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bUniversité Côte d’Azur, Inria Sophia Antipolis, France.
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Abstract

The paper focuses on a generic optimal control problem (OCP) deriving from the competition between two microbial populations
in continuous cultures. The competition for nutrients is reduced to a two-dimensional dynamical nonlinear-system that can be
derived from classical quota models. We investigate an OCP that achieves species separation over a fixed time-window, suitable
for a large class of empirical growth functions commonly used in quota models. Using Pontryagin’s Maximum Principle (PMP),
the optimal control strategy steering the model trajectories is fully characterized. Then, we provide sufficient conditions for the
existence of a turnpike property associated with the optimal control and state-trajectories, as well as their respective co-state
trajectories. Indeed, we prove that for a sufficiently large time, the optimal strategy achieving strain separation remains most
of the time exponentially close to an optimal steady-state defined from an associated simpler static-OCP. This turnpike feature
is based on the hyperbolicity of the linearized Hamiltonian-system around the solution of the static-OCP. These theoretical
results are illustrated on microalgae described in dimension 5 with the Droop model. The optimal strategy is numerically
computed in Bocop (open source toolbox for optimal control) with direct optimization methods.

Key words: Optimal control, turnpike properties, nonlinear systems, photobioreactor, strains selection, microalgae.

1 Introduction

Natural selection drives the fate of the species that are
permanently competing for limited survival sources. The
individuals with a lower fitness in local conditions will
eventually disappear from the ecosystem due to the com-
petition for survival. Combined with mutations that may
appear naturally over time, the Darwinian adaptation
characterizing living organisms ensures that individu-
als which are better tailored to their local environment
are continuously emerging and progressively dominat-
ing their surroundings. In some instances, these evolu-
tion phenomena may be guided and redirected towards
different fates. It is for instance possible to modify the
outcome of species competition, leading to the emer-
gence of enhanced organisms, by controlling and modu-
lating the natural selection pressure (Swenson (2000)).
Such a selection process was then tamed for generating
naturally more efficient microogranisms (Almeida et al.
(2004)). Within this scope, some microalgae strains have
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been recently improved by setting-up a Darwinian selec-
tion pressure within artificial cultures (see, e.g., Gache-
lin et al. (2020); Huertas et al. (2010); Bonnefond et al.
(2017)). Microalgae attract considerable attention since
they have a great potential to produce less impacting
biofuels (Chisti (2007); Wijffels & Barbosa (2010)). In
addition to atmospheric CO2, they are also considered as
promising elemental bricks for green chemistry and prof-
itable new protein sources. Moreover, they are even used
to improve wastewater treatment (see also, Walsh et al.
(2016); Odjadjare et al. (2017)). However, despite their
large interest, microalgae are still in their infancy and
hitherto mainly grown for cosmetic or pharmaceutical
industries. Their exploitation on a larger scale, particu-
larly for biofuel production, is conditioned by the over-
coming of various technical challenges, including the ne-
cessity of enhancing the strain productivity since mainly
wild species are currently cultivated. This explains the
worlwide race during the last decade for selecting more
suitable microalgae strains (Aravantinou et al. (2013);
Rodolfi et al. (2009); Yoo et al. (2010)). In this paper,
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the objective is to develop an effective control strategy
ensuring that the most suitable strains will dominate the
continuous artificial culture in finite time. For instance
in biofuel production, desirable microalgae strains can
be those which grow faster, with higher lipid content,
and which are also well adapted to local environment
and seasons.

When n distinct strains coexist in a chemostat with lim-
ited substrate, a well-known principle –the competitive
exclusion principle CEP (Smith & Waltman (1995))–
says that the species requiring the smallest amount of
nutrients to grow at a rate equal to the dilution rate wins
the competition, while the other species will be asymp-
totically washed out. The winner of the competition is
not necessarily the one with the highest lipid content
or higher productivity. Our goal is therefore to deter-
mine an optimal control strategy so that the species of
interest dominates in finite time. Thus, our approach is
appropriately based on optimal control theory and Pon-
tryagin’s principle (Pontryagin et al. (1964)). There are
other works for optimal selection of microorganisms in
minimal-time (Bayen & Mairet (2014, 2017)), based on
the simpler Monod-type dynamics describing the growth
of bacteria. The microalgae behavior is however more
complex since their growth does not depend on the sub-
strate concentration in the photobioreactor (like in the
Monod model), but rather on the quantity of nutrients
stored inside the cells (Bernard et al. (2015); Bernard
(2011)). The Droop model (Droop (1968)) is widely used
to represent microalgal growth, considering the addi-
tional dynamics governing the internal cell-quota storage
(Smith & Waltman (1995); Droop (1983)). Here we use
a general form of quota models, extending Droop’s for-
mulation. We assume that an ad’hoc controller is able to
track the desired nutrient concentration in the medium.
It results that the 5 dimensional system reduces to a sys-
tem of dimension 2.

This work also generalizes the approach in Djema et al.
(2019, 2020b), not only because it considers a generic
class of systems relevant for microalgae, but also be-
cause there are no assumption on the initial conditions,
often assumed to be already confined to an attractive
positively invariant set (Bayen & Mairet (2014); Djema
et al. (2019, 2020b)). The main novelty of our work is
to prove the existence of a turnpike property character-
izing the optimal solutions. The turnpike has been re-
cently revisited in the optimal control literature and it
is attracting more and more attention (see, e.g., Trélat
& Zhang (2018); Porretta & Zuazua (2013); Zaslavski
(2015); Trélat & Zhang (2018); Gugat & Hante (2019)).
The turnpike property states that the optimal solutions
consist of three pieces: two transient short-time arcs at
the boundaries of the time interval, and a long-time be-
havior remaining exponentially close to a static solu-
tion, see, e.g., Trélat & Zuazua (2015). From a practical
standpoint, turnpike features are also advantageous for
deriving easy to implement sub-optimal controls.

The paper is organized as follows. Sect. 2 is devoted to

the statement of the general optimal control problem
(OCP), formulated for a generic two-dimensional dy-
namical system, which includes competition between al-
gal species. In Sect. 3 we state the main theorem dealing
with the general OCP. Its proof is provided in Sect. 4,
which relies on Pontryagin’s maximum principle (PMP,
Pontryagin et al. (1964)) and also on the existence of a
turnpike property along the optimal solutions. In Sect.
5, we focus on an application involving a variable yield
model that includes the classical Droop’s model. Thus,
based on the results in Sect. 3-4, we solve the problem
of microalgae selection under several growth-rates. Fi-
nally, in Sect. 5.5, the optimal control is determined in
different cases and the turnpike feature is illustrated us-
ing a direct optimization method implemented in Bocop
(optimal control toolbox, Bonnans et al. (2017)).

2 Optimal control problem (OCP)

We consider a generic nonlinear two-dimensional dy-
namical system, suitable for competition between two
populations in which the dynamics are coupled through
the feeding control-flow. Typically, the competition
between two species (e.g., phytoplankton, bacteria,
yeasts,...) for a limiting substrate (w) whose concen-
tration is controlled in a continuous bioreactor can be
represented as follows:{

ẏ1 = −f1(y1)y1 + g1(w),

ẏ2 = −f2(y2)y2 + g2(w),
(1)

where the fi(·) are regular nonnegative real-valued and
increasing functions representing the growth rate of
species i with respect to the intracellular limiting nutri-
ent yi. The functions gi(·) are also regular nonnegative
real-valued and increasing standing for the flux of limit-
ing nutrient into the cell. System (1) typically appears
as a subsystem of quota models, where yi is the internal
quota of the i-th species, i.e. the intracellular amount of
the element for which the involved species are compet-
ing. The Droop’s model is extensively studied later in
Sect. 5 as the most famous example of this class of sys-
tems. However, the model (1) can also be found in more
complicated metabolic dynamical systems (Wiechert
(2002)) where the intracellular element yi is diluted by
growth. The resulting system (1) is positive, i.e., for pos-
itive initial conditions the trajectories remain positive.
In general, the dynamics of the system (1) is at higher
dimension (5 in the case of Droop’s model), but here we
assume that the limiting substrate has been controlled
by an ad’hoc controller tracking the concentration w(t).
Indeed, the way this subsystem can be extracted from
the full model is developed in Sect. 5 in the typical case
of Droop’s model describing microalgae. Without loss
of generality, we consider throughout this paper that
species 1 is the one of interest and must become pre-
dominant in the population in finite time. Our objective
is to investigate the control strategies for this compe-
tition between two initially co-existing populations by
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controlling the nonnegative and bounded input w over
a fixed time-interval [0, Tf ].

2.1 Statement of the general OCP

The set of admissible controls associated with system (1)
is defined by w ∈ W, s.t.,W is a subset of L∞loc(R+), the
space of locally integrable functions on every compact
set on R+. More precisely, we set,

w ∈ W = {w : [0, Tf ]→ [0, wm] | w(·) ∈ L∞loc(R+)} ,
where wm is a sufficiently large positive constant (the
maximum influent substrate concentration). Then, we
define now the main OCP that reads,

Maximize
w∈W

C[0,Tf ] =
∫ Tf

0
f1(y1(`))− f2(y2(`))d`,

where, y = (y1, y2), y(·) is the solution of (1)

corresponding to the control w(·).

(2)

In what follows, the terminal conditions of the states
yi, i = 1, 2, are assumed to be free and their initial
conditions are positive. Besides, let us define (y∗i , w

∗),
i = 1, 2, the steady state of (1), where, y∗i > 0 and
w∗ ∈ [0, wm]. It follows that, fi(y

∗
i )y∗i = gi(w

∗), for
i = 1, 2, and since the map, yi → fi(yi)yi, is increasing,
we get, w∗ = δi(y

∗), where, δi(y) = g−1
i (fi(yi)yi). Thus,

y∗i (w∗) = δ−1
i (w∗), i = 1, 2, for all fixed w∗ ∈ [0, wm].

Then now, we define for all admissible y∗i > 0 and w∗ ∈
[0, wm] the function,

∆(w∗) = f1(δ−1
1 (w∗))− f2(δ−1

2 (w∗)). (3)

Throughout this work, we assume that the maximizer of
∆ is the unique point w ∈ (0, wm), as illustrated in Fig.
1. The cases where w is zero or wm are pointless and
can be trivially addressed outside this framework. Let us
remark that under these considered assumptions, OCP
(2) has a maximizer using Filippov Theorem (see, e.g.,
Cesari (1983)). In fact, the generic form of the functions
fi(δ

−1
i (·)), involving one intersection point over (0, wm)

as in Fig. 1, ensures the existence of control functions
maximizing and minimizing the criterion C[0,Tf ], as a
direct consequence of the competitive exclusion principle
(CEP), (see, Smith & Waltman (1995)).

2.2 Pontryagin’s maximum principle (PMP)

The Hamiltonian associated with OCP (2) is defined by,

H =Φ(λy1 , λy2 , w)− λy1f1(y1)y1 − λy2f2(y2)y2

+ λ0 [f1(y1)− f2(y2)] ,
(4)

where,

Φ(λy1 , λy2 , w) = λy1g1(w) + λy2g2(w). (5)

It is classical to consider that λ0 = 1 since OCP (2) is
stated as a maximization problem. The PMP implies the

0
0
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0
0

0

0

d
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Fig. 1. (a-b) Generic functions fi and gi for i = 1, 2
(with arbitrary units). (c) illustrates the resulting fi(δ

−1
i (w))

in their typical general form studied throughout this
work, i.e., both situations f1(δ−1

1 (w)) > f2(δ−1
2 (w)) and

f1(δ−1
1 (w)) < f2(δ−1

2 (w)) hold over [0, wm]. The function ∆
in (d) satisfies the hypothesis w ∈ (0, wm).

existence of absolutely-continuous λyi , which are the co-

state of yi, satisfying, λ̇yi = −∂H/∂yi, for i = 1, 2. In
addition, since the final states yi(Tf ) are free, it follows
that the transversality conditions are given by,

λyi(Tf ) = 0, for i = 1, 2. (6)

Finally, the PMP implies that the control function w ∈
W satisfies, for almost all t ∈ [0, Tf ],

max
w(t)∈[0,wm]

H(yi(t), λyi(t), w(t)). (7)

2.3 Introducing the static-OCP

The static-OCP (see, e.g., Trélat & Zuazua (2015)) asso-
ciated with the OCP (2), for the system at steady state
is:Maximize

w∈[0,wm]
∆(w) = f1(y1(w))− f2(y2(w)),

under the constraints fi(yi)yi = gi(w), i = 1, 2.
(8)

In other words, the static-OCP seeks to maximize the
function ∆ defined in (3) when system (1) is at steady
state. Under the assumption that w ∈ (0, wm) is the
unique point maximizing ∆, as in Fig. 1, the definition
of the static-OCP is extended to include the co-state
variables using the Hamiltonian equation. Indeed, ac-
cording to the Lagrange multipliers rule, there exists,
(λy1 , λy2) ∈ R2, s.t., the solution (y1, y2, w), implies that
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(
y1, y2, λy1 , λy2 , w

)
also satisfies:

∂H
∂λyi

(y1, y2, λy1 , λy2 ,−1, w) = 0,

−∂H∂yi (y1, y2, λy1 , λy2 ,−1, w) = 0,

∂H
∂w (y1, y2, λy1 , λy2 ,−1, w) = 0.

(9)

More precisely, using H given in (4) we deduce that the
steady-state satisfying the static-OCP (8) is solution of,

−fi(yi)yi + gi(w) = 0, i = 1, 2,

λy1 (f1(y1) + f ′1(y1)y1)− f ′1(y1) = 0,

λy2 (f2(y2) + f ′2(y2)y2) + f ′2(y2) = 0,

g′1(w)λy1 + g′2(w)λy2 = 0,

(10)

In the general case illustrated in Fig. 1, we define the
unique static optimal steady-state that satisfies (10), de-
noted by,

Estatic =
(
w, y1, y2, λy1 , λy2

)
. (11)

In Sect. 5-5.5, an explicit determination of Estatic is given
for typical fi and gi functions in quota models.

3 Turnpike main result : Theorem 1

Let us consider the perturbed trajectories around the
static optimal steady-state Estatic defined in (11). More
precisely, we perform the classical change of coordinates,
δyi(t) = yi(t) − yi, δλyi(t) = λyi(t) − λyi , for i = 1, 2,
and we consider the shifted control, δw(t) = w(t)− w.
Thus, as in Trélat & Zuazua (2015), we can check that,
δw(t) = −H−1

ww(Hwyδy(t) + Hwλδλy(t)), where,
δy = (δy1, δy2)T and δλy = (δλy1 , δλy2)T.
In what follows, we set z = (δy, δλy)T.
Using the Hamiltonian (4), we notice that Hyw =
∂2H
∂y∂w

∣∣∣
Estatic

= (0, 0), and thus around the unique point

Estatic we end up with,(
δẏ(t)

δλ̇y(t)

)
= Ψ

(
δy(t)

δλy(t)

)
+

(
Λ1(δy(t), δλy(t))

Λ2(δy(t), δλy(t))

)
, (12)

for all t ∈ [0, Tf ], where Λi satisfies,

‖Λi(δy, δλy)‖
‖(δy, δλy)‖

−−−−−−−−→
(δy,δλy) → 0

0. (13)

and,

Ψ =

(
Hλy −HλwH

−1
wwHwλ

−Hyy −Hyλ

)
, (14)

where,

Hww = ∂2H
∂w2

∣∣∣
Estatic

= λy1g
′′
1 (w) + λy2g

′′
2 (w),

Hyy = diag{ − λy1 (2f ′1(y1) + y1f
′′
1 (y1)) + f ′′1 (y1),

− λy2 (2f ′2(y2) + y2f
′′
2 (y2))− f ′′2 (y2)},

Hλy = diag {−f1(y1)− y1f
′
1(y1),−f2(y2)− y2f

′
2(y2)},

Hwλ = (g′1(w), g′2(w)), and thus we end up with,

HλwH
−1
wwHwλ =

 g′21 (w)
λy1g

′′
1 (w)+λy2g

′′
2 (w)

g′1(w)g′2(w)
λy1g

′′
1 (w)+λy2g

′′
2 (w)

g′1(w)g′2(w)
λy1g

′′
1 (w)+λy2g

′′
2 (w)

g′22 (w)
λy1g

′′
1 (w)+λy2g

′′
2 (w)

 .

Let us define the following matrices and constants,

−HλwH
−1
wwHwλHyy =

(
b1 b2

b3 b4

)
, b23 = b2b3, ai =

−∂(fi(yi)yi)
∂yi

∣∣
Estatic , Hλy = diag{a1, a2}. Consequently,

we can show that the eigenvalues κj , j = 1, . . . , 4, of the
matrix Ψ defined in (14) are given by,

κ1 = 1√
2

√
a2

1 + a2
2 − b1 − b4 + ς1/2, κ2 = −κ1 ,

κ3 = 1√
2

√
a2

1 + a2
2 − b1 − b4 − ς1/2, κ4 = −κ3 ,

(15)

where, ς =
[
(a2

1 − a2
2)− (b1 − b2)

]2 − 4b23.

Now, we are ready to state the main result of the paper.

Theorem 1 Let Tf > 0 be a large fixed final-time and
Estatic be the unique global solution of the static-OCP (8),
s.t. w ∈ (0, wm) maximizes ∆ in (3).

¬ The solution of OCP (2) with fixed initial conditions
yi(0) ∈ R∗+, i = 1, 2, correspond to the singular control
function ws ∈ W, s.t.,

ws(t) 6= {0, wm} , for all, t ∈ [0, Tf ], (16)

i.e., the optimal control maximizing H in (4) is neither
a bang 0 nor a bang wm.

 Moreover, if a1 6= a2, Hww < 0, and,

Re(κj) 6= 0, for j = 1, . . . , 4, (17)

where κj are the eigenvalues of the matrix Ψ given in
(15), then there exist positive constants ε, c1, c2 and a
time-instant T ∗ > 0, s.t., for all Tf > T ∗, if,

2∑
i=1

‖yi(0)− yi‖+ ‖λyi‖ < ε, (18)

then the optimal solutions of OCP (2) satisfy ∀t ∈ [0, Tf ],
2∑
i=1

‖yi(t)− yi‖+ ‖λyi(t)− λyi‖

+ ‖ws(t)− w‖ ≤ c1
(
e−c2t + e−c2(Tf−t)

)
,

(19)
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where c1 does not depend on Tf and the optimal control
is the singular ws in ¬.

Remark 1 Assuming that Tf is sufficiently large is clas-
sical in turnpike framework (Trélat & Zuazua (2015)).
The proof of Theorem 1 provides an estimate on the
lower-bound of Tf . This bound is satisfied in biological
applications, e.g., metabolite production (Yegorov et al.
(2019); Caillau et al. (2020)), algal growth (Djema et al.
(2020b)) due to the selection time much larger than the
time-constants characterizing the system dynamics.

Remark 2 The conditions (17) ensure that the real part
of the eigenvalues of the matrix Ψ are non-zero (i.e. they
are not on the imaginary axis), which leads to a hyperbolic
behavior around the static steady-state. In practice, the
conditions (17) are satisfied for a large class of systems
describing microalgae growth, as illustrated in Sect. 5.5.

Remark 3 In the proof of the second part of Theorem 1,
we use the approach introduced in Pighin & Porretta
(2016); Trélat & Zuazua (2015). Notice that the main
theorem from Trélat & Zuazua (2015) can not be applied
to our class of optimal control problems. Firstly, the con-
trol is bounded in the considered class of optimal con-
trol problem whereas it is unbounded in Trélat & Zuazua
(2015). Secondly, the matrix −Hyy + HywH

−1
wwHwy is

not positive definite in our case. For instance, choosing
fi(yi) = aiyi−bi

yi
, it follows that 2f ′1(y1) + y1f

′′
1 (y1) =

0, and then we deduce that, −Hyy + HywH
−1
wwHwy =

−Hyy = diag{f ′′1 (y1),−f ′′2 (y2)}, which does not satisfy
the positive definite condition. This point is illustrated
numerically in Sect. 5.5 using Droop’s functions. There-
fore, the hypotheses of the second part of Theorem 1
are different from the hypotheses of the main theorem
in Trélat & Zuazua (2015).

The proof of Theorem 1 is divided in two parts. The
first step concerns the statement ¬ and derives from
the PMP. The second step is based on the hyperbol-
icity of the linearized system ż = Ψz + Λ(z), where
z = (δy, δλy)T . The arguments similar to those in
Pighin & Porretta (2016); Trélat & Zuazua (2015) are
sketched, the proof is detailed in the associated techni-
cal report Djema et al. (2021).

4 Proof of Theorem 1

¬ Using (4)-(5), we note that the PMP implies that
the admissible control function satisfies, for almost all
t ∈ [0, Tf ], the maximization condition,

max
w(t)∈[0,wm]

H(yi, λyi , w) = max
w(t)∈[0,wm]

Φ(λyi , w). (20)

At first sight, we deduce from (20) that any extremal
solution should be a concatenation of bang and singu-
lar arcs over [0, Tf ]. Indeed, using (5) we notice that

in the case where λy1(t) ≥ 0 and λy2(t) ≥ 0, the con-
trol satisfying (20) is the bang w(t) = wm. Similarly, if
λy1(t) ≤ 0 and λy2(t) ≤ 0, then it follows that the con-
trol satisfying (20) is the bang w(t) = 0. And finally,
when λy1(t)λy2(t) < 0 at any t ∈ [0, Tf ], we deduce from
the fact that gi is a positive increasing function that the
control satisfying (20) is the singular control denoted
by ws(t), which maximizes Φ and which is neither 0 nor
wm. However, using the co-states dynamics given by,{

λ̇y1 = λy1 (f1(y1) + f ′1(y1)y1)− f ′1(y1),

λ̇y2 = λy2 (f2(y2) + f ′2(y2)y2) + f ′2(y2),
(21)

where fi are continuously increasing, we deduce that,

λy1 =
f ′
1(y1)

f1(y1)+f ′
1(y1)y1

> 0 and λy2 =
−f ′

2(y2)
f2(y2)+f ′

2(y2)y2
< 0.

Then, since λyi is an equilibrium point of (21) and using
the transversality conditions (6), we deduce that,{

0 < λy1(t) < λy1 ,

λy2 < λy2(t) < 0,
(22)

for all t ∈ [0, Tf ), where the latter inequalities derive
from the fact that ∂(fi(yi)yi)/∂yi > 0 and f ′i(yi) > 0 in
(21). In particular, (22) imply that for all t ∈ [0, Tf ),

λy1(t)λy2(t) < 0. (23)

Consequently, we conclude from (23) that the control
ws(t) is the one that satisfies the PMP and thus steers
over the time window [0, Tf ] the trajectories from y1(0),
y2(0) to y1(Tf ), y2(Tf ). This concludes the proof of ¬.

 Now, let us focus on the eigenvalues of the matrix Ψ
defined in (14). Firstly, let us observe that,

det(Ψ− κI4) = det

(
Hλy − κI2 −HλwH

−1
wwHwλ

−Hyy −Hyλ − κI2

)
,

where Ip is the p × p identity matrix. We notice that
Hyy and −Hyλ − κI2 are diagonal and thus they are
commutative. Therefore, it follows that,

det(Ψ− κI4) =

det
(
(Hλy − κI2)(−Hλy − κI2)−HλwH

−1
wwHwλHyy

)
.

Consequently, det(Ψ− κI4) = 0, leads to,

(a2
1 − κ2 − b1)(a2

2 − κ2 − b4)− b23 = 0, (24)

where the constants a’s and b’s are defined before Theo-
rem 1. From the equation (24) we readily get the eigen-
values κj , j = 1, . . . , 4, given in (15). Under the suit-
able assumptions expressed in (17), we ensure that the
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studied optimality system is hyperbolic, i.e., all eigen-
values of Ψ have nonzero real parts. Next, by Theorem 6
of Molinari (1977), it follows that there exist symmetric
2 × 2 matrices P−, P+ maximal and minimal solutions
of the Riccati equation,

HyλP + PHλy −Hyy − PHλwH
−1
wwHwλP = 0.

Moreover, the corresponding matrices Ω+ = Hλy −
HλwH

−1
wwHwλP+ and Ω− = Hλy − HλwH

−1
wwHwλP−

are such that eigenvalues of Ω+ have strictly positive
real part and eigenvalues of Ω− have strictly nega-
tive real part, i.e., Ω+ is unstable and Ω− is stable.

We denote by, V :=

(
I I

P− P+

)
, where I is the 2 × 2

identity matrix. Straightforward calculations show that
Ψ̃ = V −1ΨV = diag{Ω−,Ω+}. We denote by z̃ the new
variable s.t. V z̃ = z, and then it follows from (12) that, ˙̃z1(t) = Ω−z̃1(t) + θ1 (z̃1(t), z̃2(t)) ,

˙̃z2(t) = Ω+z̃2(t) + θ2 (z̃1(t), z̃2(t)) ,
(25)

where the θi, i = 1, 2, satisfy the o-little property as in
(13). At this juncture, we point out that under differ-
ent hypothesis, we have rewritten the optimality con-
ditions in the form (25) similarly to Trélat & Zuazua
(2015) and Pighin & Porretta (2016). It can be shown
(see Lemmas 2-3 (Djema et al. (2021))), that there ex-

ists r > 0 s.t. for all (z̃0
1 , z̃

f
2 ) satisfying, z̃0

1 = z̃1(0), z̃f1 =

z̃2(Tf ), (z̃0
1 , z̃

f
2 ) ∈ B(0, r), the corresponding solution

(z̃1(t, (z̃0
1 , z̃

f
2 ), z̃2(t, (z̃0

1 , z̃
f
2 )) of system (25) admits for

any t ∈ [0, Tf ] the bound,‖z̃1(t)‖ ≤ Cκ
[
‖z̃0

1‖ e−κt + e−κ(Tf−t) ‖z̃f2 ‖Θ1(‖z̃1‖c0)
]

‖z̃2(t)‖ ≤ Cκ
[
‖z̃f2 ‖ e−κ(Tf−t) + e−κt ‖z̃0

1‖Θ2(‖z̃2‖c0)
]

(26)

Next step is to verify that there exist T ∗ > 0 and ε > 0
in (18) s.t., for any Tf > T ∗ and y(0) satisfying (18), the

initial and final conditions (z̃0
1 , z̃

f
2 ) satisfy,{

z̃0
1 + z̃2(0) = y0 − y,
P−z̃1(Tf ) + P+z̃

f
2 = −λy.

(27)

For that, we use the fixed point argument as in Pighin
& Porretta (2016), by defining the map F : B(0, r) →
R4,s.t.,

F

(
z̃0

1

z̃f2

)
=

(
y0 − y − z̃2(0)

−P−1
+ (P−z̃1(Tf ) + λy)

)
,

and showing that F admits the unique fixed point

(z̃0
1 , z̃

f
2 ). This step is detailed in Appendix D.4 in Djema

et al. (2021). It is worth mentioning that at this stage
of the proof, we also get the lower-bound T ∗ of Tf and
ε from (18). Finally, using (26) for Tf > T ∗, we obtain
for all t ∈ [0, Tf ],

‖δy(t)‖ = ‖z̃1(t, (z̃0
1 , z̃

f
2 ))‖+ ‖z̃2(t, (z̃0

1 , z̃
f
2 ))‖

≤ Cκ
(
‖z̃0

1‖e−κt + e−κ(Tf−t)‖z̃f2 ‖Θ1(r)
)

+Cκ

(
‖z̃f2 ‖e−κ(Tf−t) + e−κt‖z̃0

1‖Θ2(r)
)
.

Up to defining a bigger constant Cκ, we deduce that,

‖δy(t)‖ ≤ Cκ
(
e−κt + e−κ(Tf−t)

)
, ∀t ∈ [0, Tf ]. (28)

Note that Cκ is independent of Tf . Similarly, we get

‖δλy(t)‖ ≤ Cκ
(
e−κt + e−κ(Tf−t)

)
, ∀t ∈ [0, Tf ]. (29)

Note that there exists R = R(r) s.t. ‖δy‖+ ‖δλy‖ ≤ R.
Then, using additional calculations for δw(t), we get,

‖δw(t)‖ = ‖w(y, λy)− w‖ ≤
sup

B((ȳ,λ̄y),R)

‖∇y w‖‖δy‖+ sup
B((ȳ,λ̄y),R)

‖∇λy
w‖‖δλy‖, (30)

for all t ∈ [0, Tf ]. Combining (28), (29) and (30) leads us
to the exponential turnpike estimate given in (19) and
thus concludes the proof of Theorem 1.

5 Application to a higher dimensional model

5.1 Algal competition using Droop’s model

In this section, we focus on a model of competition be-
tween two microalgae populations in dimension 5, with
the aim of achieving species separation over a fixed time
window. We tweak this issue using a system reduction
in order to rewrite the optimization objective in term
of the generic OCP (2). Let x1 and x2 be the biomass
concentrations of two different strains of microalgae, ini-
tially coexisting in a bioreactor with one limiting sub-
strate (s), s.t., s(t) ∈ [0, sin], for all t ≥ 0, where sin is
the constant substrate influent concentration. Each mi-
croalgae species uptakes the free nutrient s. The intra-
cellular amount of this limiting element is the cell quota
qi, with i = 1, 2.

A general class of quota models, including the classical
Droop’s model (Droop (1968)), writes,

ṡ = (sin − s)D −
∑2
i=1 ρi(s)xi,

q̇i = ρi(s)− µi(qi)qi,
ẋi = [µi(qi)−D]xi,

(31)

The function µi in (31) stands for the growth rate of the
i−th species, while ρi is its nutrient uptake rate. The
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dilution rateD and the substrate input sin can generally
be manipulated. The functions ρi and µi are nonnegative
and increasing bounded functions, s.t., 0 ≤ ρi(s) ≤ ρmi,
and, 0 ≤ µi(qi) ≤ µmi, where ρmi and µmi are positive
constants. Typically in Droop’s model, the uptake rate
ρi(s) is expressed in terms of Michaelis-Menten kinetics,

ρi(s) =
ρmis

Ksi + s
, (32)

whereKsi is a positive constant. The most classical form
–known as Droop’s growth– for µi is given for i = 1, 2 by,

µi(qi) = µi∞

(
1− Qimin

qi

)
, qi ≥ Qimin. (33)

The minimum intracellular quota Qimin > 0 defines
the quota under which cell division cannot occur. Other
forms have been used to describe the growth rate such as
the Caperon-Meyer equation (Caperon & Meyer (1972)),

µi(qi) =
µi∞(qi −Qimin)

qi −Qimin + kqi
, qi ≥ Qimin, kiq > 0, (34)

another possible form that we also use in this work is,

µi(qi) =
µi∞q

ni
i

qni
i + kni

qi

, ni > 1. (35)

Notice that the choices (34)-(35) lead to nonlinear terms
µi(qi)qi in (31). In all these cases, the resulting quota is
bounded for all t ≥ 0, i.e., Qimin ≤ qi(t) ≤ qmi, where
qmi is the maximum internal storage rate (Bernard
(2011)). In the sequel, the quota variables qi will stand
for yi in model (1) and we will prove that: (i) OCP (2)
achieves microalgae separation, through maximization
of relative concentration x1(Tf )/x2(Tf ), (ii) Theorem
1 applies for different functions µi (given by (33)-(35)),
i.e., turnpike-type behaviors characterize microalgae
selection under various growth rates.

5.2 Controlling the substrate concentration

Now, let us assume that the free substrate concentra-
tion s is controlled by an ad’hoc controller. For instance,
by playing with the dilution rate D and with the influ-
ent substrate concentration sin, the concentration s can
follow a desired (smooth enough) reference trajectory
s(t) = s∗(t). Different control designs can be used such
as linearizing control (Bastin (1990)), asymptotic con-
trol (Mailleret et al. (2004)) or other approaches that
demonstrated their efficiency on microalgae (Bernard et
al. (2015); Tebbani et al. (2014)). By assuming a perfect
tracking of the substrate towards w(t), the system (31)
then reduces to,{

q̇i = ρi(w)− µi(qi)qi,
ẋi = [µi(qi)−D]xi,

(36)

This system is triangular, and the dynamics of xi results
from the dynamics of qi. Consequently, we can focus
exclusively on the quota-dynamics qi, for i = 1, 2.

5.3 Maximizing the relative biomass density

Species separation is achieved when maximizing the rel-
ative density of the species of interest x1 at Tf , i.e., find-
ing the optimal control maximizing the quantity,

C̃(Tf ) =
x1(Tf )

x2(Tf )
. (37)

Let us state the following key result to end up with a
functional that does not depend on the states xi, but still
maximizes the relative concentration at the final-time.

Proposition 1 Any solution of the class of systems (36)
maximising C[0,Tf ] defined in OCP (2) is equivalently

maximizing C̃Tf
in (37), where the functions fi in OCP

(2) stand for the growth rates µi in system (36).

Proof: Indeed, the cost function in OCP (2) writes,

C[0,Tf ] =
∫ Tf

0
[µ1(q1(t))−D]− [µ2(q2(t))−D] dt.

Using the state dynamics, µi(qi)−D = ẋi

xi
, we get,

C[0,Tf ] = [ln(x1(t))− ln(x2(t))]
Tf

0 = ln
(
x1(Tf )x2(0)
x1(0)x2(Tf )

)
.

Thus, maximizing C[0,Tf ] indeed consists in maximizing

C̃Tf
. The advantage of considering the criterion C[0,Tf ]

instead of the natural criterion C̃Tf
is that it is indepen-

dent of the dynamics of the states xi, for i = 1, 2.

Thus, the optimization problem can now be reduced to
an OCP as in (2), involving the cost C[0,Tf ] and associ-
ated with the reduced-system (in the form (1)), q̇1 = −µ1(q1)q1 + ρ1(w),

q̇2 = −µ2(q2)q2 + ρ2(w),
(38)

where the growth rate µi is given by one of the functions
(33)–(35), the uptake rate ρi is given by (32), and the
control w is equivalent to the substrate s in (31) once
regulated by the ad’hoc controller. This is especially true
since ¬ in Theorem 1 states that the solution of the OCP
(2) corresponds to the singular control function with no
bangs over the time-window [0, Tf ], and consequently the
optimal control wH(t) has thus the required smoothness
to be tracked in the original system (31) through the
ad’hoc controller. To sum up, we can see that finding a
control for system (31) approaching as close as possible
the solution wH(t) of the OCP studied in Sections 2-3
will provide an excellent suboptimal control for the OCP
of the ful-system (31) associated with the criterion (37).

5.4 Optimal synthesis of species separation

Now, we are ready to apply the results obtained in Sect.
2-3 to the problem of species selection. Firstly, the static-
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OCP associated with (38) and C[0,Tf ] states,Maximize
w∈[0,wm]

∆(w) = µ1(q1(w))− µ2(q2(w)),

where −µi(qi)qi + ρi(w) = 0 for i = 1, 2 ,
(39)

under the steady-state constraints−µi(qi)qi+ρi(w) = 0
for i = 1, 2. Similarly to Section 2, the solution
of (39) –including the co-states– is denoted by,
Estatic =

(
q1, q2, λq1 , λq2 , w

)
. This optimal steady-state

satisfies (9)-(10), using this time the quota-coordinates
in (38), under the standard assumption of Section 2,
i.e., w ∈ (0, wm) as in Fig. 1, which is generally sat-
isfied for ρi and µi in (32)-(35), as illustrated later in
numerical simulations. A case in point is the classical
Droop’s model associated with (32)-(33), in which case
the function ∆ rewrites,

∆(w) = µ1(δ−1
1 (w))− µ2(δ−1

2 (w)), (40)

where, δi(`) = ρ−1
i (µi(`)`), and since, ρ−1

i (`) = Ki`
ρim−` ,

for all ` ∈ [0, ρim), we obtain, δi(`) = Ki
`−Qimin

σi−` , where,

σi = ρim
µi∞

+Qimin. This leads to, δ−1
i (`) = σi`+KiQimin

`+Ki
,

and consequently we end up in the Droop’s case with,

µi(δ
−1
i (`)) =

ρim`

σi`+KiQimin
, i = 1, 2. (41)

Using (41) we can compute successive derivatives of

∆(w) in the Droop’s case, i.e., ∆′(w) = ρ1mK1Q1min

(K1Q1min+σ1w)2
−

ρ2mK2Q2min

(K2Q2min+σ2w)2
, and, ∆′′(w) = κ1(w) − κ2(w), where,

κi(w) = − 2Kiµ
2
i∞Qiminρim(µi∞Qimin+ρim)

(Kiµi∞Qimin+(µi∞Qimin+ρim)w)3
. Thus, by

looking for the points that satisfy ∆′(w) = 0 and
∆′′(w) < 0 in the case where µi is given by (33), we de-
duce that the steady-state Estatic =

(
w, q1, q2, λq1 , λq2

)
,

satisfies, qi = 1
µi∞

(ρi(w) + µi∞Qimin) , for i = 1, 2,

λq1 = −Q1min

q21
, and, λq2 = Q2min

q22
. Numerically, we check

that only one numerical value w belongs to (0, wm) for a
sufficiently large wm, leading then to the configuration
in Fig. 1 (Fig. 4 in Droop’s case). We refer to Appendices
A-B in Djema et al. (2021) for more details on the prac-
tical determination of Estatic in the Droop’s case. In a
similar way, we can determine the analytic expression of
Estatic for different growth-rates ((34)-(35)). Therefore,
under suitable conditions a unique Estatic exists and
satisfies w ∈ (0, wm), and thus in light of Theorem 1 we
derive the following statement as a direct consequence.

Claim 1 (Application of Theorem 1) Let fix any bi-
ological parameters for the functions ρi in (32) and µi
in (33)-(35), i = 1, 2, in system (31), s.t., there exists
a unique Estatic with w ∈ (0, wm), solution of the static-
OCP (39) then,

¬ the optimal control wH(t) for all t ∈ [0, Tf ] is singular,

i.e., it does not involve bang arcs 0 and wm over [0, Tf ].

 Moreover, if the corresponding conditions (17) and
(18) are fulfilled, the singular optimal control (substrate
concentration) wH(t) and its related quota qi(t), as well
as their respective co-states λqi(t), i = 1, 2, exhibit over
the fixed time-horizon [0, Tf ] an exponential turnpike be-
havior characterized in (19).

Note that the overlapping of favorable features (namely
the facts that w solution of the static-OCP is remote
from the bounds 0 and wm, the optimal control is in-
herently singular, i.e., ws(t) ∈ (0, wm) for all t ∈ [0, Tf ],
and also the exponential turnpike keeping ws(t) almost
constant most of the time) results in strong smoothness
of the optimal control and the optimal trajectories, as
illustrated in the next section. Nonetheless, this smooth-
ness does not imply that the resulting ad’hoc controller
of system (31) should be smooth as well, as shown in
Djema et al. (2020b) where the obtained dilution-based
control is of type bang-singular. To sum up the method-
ology provided in this paper: the first step is to deter-
mine the optimal point Estatic s.t. w ∈ (0, wm), solution
of the static-OCP corresponding to a given dataset of
biological parameters and functions in the system (31).
Next, we compute the matrix Ψ defined around Estatic as
in (14). Then, the conditions stated in –Theorem 1 en-
sure the existence of a turnpike-type behavior of the op-
timal solution of the reduced system (1). The numerical
computation of the eigenvalues κj , j = 1, . . . , 4, which
are defined in (15), is illustrated in different cases of the
functions µi in Section 5.5. Finally, it is worth noting
that the conditions (17) in Theorem 1 appear to be sys-
tematically satisfied in numerical simulations, leading
accordingly to a turnpike behavior in all the evaluated
cases.

5.5 Numerical synthesis through direct methods

The direct-optimization approach performed in this sec-
tion illustrates the results of Theorem 1 applied to the
quota-model in Sect. 5 (System (38)) for the different
growth functions ((33)-(35)) illustrated in Fig. 2.
In this perspective, the state variables and the control
function of system (38) are discretized, by setting a sub-
division of the time-horizon [0, Tf ] with fixed Tf , and the
substrate-control w is discretized overW. The state dy-
namics q1 and q2 (38) is discretized with Lobatto scheme
(Betts (2010)), i.e. RK method of type Lobatto-IIIC,
based on an implicit trapezoidal rule, of order 6. suit-
able for stiff-nonlinear problems. Thus, numerical di-
rect methods transform OCP (2) (stated in Sect. 2, as-
sociated with System (38)) through the discretization
step, into a nonlinear programming problem in finite-
dimension (see Djema et al. (2021), Sect. 6). Using the
numerical values of the biological parameters in Fig. 2,
we performed several direct optimizations in Bocop with
appropriate settings (tolerance for NLP solver: 10−34,
2000 time-steps). No issue is encountered regarding the
initialization and starting points for solving the studied
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Fig. 2. Various functions used in Droop and Caperon-Meyer models (Caperon & Meyer (1972); Droop (1968)). From left to
right: absorption functions ρi in (32) with, ρ1m = 9.1 (unit), K1 = 0.08 (unit) ρ2m = 9.6 (unit), K2 = 0.25 (unit). Growth
rate µi in (33) with, µ1∞ = 1.6day−1, Q1min = 0.95µmol/L3, µ2∞ = 2.2day−1, Q2min = 1.5µmol/L3. Growth rate µi in (34)
with, µ1∞ = 0.75day−1, Q1min = 1.6µmol/L3, kq1 = 0.9µmol/L3, µ2∞ = 0.9day−1, Q2min = 2µmol/L3, kq2 = 0.6µmol/L3.
Growth rate µi in (35) with, µ1∞ = 1.5 day−1, n1 = 4, kq1 = 3 µmol/L3, µ2∞ = 1.15 day−1, n2 = 3, kq2 = 2 µmol/L3.

Example 1 Example 2 Example 3

w 0.021 0.015 0.074

q1 2.164 0.015 3.91

q2 1.84 0.015 2.69

λq1 0.44 0.322 0.173

λq2 -0.20 -0.1377 2.690

κ1,2 2.332 ±0.81i 1.74 ±1.09i ±3.02

κ3,4 -2.332 ±0.81i -1.74 ±1.09i ±0.82

Table 1
Values of the static steady-state Estatic and eigenvalues of
the matrix Ψ defined at Estatic for the 3 examples.

problem. In all the following examples, the conditions of
Theorem 1 are satisfied, and the optimal solutions sat-
isfy the turnpike property (19) as stated in Claim 1.

Example 1 We set Tf = 15 days and we consider that
the growth functions µi are in the Droop’s form (33).
In this case, the sufficient conditions given in Trélat &
Zuazua (2015) are not satisfied (see Remark 3). The func-
tion ∆(w) = µ1(δ−1

1 (w)) − µ2(δ−1
2 (w)) is given in Fig.

(3). In addition, the static steady-state Estatic and the
eigenvalues of the matrix Ψ are given in Tab. . Notice
also that in this case Hyy = diag{0.2997,−1.0443}. Ac-
cording to Theorem 1 (see Claim 1), the turnpike prop-
erty (19) holds as shown in Fig. 4.

Example 2 We set Tf = 30 days and we consider that
the growth functions µi are in the form (34), with the bi-
ological parameters given in Fig. 2. Results are in Tab.
1. The turnpike holds according to Theorem 1, as de-
scribed in Claim 1 and illustrated in Fig. 5. Notice that
the sufficient conditions for the turnpike existence given
in Trélat & Zuazua (2015) are not satisfied, since Hyy =
diag{0.116993,−0.939631}.

Example 3 We set Tf = 50 days. The growth
functions µi are in the form (35), with the biologi-
cal parameters given in Fig. 2. Results are in Tab.
1. Similarly to the previous examples, here we get,
Hyy = diag{0.183898,−0.210028}. However, the turn-
pike characteristics hold in the optimal solution accord-
ing to Theorem 1 and Claim 1, as shown in Fig. 6.

In all these examples (Fig. 4-6), the optimal solutions of
the OCP (2), settled in relatively large time [0, Tf ], con-
sist of three pieces: the first and the last ones are rela-
tively short arcs, and the middle piece being a relatively
long-time arc staying close to the optimal steady-state
solution of the associated static-OCP (8).

6 Conclusion

The optimal control has been fully-characterized
through a complete study combining Pontryagin’s prin-
ciple and turnpike frameworks relying upon classical
hyperbolic system properties. The turnpike theory con-
siderably simplifies the understanding of the control
strategy and provides a clear insight into the optimal
control structure. By investigating the OCP and its
associated static version, the main result in this paper
proves that the optimal control is always singular and
provides sufficient conditions ensuring the existence of
turnpike behaviors characterizing the optimal trajecto-
ries. We had to upgrade the existing turnpike results
so that they can apply to the specificity of our models.
The considered class of systems naturally appears in the
framework of competition between two species, but a
similar structure is likely to play a role for other classes
of problems. In general, solving an OCP in dimension 5
is a challenging issue (see Djema et al. (2020a,b)). Thus,
the microalgae optimal selection problem was reduced
considering the core dynamics in dimension 2. This
reduction approach using a back-stepping philosophy
might also prove to be efficient in other contexts, and
this will be the main focus of our future work.
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