
HAL Id: hal-03217990
https://hal.science/hal-03217990

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Study on obstacle avoidance for fractional artificial
potential fields

Jean-François Duhé, Stephane Victor, Kendric Ruiz, Pierre Melchior

To cite this version:
Jean-François Duhé, Stephane Victor, Kendric Ruiz, Pierre Melchior. Study on obstacle avoidance for
fractional artificial potential fields. 21st IFAC World Congress, Jul 2020, Berlin, Germany. pp.3725-
3730, �10.1016/j.ifacol.2020.12.2059�. �hal-03217990�

https://hal.science/hal-03217990
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Study on obstacle avoidance for fractional
artificial potential fields
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Abstract: One of the main problems related to path planning is to find a method which will
effectively allow the robot or vehicle to avoid obstacles, provided that these obstacles can be
static or dynamic. One of the most interesting methods for path planning is the use of the
artificial potential fields in order to create a representation of the environment as proposed by
Khatib and Ge & Cui. These approaches enable handling online situations, which is desirable
when facing uncertain obstacles appearing in the path. Three propositions are provided in the
repulsive potential fields to avoid acceleration oscillations occurring while the ego-vehicle enters
the limit boundaries of an obstacle. The advantages and limitations of the proposed methods will
be explored. The performance of the different propositions will be compared by using criteria
such as length and energy in a simple scenario.

Keywords: Path planning, Reactive path planning, Potential Field, Fractional potential field,
Poisson’s equation.

1. INTRODUCTION

Nowadays, developments on autonomous vehicle have be-
come a noticeable reality in the society, whether they
are aerial,underwater or ground ones. In any case, path
planning for any autonomous vehicle is one of the most im-
portant tasks to be successfully accomplished. One of the
most active developments concerns drones. Many potential
applications exist mainly related to agriculture, security
and medical tool transportation.

A fairly popular method for path planning is the Artificial
Potential Field Method (see Khatib (1986)). It basically
consists in treating the space as a potential field in which
the vehicle is guided through a virtual force. Several modi-
fications for the repulsive and attractive forces expressions
have been proposed in order to take into account the
kinematics of both the obstacle and the vehicle (see Ge
and Cui (2002)). The attractive potential has been re-
interpreted as a control loop (see Metoui et al. (2009))
and control analysis has been presented regarding the
fractional attractive field (see Melchior et al. (2018)). One
proposition for the repulsive field was developed by using
the Weyl potential (see Poty (2006)). A more detailed and
optimized version of the method was recently introduced
by combining the use of artificial potential fields and
genetic algorithms (Receveur et al. (2019)).

Despite the popularity of the Artificial Potential Field
method, the repulsive potential field lacks continuity in
its outer boundary (such as the Weyl fractional repulsive
field) and may produce oscillations when approaching an
obstacle, thus increasing the energy consumption. More-
over, local minima also are problematic, as the vehicle may
be ”locked” in a place other than the target.

In order to reduce these drawbacks, alternative expressions
for the repulsive potential field are proposed. An approach
based on corrective polynomials will be explored to elim-
inate the oscillation problem. An alternative and more
compact expression for the repulsive field will be derived
from Poisson’s equation. The addition of a tangential force
component to the repulsive force field will also be explored.

Section 2 will present a brief review of the state of art.
The two main types of path planning approaches (local
and global) will be presented and compared. Section 3
will present the contributions on fractional potential fields
in order to avoid acceleration oscillations when entering
the frontier limits of the obstacles. Finally, Section 4
will present simulations of all the proposed ideas with a
simple 2D scenario. The results of the simulations will be
discussed and the different propositions will be compared.

2. STATE OF THE ART

The path planning problem can be divided into two
different types: global and local approaches, the main
difference relying on the knowledge of the environment.

2.1 Global approaches

A global approach of path planning is mainly characterized
by the assumption that the whole environment is known
a priori. Not only is the location of the goal known, but
the locations and dimensions of all obstacles at stake are
assumed known. These allow the use of optimization in
order to minimize different criteria such as length, energy,
danger or other factors that can be taken into account.
However, the calculations can be complex and heavy if
the vehicle is supposed to be in an online situation. Most
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of the time, these methods will first use a tool in order
to describe the environment, such as a visibility graph or
a Voronoi diagram and then apply an algorithm over the
description provided by the graphs. The most well-known
algorithms used for this purpose are the Djikstra and
A-star ones (see Nilsson (1969)). Some other approaches
lack the use of optimization tools, but are still considered
as global methods because of the a priori knowledge of
the environment. This situation is not a problem if the
scenario exactly happens as predicted. However, in real
life situations, it is well-known that pedestrians and drivers
may change their speed and/or directions, and therefore,
the proposed path is no more suited.

Harmonic Potential Fields The harmonic potential field
method (see Garrido et al. (2010)) belongs to the global
approach branch. This technique derives from Khatib’s
original use of potential fields for path planning in which
obstacles and the goal are modeled as boundary conditions
and the Laplace equation of electrostatics is used:

∇2U = 0. (1)

In this approach the whole potential U is found over the
totality of the free space and the virtual force related to
this potential will guide the vehicle to the goal. Its main
advantage is the lack of local minima. Still, limitations
exist as it is impossible to distinguish different types of
obstacles as they will all be mostly treated as a Dirichlet
boundary condition (U = 1 on the boundary) or as a
Neumann one (∂U

∂n = 0 where n stands for a unitary vector
in the normal direction outside of the boundary). Using
Dirichlet conditions can create extremely weak force field,
and if the computing precision is insufficient, the gradient
of the potential may vanish in some parts of the space. Fur-
thermore, using Neumann conditions will generate paths
that will be tangential to the obstacles, allowing the vehicle
to come extremely close to the obstacles.

Biharmonic Equation Another approach inspired by the
properties of partial differential equations is based on the
theory of elasticity and the bi-harmonic equation (see
Guys (2014)). In this case, the environment is modeled as a
plate (in the 2D case) and the goal and obstacles represent
pressure variations in the plate. The virtual stress derived
from solving the bi-harmonic equation guides the vehicle.
Simulations of the paths generated by this method proved
to be highly unsuccessful, as the field vanishes in several
zones as a consequence of the mathematical theory behind
this technique (and not because of a technical limitation
such as the Dirichlet condition in the harmonic field
method) and a later step of adjustment is required in order
to fully generate a path. The equations to be solved require
heavier mathematical power, as a 25 point-stencil is used
in order to calculate the bi-harmonic operator of a function
in 2D, opposed to the 5 or 9 point stencil used to calculate
a Laplacian (see Saudi and Sulaiman (2012)).

2.2 Local approaches

For local approaches, environment full knowledge being
not available, the vehicle position is calculated at each
iteration in order to get it closer to the goal. From the
available embedded sensors, its main advantage is its
implementation easiness in real-time situations.

Bug Algorithms Perhaps the oldest local path planning
method are the Bug algorithms. Theyare based on insect
motion that tends to closely surround the obstacles in
front of them instead of deviating their paths as soon as
they see an obstacle. The most known algorithms of this
type are the so called Bug1 and Bug2. In both of them, a
straight line is drawn between the vehicle and the goal at
the beginning of the operation. The vehicle will follow this
path until crossing an obstacle, going around it. In figure
1, a path generated by Bug2 is shown. Its main drawback
is that it can generate paths that are extremely long and
way too far below the optimal solution.

Fig. 1. Path generated by using the Bug2 algorithm

Artificial Potential Fields One of the most used method
based on a local approach is the artificial potential field
method (see Khatib (1986)). The idea is to model the
goal as an attractive potential Uatt that will guide the
vehicle towards it and to model the obstacles as repulsive
potentials Urep which will make the vehicle go away from
them. The global potential will be the sum of the attractive
and repulsive potentials. A gradient descent method is
later used in order to calculate the direction in which the
robot should move forward at each step, such as:

−→
F = −∇(Uatt + Urep) (2)

xi+1 = xi + α

−→
F i

|Fi|
(3)

where α is the step in the descent and xi is the robot
position at the i-th iteration.

This method generates radial fields, which are the main
cause of local minima in which the vehicle can become
trapped. It is also impossible to distinguish the different
obstacles as in the original formulation of the method, only
the distance to the obstacle is taken into account in order
to estimate its contribution to the path generation.

Ge and Cui Potential Field Another main drawback to
the artificial potential field method is that it doesn’t take
into account the dynamics of the environment. The speed
of neither the obstacles nor the goal is used. The use of the
speed was introduced as a modification of the potential
field method (see Ge and Cui (2002)). The main interest
of this contribution was the modification of the attractive
potential definition:
−→
F att = αp(

−→
X goal −

−→
X ego) + αv(

−→
V goal −

−→
V ego) (4)

where
−→
X stands for position and

−→
V for speed, and sub-

scripts goal for the target and ego for the ego vehicle.



Control-loop interpretation of the Artificial Potential Field
This type of force is linear and can easily be analyzed in

the Laplace domain, as a controller. A complete analysis
and control design was developed at the IMS laboratory
(see Melchior et al. (2018)) to guarantee a robust tracking
of the paths generated by this type of potential.

The attractive force, being described in terms of position
and speed error can be interpreted as a lead-phase con-
troller (see Poty (2006)). A novel controller design has been
proposed in Receveur et al. (2019).

Vortex Fields Other variations of the artificial potential
field include the use of vortex fields (see De Medio et al.
(1991)) in which the mathematical formulation tries to
reduce the presence of local minima and uses inverse
tangent function, but it is not a widely spread method
in literature.

Limit cycle Technique Another local approach technique
which is interesting is the limit cycle technique (see Aal-
bers (2013)). This method is based upon the phenomena
of limit cycles that is widely studied when analyzing
nonlinear systems. A pseudo phase portrait is established
around the obstacle. The variables x1 and x2 used to
establish the phase portrait do not represent position and
speed, but x and y positions in the 2D case.

Optic Flow A type of technique that is still not fully
understood relies on the use of the optic flow concept in
order to guide a vehicle and avoid obstacles (see Serres
and Ruffier (2017)). The main interest nowadays relies
on a better development of the theory and a deeper
understanding of the way in which animals use the optic
flow (mostly flies) in order to guide themselves.

2.3 State of art synthesis

The state of art reveals that in spite of the possibility of
easily optimizing the paths, methods relying on a global
approach are not easy to implement when dealing with
an uncertain environment in which unexpected obstacles
may appear or move. The information required for the
implementation of these techniques will most certainly not
be fully available and the calculation time required in order
to generate a path is also limiting. This is the main reason
why the use of a local approach is more well-suited for an
uncertain environment exploration. The artificial potential
field offers the possibility of being easy to use in a real-
time application and has a mathematical background that
is well-known and possible to explore and modify easily.

3. ANALYSIS AND CONTRIBUTIONS

3.1 The Weyl fractional repulsive potential field

The artificial potential field method as it was originally
created, generates its paths by taking into account the
distance to the obstacle. However, in real life cases, the
nature of an obstacle may vary and it would be desirable
to be able to distinguish different types of obstacles. A
new definition based on the Weyl potential (see Melchior
et al. (2001)) allows to establish a flexible potential field

form. The mathematical definition is given within a range
(distance to the obstacle) going from rmin to rmax:

Urep(r) =
rn−2 − rn−2

max

rn−2
min − r

n−2
max

, n 6= 2. (5)

The variable n is used to measure the degree of danger
of the obstacle and can vary continuously. This modifies
the shape of the potential around the obstacle, which is
better illustrated by figure 2. A convex shape is obtained
for 1 < n < 3, and a concave one is obtained above 3.
A semi-empirical method to estimate n in terms of the
obstacles is presented in Receveur et al. (2019).
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Fig. 2. The fractional repulsive potential shape

The approach developed at IMS laboratory directly uses
the force derived from the potential field in the physical
sense rather than as a simple guideline for the direction to
follow at each iteration. Deriving the force generated by
the fractional repulsive potential:

|Frep(r)| = (n− 2)
rn−3

rn−2
min − r

n−2
max

, (6)

has a magnitude at r = rmax of:

|Frep(rmax)| = (n− 2)
rn−3
max

rn−2
min − r

n−2
max

. (7)

Thus, the force generated by an obstacle is not continuous
at r = rmax, but it presents a force step. This is the source
of oscillations in the trajectory generated by using this
type of potential and can significantly increase the energy
consumption, which is undesirable (see figure 4).

3.2 Contribution with corrective polynomials

One proposed solution in order to keep continuity at the
outer boundary rmax is to add an additional corrective
term. The additional term will provide an attractive force
at the outer boundary that will cancel the repulsive one
at rmax and therefore guarantee the continuity in the
boundary. The repulsive potential is then defined by:

Urep−new(r) = Urep(r) + Upol(r) (8)

from where one draws:

Frep−new(r) = Frep(r) +
∂Upol(r)

∂r
(9)



with
∂Upol(r)

∂r
= −(n− 2)

rn−3
max

rn−2
min − r

n−2
max

; (10)

consequently, at r = rmax:

Frep−new(rmax) = 0. (11)

Two simple corrective terms are proposed: a first and a
second order polynomial. These are defined as follows:

Upol−1(r) = −(n− 2)
rn−3
max

rn−2
min − r

n−2
max

r (12)

Upol−2(r) = Ar2 +Br (13)

with: 



A = − (n− 2)rn−3
max

2δ(rn−2
min − r

n−2
max)

B = −(n− 2)
rn−3
max

rn−2
min − r

n−2
max

[1− rmax

δ
]

(14)

The first order polynomial will simply provide a constant
attractive force that will eliminate the continuity problem.
A second order polynomial will provide a force profile
with a linear shape. This means that the second order
polynomial can be manipulated in order to be attractive
only around the boundary but that will be able to quickly
provide an additional repulsive force as the vehicle enters
more into the danger zone of the obstacle. A variable δ is
introduced for the use of this corrective term. This variable
will indicate the width of the zone near the boundary of
the obstacle for which the additional term provides an
attractive force. If the vehicle gets to a distance to the
object smaller than rmax− δ, the corrective term will also
contribute to the repulsion.

3.3 Contribution with tangential component

A major drawback regarding the use of potential fields is
the possibility of local minima in which the vehicle can be
trapped. A proposition is made regarding the addition of
a tangential force in order to avoid these situations:

−→
F rep−total =

−→
F rad(r) +

−→
F tang(r) (15)

in which
−→
F rad and

−→
F tang respectively are the radial and

tangential components of the field. It should be noted that
propositions with tangential path planning already exist
(see Zhou et al. (2018)), but they involve the use of global
optimization techniques.

3.4 Potential derived from Poisson’s equation

Another way to derive a potential field that is able to take
into account differences between obstacles and at the same
time to eliminate the continuity problem is to create a local
variation of the harmonic potential field method. This can
be done by defining a limited zone around the obstacle and
deriving an explicit solution for a field around it.

Let us define a punctual obstacle, delimited by a danger
zone in [rmin, rmax], to which a repulsive field Urep is
obtained around it. Using the Laplace equation (1) allow
us to impose the continuity of the force at the outer

boundary by applying a Neumann boundary condition,
such as:

∂U(r)

∂r

∣∣∣∣
r=rmax

= 0. (16)

The main inconvenient by using the Laplace equation (1)
in such a situation is that it will generate a constant
potential, which will produce no force and isn’t useful for
path planning. However, it is still possible to use Poisson’s
equation in order to solve this issue, as this equation
will consider a virtual charge density distributed over the
danger zone of the obstacle. A Neumann condition is used
on the outer boundary to eliminate the continuity issue
and a Dirichlet condition can be used to make the potential
zero right at this boundary. The derived potential is
expressed by:

Upoisson(r) = ρ

[
r2 − r2max

4
+
r2max

2
(ln rmax − ln r)

]

(17)
with ρ standing for a parameter that will be linked to the
danger degree notion introduced by the fractional Weyl
potential.

4. SIMULATION RESULTS

4.1 Simulation scenario and criteria used

All of the different propositions presented in the previous
section were tested in 2D in a zone near a static obstacle.
The model used for the vehicle in order to generate the
reference is a punctual mass of M = 1kg. The simulation
parameters used to test the polynomials and the tangential
component are presented in table 1.

Table 1. Simulation parameters

xgoal ygoal xinit yinit rmin rmax n

1.5 m 5 m 1 m -1 m 0.9 m 1.5 m 1.5

The simulations were performed by implementing a block
diagram as shown in figure 3. The position of the goal
is the set-point of the control loop. The position error
is then used in order to generate the attractive force by
using the block C(s), which contains the definition of
the attractive potential. The repulsive force due to the
obstacles is introduced into the loop as a disturbance. The
relationship between the vehicle position and the force
acting on him is calculated by using a punctual mass
model.

The main criteria used to evaluate the generated path are
the total length of the path Jlong

Jlong =
∑

i

√
(xi − xi−1)2 + (yi − yi−1)2 (18)

and the energy required to go through the path Jenergy

Jenergy = m

∫
a · vdt. (19)

These two criteria will be calculated and analyzed for all
the simulations in order to compare them.

4.2 Corrective polynomials and tangential component

The acceleration profiles of corrective polynomials and
tangential field methods are presented in figure 4, and the
performance criteria are presented in table 2.



1

3

2

4
Reference =

Position of the goal

Attractive

potential

C(s) = αp + αvs

Repulsive

potential

forces generation

= disturbance

Punctual mass model
1

Ms2

(
xref , yref

) (
εx, εy

)

(xmes, ymes)

(xmes, ymes)

(xmes, ymes)

(
vmes
x , vmes

y

)

(
Fatt
x , Fatt

y

)
(
Fx, Fy

)
(
F

rep
x , F

rep
y

)

(
xobsts, yobsts

)
(
vobsts
x , vobsts

y

)

+
+

+

−

Fig. 3. Control loop with attractive and repulsive PF acting as a controller and a disturbance
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Table 2. Corrective polynomials and tangential
component

Jlong Jenergy

Weyl Potential 7.22 m 0.50 J

Upol−1 7.07 m 0.32 J

Upol−2 7.15 m 0.33 J

Tangential component 7.19 m 1.16 J

As it can be observed, both polynomial methods provide
an important reduction regarding the energy consumption
and a slight reduction in the total length of the path.
Considering that the second order polynomial can be
designed in order to reinforce the original repulsive field,
it may be considered as a safer option with no drawbacks
as compared to the first order polynomial. The use of the
tangential component severely increases the magnitude of
the force used to generate the path, which explains why
this technique requires a heavy and undesirable energy
consumption.

The acceleration profiles show that the use of the correc-
tion terms generates lower amplitudes on the whole path
when compared to the highly oscillating profile of the
uncorrected case (the classic Weyl repulsion definition).
Variations in acceleration also prove to be less important
with the tangential component addition, but the maximum

amplitudes are higher than those required by the uncor-
rected case, which explains its heavy energy consumption.

4.3 Simulations using Poisson’s potential

For the simulations using Poisson’s potential, the main
interest is to study the influence of the new scale factor
ρ on the generated paths: one using the force field in a
purely radial direction and the other in a purely tangential
direction (no addition of two components in this case).
Both of the paths generated are shown in figures 5 and 6.
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Fig. 5. Trajectories generated by using a radial Poisson
field

As can be observed, the use of a radial field generates
paths that can easily stay at a safe distance from the
obstacle with slight increment of the ρ parameter. How-
ever, the paths generated require violent changes of direc-
tion that may not be easily achievable by a real vehicle.
The paths generated with a tangential field are geome-
trically smoother, but are critically closer to the obstacle.
A cautious choice of the danger parameter may permit
the generation of a path without abrupt deviations and a
reasonable distance to the obstacle. In the tangential case,
an important increase in the ρ parameter is required in
order to avoid a collision. In the simulations, it is observed
that in the radial case a value around ρ = 2 is enough to
prevent a collision, whereas this value goes up to ρ = 4 for
the tangential case with a close distance to the obstacle.

The length and energy criteria for these simulations are
presented in the table 3.
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Fig. 6. Trajectories generated by using a tangential Poisson
field

Table 3. Length and energy criteria by using a
Poisson field

Radial Poisson Field Tangential Poisson Field

ρ Jlong−rad Jenergy−rad Jlong−tang Jenergy−tang

2 7.05 m 0.31 J X X

3 7.11 m 0.32 J X X

4 7.14 m 0.33 J 6.83 m 2.11 J

5 7.16 m 0.33 J 6.96 m 2.39 J

6 7.18 m 0.34 J 7.07 m 2.64 J

As it can be seen, the impact of the parameter ρ doesn’t
heavily impact the energy consumption nor the length
of the path as it changes. A slight increase in energy
consumption is seen and the same is observed in the path
length. The results with the tangential case differ greatly
from the radial one. Even if there is a slight reduction in
path lengths, the energy consumption is significantly high.
The increase in energy consumption is notorious when
increasing the danger parameter and it goes up to more
than eight times the energy value computed for the first
order polynomial (see table 2).

5. CONCLUSION

Three contributions are proposed to reduce acceleration
oscillations in the APF as originally proposed by Weyl
and Ge & Cui potential field definitions. The use of cor-
rective polynomials proved to be an effective way to avoid
the presence of oscillations in the paths generated and
therefore an important reduction in the energy consump-
tion was seen in the simulations. To avoid local minima,
tangential force fields are proposed, which have the main
drawback of a high energy demand. The Poisson force
field may be an elegant and alternative way of formulating
a repulsion force field, but fails to solve the problem of
the heavy energy consumption that comes with the use
of tangential fields. Further exploration can be done by
taking into account more complex models for the vehicles
instead of the simplified punctual mass used here in or-
der to study the possibility of real vehicles to follow the
different references generated by these fields.
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