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Abstract

Magnetic anisotropy, in the absence of an external magnetic field, relates to the

degeneracy lift of energy levels. In the standard case of transition metal complexes,

this property is usually modelled by an anisotropic spin Hamiltonian and one speaks

of ‘zero-field splitting’ (ZFS) of spin states. While the case of mononuclear complexes

has been extensively described by means of ab initio quantum mechanical calculations,

the literature on polynuclear complexes studied with these methodologies is rather

scarse. In this work, advanced multiconfigurational wave function theory methods are

applied to compute the ZFS of the ground S = 4 state of an actual tetranickel(II)

complex, displaying a magnet behavior below 0.5 K. First, the isotropic couplings are

computed in the absence of the spin-orbit coupling operator, in the full complex and

also in clusters with only two active nickel(II) centers, confirming the occurence of weak

ferromagnetic couplings in this system. Second, the single-site magnetic anisotropies

are computed on a cluster bearing only one active nickel(II) site, showing that the

single-site anisotropy axes are not oriented in an optimal fashion for generating a large

uniaxial molecular anisotropy. Furthermore, the possibility for involving only a few

local orbital excited states in the calculation is assessed, actually opening the way for

a consistent and manageable treatment of the ZFS of the ground S = 4 state. Third,

multiconfigurational calculations are performed on the full complex, confirming the

weak uniaxial anisotropy occuring for this state, and also, interestingly, revealing a

significant contribution of the lowest-lying orbitally excited S = 3 states. Overall,

by comparison with experiment, the reported results question the common habit of

using only one structure, in particular derived from a crystallography experiment, to

compute magnetic anisotropy parameters.
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1 Introduction

Many single-molecule magnets (SMMs) have been proposed since the discovery of the in-

triguing properties of the now famous Mn12 complex.1–4 Several strategies for improving the

blocking temperatures have been envisaged, as (i) attempting to reach the largest possible

molecular spin state, which is somehow vain5 to enlarge −DS2 (the “energy barrier” for

even S cases), (ii) playing with the local coordination environment of the paramagnetic ions

to enlarge the single-site anisotropies,6 (iii) playing with the orientation of the single-site

anisotropy axes,7 (iv) triggering “first-order” spin-orbit coupling (SOC) situations, as it is

the case for instance for lanthanide SMMs8 or (v) limit the relaxation mechanisms notably

by reducing the spin-phonon coupling.9 So far, the highest reported blocking temperatures

concern dysprosium complexes,10–13 with a current record at 80 K.13

In the field of molecular magnetism, large polynuclear SMMs have been modelled quan-

tum mechanically by density functional theory (DFT), following the pioneering work of Ped-

erson and Khanna.14 Many polynuclear transition metal complexes have been successfully

treated,15,16 with usually a very good agreement between the computed and experimental

axial ZFS parameter, D, which at least in first intention, is key to describe the “spin-based”

SMMs (by opposition to the “SOC-based” ones, whose properties cannot be fully modeled by

simple spin Hamiltonians). However, this methodology somehow fails for describing mononu-

clear nickel(II) complexes,17 for reasons which remain to be better elucidated, which may

question its consistent applicability to polynuclear nickel(II) complexes.

Among the polynuclear nickel(II) complexes, several cubane-like structures have been

reported in the literature.18–21 Typical features include weak isotropic couplings and small

uniaxial molecular anisotropies. In this work, the complex reported by Moragues-Cánovas et

al. has been arbitrarily selected as a case study to showcase the capabilities and challenges

that arise from the wave function theory (WFT) framework (note that it has previously

been the subject of a DFT study devoted to the isotropic couplings,22 as also for another

nickel(II) cubane-like complex23,24). In contrast with DFT, multiconfigurational and rela-
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tivistic wave function calculations have become a standard to compute the ZFS in mononu-

clear complexes,25–29 with notably many successful applications on mononuclear nickel(II)

ones.17,30–41

The actual description of the magnetic anisotropy in binuclear nickel(II) complexes is lim-

ited to a few papers.7,42,43 These studies have reached several conclusions that are of interest

for the present paper. First, the mapping between the multispin and the giant spin Hamilto-

nians is somehow intractable if one uses a multispin Hamiltonian that involves a biquadratic

anisotropic exchange term.42,43 Consequently, a cluster approach consisting of computing

single-site and inter-site isotropic and anisotropic terms is not a practical way of deriving

the giant spin Hamiltonian for the ground S = 4 state of the complex of interest. Therefore,

this ZFS will be computed with the four active nickel(II) sites, which, as we will see, ap-

pears to be actually very demanding. Second, the computation of the single-site anisotropic

parameters can be done with only one active nickel(II) site.7 Third, knowledge of the ori-

entations of the single-site anisotropy axes may reveal potential synergies or interferences

between the single-site anisotropies.7 Note that concerning the comparison of experimental

and computational giant spin Hamiltonian parameter values, the experimental D value for

the S = 2 state of the [Ni2(en)4Cl2]
2+ (en = ethylenediamine) complex,44 −3.0 cm−1, was

fairly reproduced by the −1.8 cm−1 computational one,43 as mentioned elsewhere.29

The paper is organised as follows. First, a theoretical framework will be given by intro-

ducing the structure and its symmetry properties, the Heisenberg-Dirac-van Vleck (HDVV)

Hamiltonian and its topology for this system, the single-site excited states and their role

on the single-site anisotropies, the giant spin Hamiltonian for the ground S = 4 state and

the used quantum mechanical methodologies as well as the associated computational details.

Second, the results will be presented in three parts, corresponding the the previous items

(i.e. the isotropic couplings, the single-site anisotropies and the giant spin Hamiltonian).

Third, a discussion on the physics of the system and on the followed modelling practice will

be done, before opening toward perspectives for the molecular magnetism community.
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2 Theory and Methods

2.1 Preliminaries: Structure and symmetry of the cubane-like Ni4

complex

The structure reported by Moragues-Cánovas et al.19 is considered in this work. The complex

is characterized by a molecular charge of +4, overall compensated by a mixture of Na+ and

NO−
3 ions in the crystal, which are here neglected (only the complex is treated). The complex

structure displays an S4 symmetry, meaning that the four nickel(II) ions are symmetry

equivalent. In Figure 1, Ni1 and Ni3 as well as Ni2 and Ni4 (and reciproqually) can exchanged

by applying the C2 symmetry operation, while the other exchanges require the application

of an S1
4 or S3

4 improper rotation. By symmetry, only two Ni–Ni distances apply: 3.057 Å

(Ni1–Ni3 and Ni2–Ni4) and 3.067 Å (Ni1–Ni2, Ni1–Ni4, Ni2–Ni3 and Ni3–Ni4).

Figure 1: Ball and stick representations of the molecular structure of the studied cubane-like
Ni4 complex, derived from the crystallographic one:19 all atoms (left); only the Ni, O and N
atoms (right). The C2 symmetry axis is vertical in the paper plane. Color code: gray stands
for Ni, red for O, blue for N and pink for H. A scheme recalls the Ni–Ni distances.
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The coordination environment of the nickel(II) ions consists of distorted octahedra. Six

distinct bond distances appear for the first coordination sphere atoms: the Ni–O distances

range between 2.023 and 2.051 Å for the three cubane core oxygen atoms and are 2.054

and 2.056 Å for the tripodal ligand oxygen atoms, while the Ni–N distance is 2.060 Å. It is

important to stress here that all the ]Xi–Ni–Xj bond angles, Xi and Xj being neighbors in

the first coordination sphere of the nickel(II) ion, deviate from the 90◦ value. Finally, the

three ]Nii–O–Nij bond angles for the cubane core oxygen atoms have pretty close values,

actually ranging from 97.04 to 97.95◦.

As stated by Venegas-Yazigi et al. in their previous DFT study,22 the crystal structure

misses eight hydrogen atoms, located at the tripodal ligand terminations. In a similar way

as in their study, the positions of these eight hydrogen atoms have been optimized. To do so,

these positions have been initially defined so as to respect the S4 symmetry, relaxed in a black-

box way with the CrystalMaker software45 and slightly corrected after optimization to force

the S4 symmetry. The resulting structure is given as Supporting Information. Note that the

positions of terminating hydrogen atoms may affect the computed anisotropy parameters,

as was observed in a dicobalt(II) system by Petit et al.,46 and that this will be further

commented in the Discussion Section.

2.2 The Heisenberg-Dirac-van Vleck Hamiltonian, its topology

and its solutions

Before introducing model Hamiltonians for describing the spin anistropy, it is worth starting

by introducing the Heisenberg-Dirac-van Vleck (HDVV) Hamiltonian.47–49 This Hamilto-

nian models the degeneracy lifts of spin states that essentially bear the same orbital wave

functions. A typical situation for applying this Hamiltonian concerns polynuclear transition

metal complexes, for which unpaired electrons are localized on distinct magnetic sites. Var-

ious formulae appear in the literature, depending on the prefactor that is applied together

with the isotropic coupling parameters. In this work, the following expression is considered:
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Ĥ
HDVV

=
∑
<i,j>

Jij Ŝi · Ŝj (1)

where Jij is the isotropic coupling between two distinct i and j sites, Ŝi and Ŝj are the spin

operator vectors on these sites, and the summation runs over all the independent pairs of

magnetic sites.

Basically, two main routes from electronic structure theory calculations may be em-

ployed,50 (i) derive the couplings from spin-broken-symmetry calculations (spin unrestricted

approach) or (ii) derive the couplings from multiconfigurational calculations that ensures

the spin symmetry of the computed states (spin adapted approach). In the latter approach,

followed in this work, the entire “Heisenberg spectrum” may be computed and deviations to

the Landé intervals may reveal true physics51–54 and/or artifacts of the used computational

approach.55,56 The choice of the orbitals to compute the states belonging to the Heisenberg

space may be critical and it may be cleaner to compute them with a common set of orbitals

(in particular within the state-average framework).50,56,57 The physics of the coupling has

been the subject of many publications, among which one may quote a series of articles by

Calzado et al.58–60 Naturally, many other articles have been key to understand this physics,

as decribed for instance in the extensive review of Malrieu et al.61

As already mentioned, the complex under study displays an S4 symmetry. Thus, the

number of free coupling parameters is drastically reduced by symmetry, and the HDVV

Hamiltonian may be rewritten as follows:

Ĥ
HDVV

= J1

(
Ŝ1 · Ŝ2 + Ŝ1 · Ŝ4 + Ŝ2 · Ŝ3 + Ŝ3 · Ŝ4

)
+ J2

(
Ŝ1 · Ŝ3 + Ŝ2 · Ŝ4

)
(2)

where J1 and J2 correspond to the longer and shorter Ni–Ni distances of the cubane core,

respectively. Schematically, the topology of the isotropic couplings may be represented as in

Figure 2.

With four S = 1 sites, the complex under study already displays a large manifold of
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Figure 2: Topology of the isotropic couplings for the ground orbital configuration (adapted
from Reference 18). Only two coupling constants apply (S4 symmetry).

states. Since the HDVV Hamiltonian naturally applies to the uncoupled basis,62 i.e. to the

|S1,MS1, S2,MS2, S3,MS3, S4,MS4〉 functions, one can easily determine its size: 34 = 81. A

convenient way of determining all the generated spin states consists in building a “spin tree”

by successive coupling of the sites. When two Si and Sj states are coupled, one may generate

coupled Sij states that range between |Si − Sj| and Si + Sj. For instance, the coupling of

two S = 1 states generate three spin states with S = 0, 1 and 2, respectively. Continuing

the process up to four coupled S = 1 states leads to one S = 4, three S = 3, six S = 2, six

S = 1 and three S = 0 spin states (see Figure 3).

Due to the S4 symmetry, some solutions of the HDVV Hamiltonian are actually doubly

degenerate. The solutions corresponding to this situation are actually available for instance

in the work of Escuer et al.18 Note that these solutions need to be adapted to fit the present

Hamiltonian and labels: J1 and J2 need to be inverted and all the energies must be multiplied

by a −2 factor. The resulting solutions are given in Table 1.

2.3 The lowest-lying single-site excited states and the single-site

anisotropies

Various strategies can be envisaged to compute single-site anisotropies in a polynuclear

complex, (i) replace all the paramagnetic ions but one with a diamagnetic ion of similar
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Figure 3: “Spin tree” representing the S molecular spin states that are generated by the
successive isotropic couplings of up to four S = 1 single-site spin states. The summed
number of MS components of these spin states define the size of the Heisenberg Hamiltonian
(81 × 81).

size,42,63,64 in particular here zinc(II) ions to replace nickel(II) ones, (ii) use ab initio embed-

ding model potentials65 to mimic the important electrostatic effects driven by the presence of

the replaced paramagnetic ions,42 (iii) consider the other paramagnetic ions in their ground

closed-shell configuration,7 or (iv) lock other paramagnetic ions in a high spin state described

with only one configuration.66 Independent of the retained approach, only one paramagnetic

ion is considered “active” and one may then focus attention to the ZFS of the S = 1 state

of the ion of interest.

The description of the ZFS of an S = 1 states can be made by applying a simple spin

Hamiltonian:62,67
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Table 1: The solutions of the equation 2, adapted from Reference 18. The states
are characterized by an S quantum number and by an index n for each S block.

S n Heisenberg

4 1 0
3 1 −4J1
3 2 −2J1 − 2J2
3 3 −2J1 − 2J2
2 1 −7J1
2 2 −5J1 − 2J2
2 3 −5J1 − 2J2
2 4 −4J1 − 3J2
2 5 −4J1 − 3J2
2 6 −3J1 − 4J2
1 1 −9J1
1 2 −7J1 − 2J2
1 3 −7J1 − 2J2
1 4 −5J1 − 4J2
1 5 −4J1 − 5J2
1 6 −4J1 − 5J2
0 1 −10J1
0 2 −6J1 − 4J2
0 3 −4J1 − 6J2

Ĥ
S=1

= ŜDŜ (3)

where Ŝ is the spin operator vector andD the ZFS tensor. Without surprise, this Hamiltonian

was succesfully confronted to state-of-the-art effective Hamiltonians,30 meaning that this

model phenomenologically built perfectly captures all the important information contained

in the many-electron states and energies (see Section 2.6 for more details concerning this

procedure). The D tensor being symmetric, it can be diagonalized to obtain the magnetic

anisotropy axis frame and its diagonal elements in this frame. In the magnetic anisotropy

axis frame, Ĥ
S=1

can be rewritten as:

Ĥ
S=1

= D

(
Ŝ2
z −

2

3

)
+ E

(
Ŝ2
x − Ŝ2

y

)
(4)

where D is the axial ZFS parameters, defined as:
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D = Dzz −
1

2
(Dxx −Dyy) (5)

and E the rhombic one, defined as:

E =
1

2
(Dxx −Dyy) (6)

and where conventions apply to define the main anisotropy axis and label the two other ones,

as for instance:

0 ≤ E

D
≤ 1

3
(7)

In this convention, used in this work, D and E have the same sign. For the sake of com-

pleteness, one should mention that an alternative convention is also widely spread, for which

E is positive defined:

E

|D|
≤ 1

3
(8)

In both the cases, the spirit is the same, the main anisotropy axis is the most distinct one.

In the complex under study, no local symmetry element constraints the orientations of the

single-site magnetic anisotropy axes. Thus, these will be an actual output of the performed

quantum mechanical calculations.

Within multiconfigurational and relativistic frameworks, the determination of the ZFS

of S = 1 states require to define a configuration interaction (CI) space consisting of the MS

components of a set of non-relativistic or scalar-relativistic states. As mentioned earlier, the

first coordination spheres of the nickel(II) ions of interest consist in distorted octahedra. Due

to the S4 symmetry, the single-site anisotropy can be computed with any of the nickel(II)

ion as active. For computing this single-site anisotropy, the CI space must be designed in

such a way that it would respect the isotropy of the octahedral symmetry. In practice, this
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means taking the analoguous of entire multiplets in the octahedron. Therefore, several set of

states may be employed. As previously shown,30 one may then consistently consider 4 S =

1 states, 7 S = 1 states and 2 S = 0 ones, or the entire d8 manifold (with 8 electrons within

5 orbitals, one may build 10 S = 1 states and 15 S = 0 ones). These three CI spaces will

be considered in this work. Note that the rationalization of the ZFS in model situations can

be safely done with 4 S = 1 states by means of second order perturbation theory.29,68 This

space is not randomly chosen: it includes the lowest-lying single-excited states, meaning that

the numerators can be quite large (the SOC operator is essentially a monoelectronic one,

thus it includes the excited states that most couple with the ground one), and so do the

denominators (simply because these are the lowest-lying states).

For applying equation 3, we suppose that the lowest-lying excited orbital states are well

separated in energy with the ground state. In the case of a strict orbital degeneracy, even if

the SOC between the components of the two orbitally degenerate states appears at second

order of perturbations,69 the spin Hamiltonian approach is not suited anymore. Thus, a

geometrical distortion is necessary to make the spin Hamiltonian approach relevant again.

In the case of second-order SOC, even a tiny distortion can be enough,69 while the case of

first-order SOC may require a more significant one.35

2.4 The giant spin Hamiltonian for the ground S = 4 state

Providing that the ground S = 4 state is separated enough in energy with the other spin

states, the low-temperature magnetism can be described by a ZFS Hamiltonian acting only

on the MS components of this state:

Ĥ
S=4

= ŜDŜ +
4∑

n=2

2n∑
q=−2n

Bq
2nÔ

q
2n (9)

where Ŝ is the spin vector operator, D the second-rank ZFS tensor (as before), 2n the spin

operator order, q may be odd, and Bq
2n and Ôq

2n are the extended Stevens parameters and
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operators.68,70–72 2n cannot be larger than 2S, meaning that the summation in the complex

of interest runs over the 4, 6 and 8 spin operator orders. In the S4 symmetry case, the main

anisotropy axes is obvious: it is the C2/S4 symmetry axis. However, the tetragonal axis is

not known a priori. Assuming that the appropriate frame is determined, the Ĥ
S=4

model

Hamiltonian may be rewritten as:

Ĥ
S=4

= D

(
Ŝ2
z −

20

3

)
+

4∑
n=2

(
B0

2nÔ
0
2n +B4

2nÔ
4
2n

)
(10)

where D is the second-rank axial ZFS parameter (as before) and where negative q indices are

now prohibited (the problem is in fact recasted in terms of the standard Stevens operators).

In practice, the summation may be stopped earlier as soon as a good representation of the

spectrum is acquired. This approximation, typical in the interpretation of experimental data,

will be also discussed here in terms of the outcomes of the quantum mechanical calculations

(see Results Section). Indeed, the use of the effective Hamiltonian approach (see below)

may allow one to use the information contained in the wave functions and energies and

unambiguously discard or even extract43,69 the values of such parameters.

2.5 Ab initio calculations: Methods and details

The multiconfigurational and relativistic calculations performed in this work are based on

a two-step approach in which a set of scalar-relativistic states is first computed prior to

diagonalizing a spin-orbit configuration interaction (SOCI) matrix, expressed in the basis of

the MS components of the scalar-relativistic states. The Douglas-Kroll-Hess (DKH) Hamil-

tonian is used to explicitly account for scalar relativistic effects.73–75 The scalar relativistic

states are computed at the state-average complete active space self-consistent field (CASSCF)

level.76,77 Four different active spaces will be considered:

• isotropic couplings on the full complex: minimal active space consisting of 8 electrons

in 8 orbitals, i.e. the magnetic electrons and orbitals for four nickel(II) sites
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• isotropic couplings on clusters with two active magnetic sites: minimal active space

consisting of 4 electrons in 4 orbitals, i.e. the magnetic electrons and orbitals for two

nickel(II) sites

• single-ion anisotropies: minimal active space consisting of 8 electrons in 5 orbitals, i.e.

the d orbitals and electrons for one nickel(II) site

• molecular anisotropy of the ground S = 4 state: minimal active space consisting of 32

electrons in 20 orbitals, i.e. the d orbitals and electrons for four nickel(II) sites

Since state-average calculations will be performed, the results naturally depend on the

number of states that are included in the calculations. In the case of the isotropic couplings,

these will include the full Heisenberg space (see Figure 3 and Table 1) and in the case of the

full complex also a subset of it (1 S = 4 + 3 S = 3 states). In the case of the single-ion

anisotropies, three spaces will be considered (see Section 2.3). Concerning the ZFS of the

ground S = 4 state, two space will be considered and detailed in the Results Section since

these will be based on the previous results on the single-ion anisotropies.

Since the state-average CASSCF calculations may not be good enough for capturing

electron correlation, especially since minimal active spaces are considered (it is a pragmatical

choice owing to the computational cost), multireference perturbation theory calculations will

also be performed, based on the N -electron valence space perturbation theory at second order

(NEVPT2) method.78–80 Although this approach may not be fully quantitative for computing

isotropic couplings, it is quite successful for computing crystal-field excited states, thus for

computing ZFSs. Actually, enlarging the active space with ligand orbitals displaying sizeable

tails on the metal site may actually lead to an effective reduction of the ZFS parameters of up

to 20 %.30 On the other side, including the spin-spin coupling term may lead to an increase of

a couple of % of the same values.17 Overall, the computed ZFS values are expected to be only

slightly overestimated. For the sake of this article, it is important to show that the isotropic

couplings are large enough to separate the ground S = 4 state from the others belonging to
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the Heisenberg space. As a consequence, the tendency of NEVPT2 for underestimating the

isotropic couplings55,56 should not be seen here as a pitfall of the present study. Naturally,

this will be further commented on in the Results Section.

In the second step of the calculation, SOCI interaction matrices are diagonalized. Two

main types of calculations will be performed, using (i) the CASSCF states and energies or

(ii) the CASSCF states and the NEVPT2 energies to compute this matrix. Note that such a

shift of the diagonal of the SOCI matrix as been first proposed by Teichtel et al.81 and later

revisited by Llusar et al.82 Many succesful applications of this approach to compute the ZFS

of nickel(II) ions have been reported in the literature (see for instance References 17, 31, 32,

34, 38 and 40).

All the calculations reported in this article have been performed with ORCA v. 4.2.1.83

A mean-field SOC operator has been used84 together with the transformed SOC operator

that is compatible with the DKH Hamiltonian (in other words the adequate “picture change”

keyword has been switched on). DKH recontracted basis sets by D. A. Pantazis of the def2

type85 have been used: TZVP for Ni and Zn atoms, i.e. (17s11p7d1f)/[10s6p4d1f] and

(17s11p7d1f)/[10s7p3d1f], respectively, SVP for O, N and C atoms, i.e. (7s4p1d)/[3s2p1d],

and SV for H atoms, i.e. (4s)/[2s]. Note that basis sets of similar sizes have been previously

used to compute the ZFS of a nickel(II) complex.40 The def2-TZVP/C auxiliary basis set86

has been used for all the atoms. Since numerical accuracy can be critical to compute small

energy differences and thus consistently extract weak effective parameters or small differences

between them, convergence criteria must be wisely set up. In this work, the energy criterion

(etol keyword) has been fixed to 10−8 (a.u.) and the gradient one (gtol keyword) to 10−4.

2.6 Extraction of the model parameters and relevance of the model

Hamiltonians

As above-mentioned, the scalar-relativistic quantum mechanical calculations performed in

this work consider spin-adapted solutions. Thus, these calculations are directly performed
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in the coupled |S,MS〉 basis. When minimal active space CASSCF and post-CASSCF cal-

culations are performed to compute isotropic couplings, the quantum mechanical solutions

directly correspond to the solutions of the HDVV Hamiltonian (it is strictly diagonal in this

basis). Thus, one can easily extract the isotropic couplings from eigenenergies of the ab

initio Hamiltonian. In this work, after shifting all the energies to set the one of the S = 4

state to zero, the following expressions are used to compute the isotropic couplings in the

full complex:

J1 = −E(3, 1)

4
(11)

where E(3, 1) is the energy of the first S = 3 state (the first index refers to S and the second

to n, as in Table 1), and:

J2 = −1

2

[
E(3, 2) + E(3, 3)

2
− E(3, 1)

2

]
(12)

in which the mean value of the second and third S = 3 state is taken to correct from the slight

degeneracy lift that could occur in the quantum mechanical calculations (the calculations are

performed in the C1 symmetry point group). In the clusters with only two active nickel(II)

sites, a similar approach is employed:

Ji = −E(1)

2
(13)

where i depends on the retained cluster according to equation 2, E(1) is the energy of the S

= 1 state, obtained after having set energy of the S = 2 state to the zero of the energy. In

this case, only one index refering to S is required since we have to deal only with one S = 2,

one S = 1 and one S = 0 state (see Figure 3).

After having extracted the J values, one can easily compute the model spectra according

to the expressions given in Table 1 (full complex) or simply following this expression (clusters

with two active sites):
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E(0) = −3Ji (14)

where Ji naturally depends again on the retained cluster. Mathematically, these model

spectra have no strict reason to perfectly match the ab initio energies. Thus, to assess the

quality of the model, it is wise to define the error done by the model spectra, one way or

another. In this work, we follow the expression previously used by Bastardis et al.:52

Error(%) =

N∑
k=1

|EAb initio
k − EModel

k |

N∆EAb initio
× 100 (15)

where the mean absolute error done for each k energy is given relative to the ab initio spectral

width ∆EAb initio, which is here nothing but the energy of the highest state (the ground state

is set at the zero of the energy).

The D tensors are extracted with the effective Hamiltonian theory,87 based on the des

Cloizeaux formalism:88

Ĥ
des Cloizeaux

=
N∑
k=1

|Ψ̃L
k〉Ek〈Ψ̃L

k | (16)

where Ek are the ab initio energies and Ψ̃L
k are the Löwdin orthonormalized89 projections

(onto the model space) of the ab initio wave functions. Note that this approach has been

first proposed by Maurice et al.30 to compute magnetic anisotropy parameters and is now

implemented in ORCA83 for computing the second-rank ZFS parameters of S states (no

implementation is currently proposed for extracting the Stevens higher order parameters

nor to extract parameters of multispin Hamiltonians). Diagonalization of the D tensors

will give the magnetic anisotropy axes and the D and, if applicable, the E parameters (see

Section 2.3). Because only second-rank parameters are determined, the model spectra may

not exactly match the ab initio energies in the calculations dedicated to the ZFS of the S = 4

state (full complex). Thus, the errors made by the model spectra will be computed according
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to equation 15. Furthermore, the expression of the effective Hamiltonians, given by ORCA in

the arbitrary axis frames used for the calculations, will provide additional arguments for the

importance of the neglected terms (in particular by looking at the off-diagonal elements of the

effective Hamiltonians for the “tetragonal” parameters, e.g. B4
4). Note that the application

of the effective Hamiltonian approach to cases with magnetic sites displaying near orbital

degeneracy may later lead to the definition of new model Hamiltonians, but that this task

is clearly out of the scope of the present paper.

3 Results

3.1 The isotropic couplings for the ground orbital configuration

We start the discussion of the results with the computation of the isotropic couplings on the

full complex, with four active nickel(II) sites, at the CASSCF(8/8) and NEVPT2 levels (see

Tables 2 and 3). Though the calculations with 1 S = 4 and 3 S = 3 states already give

access to the extraction of the J1 and J2 values, these cannot intrinsically lead to a serious

discussion on the relevance of the HDVV Hamiltonian to describe the spectra corresponding

to the full Heisenberg spaces. Thus, it is worth starting by looking at the results on the full

Heisenberg spaces.

At the CASSCF(8/8) level, the model spectra gives an almost perfect description of

the whole set of ab initio energies, as expected with state-average orbitals built with the

full set of states50 (in contrast with what could occur with state-specific orbitals or state-

average orbitals per spin multiplicities). However, significant deviations are observed at the

NEVPT2 level. These may have several origins, (i) they may be an artifact of multireference

perturbation theory,55,56 (ii) they may reveal some biquadratic exchange couplings,51,53,62 or

(iii) they may reveal even more complex effective interactions with for instance three-body

terms, which dominate the deviations in trinickel(II) systems.52 Due to the computational

cost (the complex displays 104 atoms and the present basis set consists in 948 contracted
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Table 2: CASSCF(8/8) energies (“Ab initio”, in cm−1), extracted J1 and J2
values (cm−1), and model spectra (“Heisenberg”, energies in cm−1). The states
are characterized by an S quantum number and by an index n for each S block.
The error is given in %.

S n
1 S = 4 + 3 S = 3 Full Heisenberg space

Ab initio J1 J2 Heisenberg Ab initio J1 J2 Heisenberg

4 1 0.00 −5.72 −5.84 0.00 0.00 −5.60 −5.73 0.00
3 1 22.87 22.87 22.42 22.42
3 2 23.11 23.11 22.66 22.67
3 3 23.11 23.11 22.67 22.67
2 1 39.23 39.23
2 2 39.48 39.48
2 3 39.48 39.48
2 4 39.60 39.60
2 5 39.60 39.60
2 6 39.72 39.73
1 1 50.44 50.44
1 2 50.68 50.69
1 3 50.68 50.69
1 4 50.93 50.93
1 5 51.06 51.06
1 6 51.06 51.06
0 1 56.05 56.05
0 2 56.54 56.54
0 3 56.78 56.79

Error 0.00 Error 0.00
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Table 3: NEVPT2 energies (“Ab initio”, in cm−1), extracted J1 and J2 values
(cm−1), and model spectra (“Heisenberg”, energies in cm−1). The states are
characterized by an S quantum number and by an index n for each S block. The
error is given in %.

S n
1 S = 4 + 3 S = 3 Full Heisenberg space

Ab initio J1 J2 Heisenberg Ab initio J1 J2 Heisenberg

4 1 0.00 −5.63 −5.92 0.00 0.00 −5.59 −5.88 0.00
3 1 22.53 22.53 22.36 22.36
3 2 23.11 23.10 22.94 22.94
3 3 23.08 23.10 22.93 22.94
2 1 38.67 39.14
2 2 39.55 39.71
2 3 39.55 39.71
2 4 39.80 40.00
2 5 39.79 40.00
2 6 39.58 40.28
1 1 49.21 50.32
1 2 50.10 50.89
1 3 50.09 50.89
1 4 50.56 51.46
1 5 50.11 51.75
1 6 50.08 51.75
0 1 54.06 55.91
0 2 55.50 57.06
0 3 54.03 57.63

Error 0.02 Error 1.44
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basis functions and the size of the active space leads to a huge amount of configurations for

the lower spin cases), it is practically impossible to perform multireference CI calculations

to distinguish the true physics from artifacts of multireference perturbation theory.

To somehow quantify the deviations, calculations have been performed in clusters with

only two active nickel(II) sites. In cluster 1, Ni1 and Ni2 are active and Ni3 and Ni4 are

replaced by zinc(II) ions, while in cluster 2 Ni1 and Ni3 are active and Ni2 and Ni4 are replaced

by zinc(II) ions. This notation is chosen to match the indices of equation 2. Similarly, no

sizeable deviation to the Landé intervals is observed at the CASSCF(4/4) levels, contrary to

what happens at the NEVPT2 ones.

Table 4: CASSCF energies (“Ab initio”, in cm−1), extracted J1 and J2 values
(cm−1) and λ1 and λ2 parameters, and model spectra (“Heisenberg”, energies
in cm−1). The states are characterized by an S quantum number. The error is
given in %.

S
Cluster 1 Cluster 2

Ab initio J1 Heisenberg λ1 Ab initio J2 Heisenberg λ2
2 0.00 -5.50 0.00 0.00 0.00 -5.63 0.00 0.00
1 11.00 11.00 11.26 11.26
0 16.50 16.50 16.88 16.88

Error 0.00 Error 0.00

Table 5: NEVPT2 energies (“Ab initio”, in cm−1), extracted J1 and J2 values
(cm−1) and λ1 and λ2 parameters, and model spectra (“Heisenberg”, energies
in cm−1). The states are characterized by an S quantum number. The error is
given in %.

S
Cluster 1 Cluster 2

Ab initio J1 Heisenberg λ1 Ab initio J2 Heisenberg λ2
2 0.00 -5.40 0.00 0.02 0.00 -5.58 0.00 0.04
1 10.80 10.80 11.15 11.15
0 15.90 16.20 16.03 16.73

Error 0.64 Error 1.44

Following the same reasoning as Moreira et al.,51 it is proposed to quantify the observed

deviations to the HDVV Hamiltonian by introducing an effective biquadratic exchange term

as follows:

21



Ĥ
HDVV

= Jij

(
Ŝi · Ŝj + λij(Ŝi · Ŝj)

2
)

(17)

where λij corresponds to the relative deviation to the HDVV Hamiltonian, and where Jij is

the coupling constant derived from the energies of the S = 2 and S = 1 states. Note that to

be consistent with the previous notations, Tables 4 and 5 refer to the λ1 and λ2 parameters.

As soon as two parameters are now introduced for reproducing two energy differences, no

error can now be atributted to the model Hamiltonian, hence no reported values for this

model Hamiltonian in these tables. The derived parameters are all smaller than to 0.05, a

value that is a limit for the acceptable physical deviations.62 However, we recall here that we

do not know at this stage if these deviations are physical and/or artifactual, the extracted

parameters should thus be only interpreted as effective deviations in the computed spectra,

and not in terms of “true” biquadratic exchange parameters.

A more important result for the sake of this article dedicated to the ZFS of the ground

S = 4 state is the semi-quantitative estimates for the isotropic couplings. At all the consid-

ered levels of theory, J1 and J2 values of about −5.7 ± 0.4 cm−1 are obtained (the mean

value of all the computed isotropic couplings has been taken together with two standard

of deviations). Consequently, even if we underestimate the isotropic couplings at the con-

sidered CASSCF and NEVPT2 levels, the ground S = 4 state is always separated to the

first S = 3 state by more than 20 cm−1 in the computed spectra. This energy separation,

mentioned elsewhere in the analysis of magnetic data,18 is of crucial importance to limit the

spin mixings and the energy overlap between the energy levels of states displaying differ-

ent spin multiplicities. In other words, it is a good start for justifying the applicability of

the giant spin approximation for describing the low-temperature magnetism of the complex.

Furthermore, the computed values confirm weak ferromagnetic couplings in this system, in

agreement with experiment19 and with the previous DFT results.22

No matter the system (full complex vs. cluster) or the method (CASSCF or NEVPT2),

the computed values for J1 and J2 are always close one another. This result corroborates the

22



DFT results of Venegas-Yazigi et al.,22 who have already pointed out the discrepancy between

the experimental structure and the experimental fit of the magnetic data (see Discussion

Section).

Finally, it is important to note that the results obtained with 1 S = 4 and 3 S = 3 states

fairly match the ones obtained with the full Heisenberg space in Tables 2 and 3, meaning

that the J1 and J2 values for the ground orbital configuration can be safely extracted on the

basis of these states.

3.2 The single-site anisotropies

The single-site anisotropies being symmetry equivalent in the full complex (S4 symmetry),

a cluster containing only one active nickel(II) site is enough to give all the necessary infor-

mation. In practice, Ni1 was considered active while Ni2, Ni3 and Ni4 have been replaced by

zinc(II) ions. Three state-averaging spaces have been considered, 4 S =1, 7 S = 1 + 2 S

= 0 and the full 8/5 space consisting of 10 S = 1 and 15 S = 0 states (see Table 6). In all

the reported results, E/D is close to the 1/3 limit, meaning that the D sign is not actually

determined by the ab initio calculations, which is an unfortunate situation that has already

been encountered in a mononuclear nickel(II) complex.32

Table 6: The SOCI single-site anisotropy parameters. D is given in cm−1, E/D
is positive defined, ϑ (◦) is the angle between the single-site easy axis of magne-
tization and the Ni1–Ni3 (or Ni2–Ni4) orientation and δ (◦) is the torsion angle
between the Ni1 and Ni3 (or Ni2 and Ni4) single-site easy axes of magnetization.

Energies
4 S = 1 7 S = 1 + 2 S = 0 Full 8/5 space

D E/D ϑ δ D E/D ϑ δ D E/D ϑ δ

CASSCF 2.78 0.32 65.1 10.1 −2.88 0.31 63.8 11.0 −2.67 0.31 64.5 10.1
NEVPT2 2.38 0.33 65.2 10.1 −2.40 0.30 63.6 9.4 −2.03 0.31 63.3 9.3

Since the D parameter for the S = 4 state of the full complex is known to be negative

from experiment,19 it is interesting to monitor the position of the single-site easy axis of

magnetization. Its orientation is here given in terms of two angles, ϑ being the angle between

the Ni1–Ni3 orientation and this axis and δ being the torsion angle between the Ni1 easy
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axis of magnetization and the one of Ni3 obtained by applying the C2 symmetry operation

to the Ni1 easy axis. As can be seen in Table 6, the orientation of the single-site easy axis

of magnetization is similar at all the considered levels of theory, meaning that it can be

discussed at any of these levels.

Figure 4: Representation of the single-site easy axes of magnetization (double sided arrows).
The Ni1 axis was obtained at the SOCI level with the MS components of the CASSCF(8/5)
states (4 S = 1) and the others by applying the adequate symmetry operations (Ni2–Ni4).
The C2 symmetry axis is vertical in the paper plane. Color code: gray stands for Ni, red for
O and blue for N.

In Figure 4, the single-site easy axis of magnetization obtained at the CASSCF(8/5)

level with 4 S = 1 states are depicted. These easy axes are far from leading to a favorable

situation to maximize the anisotropy of the full complex, as would be the case for instance

if these would be parallel.7 This is already a first strong explanation for the weak uniaxial

anisotropy of the S = 4 state.

In appearance, the computed parameters are significantly dependent on the number of

states that is included in the calculation. Since the scalar-relativistic states of the first step

of the calculation are all computed with a state-averaging scheme, inclusion of more states is

expected on the one side to account for more physical contributions in the second step of the

calculation and on the other side to enlarge the state-averaging artifacts, as already pointed
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out by Maurice et al. in 2009.30 To sort out both contributions, the individual contributions

of the excited states have been computed with second order perturbation theory with the 7

S = 1 and 2 S = 0 space (see Table 7). As can be seen, the lowest three S = 1 states, already

present in the 4 S = 1 space in Table 6, largely dominate the computed ZFS parameters

(the contributions of the next three S = 1 states and of the lowest two S = 0 states being

only marginal). Thus, it is concluded that the 4 S = 1 space is the best one for computing

the single-site ZFS, since it is the one that account for the actual physical contributions

to it, while keeping to a minimum the averaging artifacts (the inclusion of more states

necessarily comes with more averaging artifacts). Note that this is due to the fact that the

first coordination spheres of the nickel(II) ions in the complex under study are somehow close

to the octahedron case, i.e. this conclusion may not be transferable to every Ni4 complexes.

However, in this case, it is actually an important result to open the way for the calculation

of the ZFS of the ground S = 4 state.

Table 7: Individual contributions (in cm−1) at the second order of perturbation
theory to the single-site anisotropy parameters.

Energies CASSCF NEVPT2
S n D E D E

1 2 −28.00 3.15 −21.78 1.44
1 3 2.18 −5.48 1.26 −5.68
1 4 22.68 1.38 17.97 3.48
1 5 −0.02 0.00 −0.01 0.00
1 6 −0.02 0.00 −0.02 0.00
1 7 0.01 0.00 0.01 0.00
0 1 0.00 0.00 0.00 0.00
0 2 0.00 0.00 0.00 0.00

Total −3.17 −0.94 −2.57 −0.76

3.3 The zero-field splitting of the ground S = 4 state

As mentioned before, the single-site anisotropies are better computed with the 4 S = 1 states.

In the full complex, this would mean in principle considering twelve single excitations from

the ground S = 4 state, generating 13 S = 4 states, and many other states of lower spin
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multiplicities with one complete Heisenberg spectrum per single excitation. However, the

SOC operator can only couple at the second order of perturbations states with same spins

or spins differing only by one from the reference spin multiplicity. Here, this means that we

can focus more specifically on the S = 3 manifold, and neglect the S = 2, S = 1 and S = 0

ones. According to Figure 3, 3 S = 3 states are associated with 1 S = 4 one. Consequently,

a good space for computing the ZFS of the ground S = 4 state would consist in 13 S = 4

states and 39 S = 3 ones. Test calculations with larger numbers of S = 4 and/or S = 3

states have revealed that the 13 S = 4 and 39 S = 3 states are well separated in energy from

the higher ones, meaning that these states have their anticipated meaning (single-excited

states with respect to the ground S = 4 state). Another argument confirming this may come

from the average occupation numbers of the state average orbitals. Numbers very close to

the ideal 25/13 = 1.92 and 29/26 = 1.12 values that can be computed assuming pure single

excitations are actually obtained at the CASSCF level (not shown). Note that with only one

active site, those ideal numbers would be 7/4 = 1.75 and 11/8 = 1.37, respectively, and that

numbers close to these were actually obtained in Section 3.2 (with 4 S = 1 states, naturally).

Table 8: The molecular anisotropy parameters for the ground S = 4 state com-
puted at the SOCI level with the MS components of the CASSCF(32/20) states.
D is given in cm−1, E/D is positive defined and the error is given in %.

Energies
13 S = 4 13 S = 4 + 39 S = 3

D E/D Error D E/D Error

CASSCF −0.41 0.00 0.04 −0.22 0.00 0.26
NEVPT2 −0.33 0.00 0.03 NC1 NC NC

1NC stands for not computed, here owing to the prohibitive computational cost.

In Table 8, two spaces are considered, 13 S = 4 states (same spin contributions) and 13

S = 4 + 39 S = 3 states (same spin plus contributions from the S − 1 spin states). Before

commenting on the D values, it is worth checking if the neglect of the higher order Stevens

terms is an issue or not. For this, the model spectra obtained by neglecting these terms

have been confronted to the ab initio energies, as was done for the isotropic couplings (see

Section 3.1). As can be seen in Table 8, the committed errors are actually negligible when
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only S = 4 states are included, and it remains quite moderate after inclusion of S = 3 states.

Furthermore, the des Cloizeaux effective Hamiltonians88 give no sign of tetragonal terms

such as B4
4 , which would effectively couple MS and MS ± 4 energy levels, and potentially

break the degeneracy of ±MS levels. As a conclusion, neglecting the higher order Stevens

terms is not an issue here and the following model Hamiltonian appears fairly suited to

reproduce the ab initio spectra:

Ĥ
S=4

= D
(
Ŝ2
z − 16

)
(18)

where the zero of the energy has been set to the ground MS = ±4 energy levels.

The results with the 13 S = 4 states show a significant role of the additional electron

correlation delivered by NEVPT2 on top of CASSCF. Unfortunately, performing NEVPT2

calculations with 13 S = 4 + 39 S = 3 states was not an option due to the associated

computational cost. However, one may expect also some significant contribution. Note that

the inclusion of the 39 S = 3 states leads to an important reduction of the D parameter,

and that this is a true physical effect and not an averaging artifacts, test calculations having

shown at second order of perturbation theory that these states do contribute to the ZFS.

Since the contributions of the two S =4 and S = 3 spin blocks overall oppose, the reduction

observed with NEVPT2 with the 13 S = 4 states cannot be quantitatively transfered to

estimate the one that would have been obtained with 13 S = 4 + 39 S = 3 states. However,

one can expect that the resulting value would significantly deviate from the experimental

value of −0.43 cm−1, most probably being lower than it.

It is worth mentioning that a CASSCF(32/20) calculation performed with 25 S = 4

states has lead to a D value of −0.41 cm−1 (as with 13 S = 4 states), and that second order

perturbation theory has shown that the added individual contributions to the D parameter

are negligible, following what was obtained with the next three S = 1 states for the single-ion

anisotropy parameters. Thus, the 13 S = 4 + 39 S = 3 space is indeed fully consistent for

computing this ZFS.
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Finally, the 13 S = 4 and 39 S = 3 space also gives access to the J1 and J2 values for

the ground orbital configuration. From the energies of the lowest S = 4 and the lowest

three S = 3 states, at the CASSCF(32/20) level, J1 and J2 values of −5.80 and −5.86 cm−1,

respectively, are obtained, in satisfactory agreement with the previous CASSCF estimates

(see Tables 2 and 4) and also in practice with the NEVPT2 ones (see Tables 3 and 5).

4 Discussion

In the experimental study of Moragues-Canovas et al.,19 two quite distinct isotropic couplings

were obtained, J1 = −8 cm−1 and J2 = −15 cm−1 (note the change in sign for consistency

with equation 2). Moreover, two parameter sets were found to satisfactorily fit the magnetic

data: D = −0.43 cm−1 and E/D = 0.04 and D = −0.48 cm−1 and E/D = 0.23. The

authors concluded that the second set was not probable, on the basis that the structure

is not meant to display a strong rhombicity (it is strictly zero in the S4 symmetry point

group). Thus, the new results, together with the previous DFT study concerning solely the

isotropic couplings,22 support a discrepancy between the reported structure and the magnetic

parameters.

Such a discrepancy is not completely new in the field of molecular magnetism, and may

arise for instance from a temperature difference (the crystal structure may not be determined

at the same temperature as the one used for deriving the magnetic parameters) or simply

by averaging effects as suggested for instance in a joint theory/experiment study concerning

the nickel(II) mononuclear complex for which the crystal structure has been determined

at a temperature as low as 10 K.35 It is thus always difficult to experimentally determine

local distortions that actually lower the molecular symmetry. Note that other examples

of structures questioned by quantum mechanical calculations are available, see for instance

Reference 20.

Though it is obvious that only a symmetry lowering can explain the occurrence of a
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rhombic parameter in the complex under study, it is hard to know a priori if such an effect

may actually enlarge D (the best estimate in this work is lower than the experimental value

by about a factor of 2, which is actually similar to what was encountered in a previous

work on a dinickel(II) complex29,43,44). To illustrate how much the D parameter can be

sensitive to the structure, preliminary CASSCF(32/20) calculations have been performed

on an alternative structure (not reported) only differing from the one used in this work

by the positions of the eight missing H atoms. The positions of these H atoms has also

been optimized with Crystalmaker,45 but starting with random positions that do not fulfil

the S4 symmetry. The resulting D parameter, obtained with the 13 S = 4 space, −0.51

cm−1, is significanly larger in absolute value than the one obtained in Table 8 with the same

space, while only the positions of the tripodal ligand terminations are changed. Also, the

obtained E/D parameter, 0.05, is more in line with the experimental values. Therefore, it is

concluded that the main source of discrepancy between the results reported in Table 8 and

the expeirmental ones19 must come from either the structure itself or from the use of a single

structure. Without performing a complete new study on this, it is practically impossible to

say if the problem can be solved with one single optimized structure (presumably not solely

resulting from a simple gas phase optimization of the isolated complex due to the resulting

neglect of environment effects) or by considering an ensemble of discrete structures coming for

instance from snapshots of molecular dynamics simulations, as done for instance to compute

ionization energies of solvated halides by Bouchafra et al.90

A major issue in the molecular magnetism community relates to the link between the

single-site anisotropies and the molecular ones. As shown in a previous paper,7 it is very

tedious to do so even with only two nickel(II) sites. Also, deriving the contributions of

the single-site anisotropies to a molecular one (while neglecting the intersite anisotropies)

is quickly cumbursome, unless the single-site anisotropy axes coincide (by being collinear or

parallel) or are coplanar with a tilting angle29,91 or orthogonal.7,92 Figure 4 clearly shows

that the complex under study to not correspond to such a specific case (with ideal angles
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for instance) but rather to the general one. Without pretending that it is impossible to

attempt something, I believe that such a technical task with four single-site tensors would

go far beyond the scope of this article that aim at showing what is practically and readily

computable in the case of a real and polynuclear single-molecule magnet. Moreover, since it

has been shown that the standard multispin Hamiltonian is questionable already in binuclear

systems42 and that no simple relation appears in the general case between the single-site

anisotropy parameters and the molecular ones,7 the interest for such a quantitative task is

also questionable. Instead, I believe that it is more useful to directly compute the giant-spin

anisotropy parameters, as done here in the case of a tetranickel(II) complex, and to keep the

discussion on the relationship between the single-site anisotropies and the molecular one at

a qualitative level by for instance commenting on the relative orientations of the single-site

anisotropy axes, which is fairly doable whatever the cluster topology is.

The natures of the lowest-lying excited states have not been given here for the sake of

simplicity, even out of the calculations with only one active nickel(II) site. As shown in

Figure 4, the single-site anisotropy axes do not match at all the coordination bonds between

the active nickel(II) site and its first-coordination sphere atoms. As a consequence, the

nature of the states in this frame cannot match the simple ones that occurs in ideal D2h

situations.29 Actually, in the magnetic axis frame, while the ground S = 1 state is clearly

single-configurational, the expressions of the two magnetic orbitals for this state already

involve all the valence d functions (z2, xz, yz, x2−y2 and xy) and the wave functions of

the three lowest-lying excited triplets all appear multiconfigurational with CI coefficient

values that are not ideal. When one enters in such situations that are general and that

do not simplify by symmetry, the pen and paper approach strongly loses its interest, if not

becoming impossible. Again, this is a typical case for showcasing the interest for performing

quantum mechanical calculations. Even if their outcomes may not be fully elucidated, as it

is the case here, they provide useful clues to the investigators by allowing them to determine

the single-ion anisotropy parameters and axes.
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5 Perspectives

Several methodological perspectives of interest for the molecular magnetism community arise

from this work. First, it would be interesting to know if actual deviations to the HDVV

Hamiltonian can occur in Ni4 complexes, and if so, if four-body terms51 are at play. For

this, adequate multirefence CI calculations would have to be performed, in the same vein of

what was done for Ni3 complexes to reveal three-body terms.52 In the same vein, the effective

Hamiltonian approach will have to be applied to more cases with near orbital degeneracy to

question and maybe propose alternatives to the spin Hamiltonian formalism.

Second, an extensive structural analysis could be performed to rationalize potential dis-

crepancies between the experimental data and the computed ones. Actually, these may

appear in any type of molecular complex, and not only in Ni4 ones as the one studied in this

work. In particular, it should be noted that although good agreement can be obtained for

the axial D parameter, the rhombic E one is more enclined to be a source of trouble already

for mononuclear complexes nickel(II) complexes,30–32,40 while the case of a nickel(II) complex

is meant to be the simplest situation for the quantum mechanical calculations. This may

pave the way toward structural studies that go beyond the common habit of using only one

structure, and that, if an experimental one exists, to use that one without further conditions

(though partial or complete geometry optimizations with DFT have already been seen in

the literature, as for instance in Reference 93).

Third, it is worth mentioning that this work constitutes a first step toward the the-

oretical determination of anisotropic Hamiltonians in polynuclear complexes with higher

single-site spins and/or more magnetic sites, and with any cluster topology. Indeed, the

proposed methodology, based on multiconfigurational calculations and the des Cloizeaux ef-

fective Hamiltonian formalism88 is generally applicable independent on the single-site spin

quantum numbers and the number of magnetic sites. However, two main issues may appear

in practice, the necessity for keeping the number of states to a sizeable amount for avoiding

large averaging artifacts (and calculations with prohibitive computational costs), and the
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necessity for handling large active spaces. Perhaps the use of the density matrix renormal-

ization group technique, as used for instance by Roemelt et al.,57 will later prove to be a

route toward this.

Finally, the fact that we are now capable of directly treating the molecular anisotropy of

a tetranickel(II) complex with advanced wave function theory methods should now be spread

in the experimental molecular magnetism community, since it may reinforce, if it were still

necessary, the interest for new joint theory/experiment works.
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XYZ coordinates of the molecular structure of the Ni4 complex used in this work.
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(62) Boča, R. Theoretical foundations of molecular magnetism; Elsevier, Amsterdam, 1999.

(63) Maurice, R.; Verma, P.; Zadrozny, J. M.; Luo, S.; Borycz, J.; Long, J. R.; Truhlar, D. G.;

Gagliardi, L. Single-Ion Magnetic Anisotropy and Isotropic Magnetic Couplings in the

Metal-Organic Framework Fe2(dobdc). Inorg. Chem. 2013, 52, 9379–9389.

(64) Verma, P.; Maurice, R.; Truhlar, D. G. Adsorbate-Induced Changes in Magnetic Inter-

actions in Fe2(dobdc) with Adsorbed Hydrocarbon Molecules. J. Phys. Chem. C 2016,

120, 9933–9948.

(65) Barandiarán, Z.; Seijo, L. The ab initio model potential representation of the crystalline

environment. Theoretical study of the local distortion on NaCl:Cu+. J. Chem. Phys.

1988, 89, 5739–5746.

(66) Retegan, M.; Cox, N.; Pantazis, D. A.; Neese, F. A First-Principles Approach to the

Calculation of the on-Site Zero-Field Splitting in Polynuclear Transition Metal Com-

plexes. Inorg. Chem. 2014, 53, 11785–11793.

(67) Kahn, O. Molecular magnetism; VCH, New York, 1993.

(68) Abragam, A.; Bleaney, B. Electron paramagnetic resonance of transition ions; Dover

Publications, New York, 1986.
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Synopsis:

The isotropic couplings, the single-site anisotropies and the ZFS of the ground S = 4 state

of a cubane-like Ni4 complex are computed by means of state-of-the-art relativistic and

multiconfigurational calculations. Weak ferromagnetic couplings are confirmed between the

nickel(II) sites, together with a weak uniaxial anisotropy for the coupled S = 4 state. The

small value of D is explained by the actual mismatch between the single-site anisotropy axes.
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