle that impacts the value of
this coefficient. Indeed, the path is no more affected by
the mass variations as only the force values are modified.
To conclude, fixing k to 15 enables avoiding any kind of
obstacle shape.

4.2 Simulation results in a 3D dynamical environment

In the simulation scenario, there are one static target,
two static obstacles (sphere) and one dynamical obstacle
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(cube). Table 1 summarizes the initial conditions of each
element. Figure 8 represents the 3D environment map.
Three methods are compared: the Ge & Cui repulsive po-
tential, the Weyl fractional repulsive one and the dynam-
ical fractional repulsive one. The parameters concerning
the attractive forces Ge and Cui are given in section 2.1.
The parameters concerning the repulsive forces are shown
in Table 2. The mass of the EGV is m = 1.5kg which
corresponds to the mass of an Iris + drone.

Table 1: Initial conditions
Element Position Velocity
EGV [0, 0, 10] [0, 0, 0]

Obstacle 1 [20, 25, 10] [0, 0, 0]
Obstacle 2 [90, 95, 10] [0, 0, 0]
Obstacle 3 [70, 70, 10] [0, 0,−1]

Target [120, 120, 10] [0, 0, 0]

Table 2: Repulsive potential parameters
Element Method k n shape

Obstacle 1
Ge & Cui 150 -

sphereWeyl potential 10 0.5
dynamical fractional 10 0.5

Obstacle 2
Ge & Cui 150 -

sphereWeyl potential 10 0.5
dynamical fractional 10 0.5

Obstacle 3
Ge & Cui 200 -

cubeWeyl potential 15 0.5
dynamical fractional 15 0.5
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Figure 9a shows the trajectories using three different me-
thods, Weyl potential (green), Ge & Cui (red), dynamical

(a) Whole simulation
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Fig. 9. Path and forces obtained with the three methods

potential (blue). As obstacles 1 and 2 are static, let us
focus on the dynamical obstacle 3. In Ge & Cui method,
as this field takes into account the dynamical aspect
of the obstacle, the ego-vehicle avoids obstacle 3 in the
opposite direction of the obstacle speed. In Weyl Fractional
repulsive potential, as the obstacle speed is not considered,
the avoidance of obstacle 3 takes more time as the EGV is
forced to travel more distance, and is undertaken on the
other way around. In the proposed dynamical fractional
repulsive potential, the trajectory is very close to that of
Ge & Cui. This method takes into account the dynamical
aspect of the obstacles and furthermore, it is possible to
adjust the level of danger n of the obstacles.

Figure 10 is the same scenario as in Figure 9 and represents
the trajectory with an order n of the cube obstacle varying
from 0.2 to 1.5. To better visualize the influence of the
degree n, only a zoom of the trajectory around the cube
obstacle has been shown. Note that the higher the order,
the sooner the avoidance of the obstacle. The trajectory
is also smoother, but having a lower order enables going
nearer to the obstacle and having a shorter trajectory. The
key is to find a compromise between getting closer to the
obstacle in a safe manner and travelling the shortest the
distance.

Table 3 summarizes the results: the higher the obstacle
danger degree n, the sooner the obstacle avoidance, and
therefore the safer the trajectory, however, the farther the
trip distance and the higher the energy consumption.



Fig. 10. Robot path with dynamical fractional repulsive
force and n varying from 0.2 to 1.5

5. CONCLUSION

Artificial potential fields provide good results for tra-
jectory planning in dynamical environments. It remains
essential for real-time applications and allows a good
reactivity of the EGV. The Ge & Cui repulsive force
solely allows taking into account the velocity of obstacles
without considering their dangerousness. Moreover, the
Weyl potential force associates a degree of danger with an
obstacle but do not consider the obstacle dynamics. On the
contrary, the proposed new dynamical fractional repulsive
field presents both advantages. Our method takes into ac-
count the obstacle dynamics, such as positions and speeds,
and associates dangerousness with a fractional degree. For
future works, it would be interesting to consider a frac-
tional controller in the attractive PF, so that robustness
in terms of EGV mass variations and disturbance rejection
is guaranteed. In addition, a complete UAV model could
be considered instead of a mass point model.

Table 3: Comparative study
method n time length energy

(s) (m) (J)

Ge & Cui / 74.45 176.73 1.325.103

Weyl potential 1.5 79.99 189.81 1.424.103

dyn. frac. pot. 0.2 71.67 174.94 1.312.103

dyn. frac. pot. 0.5 72.35 175.36 1.315.103

dyn. frac. pot. 0.8 72.93 175.69 1.318.103

dyn. frac. pot. 1 73.25 175.85 1.319.103

dyn. frac. pot. 1.5 73.71 176.21 1.322.103
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